
Bulk Loading the M-tree �

Paolo Ciaccia Marco Patella
DEIS - CSITE-CNR DEIS - CSITE-CNR

Bologna, Italy Bologna, Italy
pciaccia@deis.unibo.it mpatella@deis.unibo.it

Abstract. The M-tree is a dynamic paged structure that can be effec-
tively used to index multimedia databases, where objects are represented
by means of complex features and similarity queries require the compu-
tation of time-consuming distance functions. The initial loading of the
M-tree, however, can be very expensive. In this paper we propose a fast
(bulk) loading algorithm to speed-up the creation of the tree on a given
dataset. Experimental results show that our BulkLoading algorithm can
significantly improve the index’ performance with respect to M-tree in-
sertion methods, and its performance is comparable to that of static
metric trees.

1 Introduction

Content-based retrieval of objects is one of the most common operations required
by the incoming multimedia (MM) era. Multimedia users often request images,
sounds, texts, and videos from large repositories for medical, scientific, legal,
and art applications, to name a few. To be efficiently retrieved, such objects are
characterized and indexed using relevant features (shapes, textures, patterns,
and colors for images, loudness and harmonicity for sounds, shots and objects’
trajectories for videos, etc.), then similarity queries can be issued to retrieve the
objects which are most similar to a user-provided query object.

A classical approach to support similarity queries is to use spatial access
methods (SAMs). The applicability of SAMs, such as R-tree [Guttman, 1984]
and its variants, is, however, limited by the fact that, for indexing purposes,
objects are to be represented by means of feature values in a vector space of
dimensionality Dim. Furthermore, SAMs have been designed by assuming that
comparison of feature values has a negligible CPU cost with respect to the cost
of disk I/O, which is not always the case in MM applications.

A more general approach consists in supporting similarity queries over generic
metric spaces, which include vector spaces. A metric space is a pair, M = (D, d),
where D is a domain of feature values – the indexing keys – and d is a metric
– a non-negative and symmetric function which also satisfies the triangular in-
equality (d(Ox, Oy) ≤ d(Ox, Oz) + d(Oz, Oy) ∀Ox, Oy, Oz ∈ D).1

� This work has been partially supported by projects ESPRIT LTR no. 9141, HER-
MES, and Italian C.N.R. MIDA.

1 In order to simplify the presentation, we sometimes refer to Ox as an object, rather
than as the feature value of the object itself.

The two basic types of similarity queries are the following:
Range query: Given an object Q ∈ D and a maximum search distance rQ, the
query range(Q, rQ) selects all the objects Oj such that d(Oj , Q) ≤ rQ. ✷

k nearest neighbors (k-NN) query: Given an object Q ∈ D and an integer
k ≥ 1, the query NN(Q, k) selects the k objects having the shortest distance from
Q, according to the distance function d. ✷

The difficult problem of indexing metric spaces has led to the development of
so-called metric trees. Metric trees only consider relative distances of objects to
organize and partition the search space, and just require the distance function to
be a metric, which allows the triangle inequality property to be applied. Several
metric trees have been developed so far, including the vp-tree [Chiueh, 1994],
the GNAT [Brin, 1995], and the mvp-tree [Bozkaya and Özsoyoglu, 1997]. Since
all above designs build the index in a top-down way, the tree is not guaranteed
to stay balanced in case of random insertions and deletions, thus requiring costly
reorganizations to prevent performance degradation. Contrary to SAMs, these
metric trees have only insisted on reducing the number of distance computations,
paying no attention to I/O costs. The M-tree is a balanced paged metric tree,
which has been explicitly designed to act as a dynamic database access method
[Ciaccia et al., 1997], thus performance optimization concerns both CPU (dis-
tance computations) and I/O costs. The incremental construction of an M-tree
could lead, depending on the order of insertion of the objects, to very different
performances during the querying phase. In this paper we present an algorithm
to optimize the building of an M-tree given a set of data objects. This “loading”
of the tree can be done to speed-up the index creation on a static database, or
to reorganize the tree on a dynamic database, when allowed by time constraints.

The paper is organized as follows. In Section 2 we review some techniques
which are relevant to our work. Section 3 gives an overview of M-tree princi-
ples and algorithms. In Sections 4 and 5 we present the basic version of our
BulkLoading algorithm and discuss on some optimization techniques. Section 6
presents experimental results and Section 7 concludes the paper.

2 Related Work

Typical spatial (multidimensional) index structures support random insertion,
deletions and updates, but, recently, there has been an increasing interest in bulk
operations (i.e. a series of operations executed atomically, without interruption
by other actions), in particular the index’ creation from a given set of records
(bulk loading). A great variety of bulk loading techniques has been proposed for
R-trees. Most of them [Roussopoulos and Leifker, 1985; Kamel and Faloutsos,
1993; Leutenegger et al., 1997] sort the dataset using one-dimensional criteria,
usually based on the clustering properties of space-filling (e.g. Hilbert) curves.
Only a few methods [Li and Laurini, 1991; Gavrila, 1994] exploit the “metric”
properties of the dataset (i.e. relative distances between objects), and try to
achieve a good clustering of the objects by iteratively improving on the choice
of clusters’ “centers”.

A generic algorithm to bulk loading multidimensional index structures (but
the method could be easily extended to metric indices) has been recently pro-
posed [van den Bercken et al., 1997]. The index is built bottom-up by using
buffer-trees. The major drawbacks of this technique are that its performance
still depends on the order in which data are inserted and its goal is to reduce
only I/O costs, thus ignoring CPU costs.

Another choice for indexing objects in a metric space could be to use a
mapping technique like FastMap [Faloutsos and Lin, 1995]. This technique maps
objects into points of a Dim-dimensional space (where Dim is user-defined), such
that the distances between objects are preserved as much as possible. The major
benefit of this approach is that the Dim-dimensional points can be indexed using
a SAM, like the R-tree. However, the method suffers from using approximated
distances instead of the real ones and from being intrinsically static.

Finally, methods like BIRCH [Zhang et al., 1996] and other data clustering
techniques [Jain and Dubes, 1988] address problems very similar to ours, but
they cannot be directly applied in our context for several reasons: (a) they are
essentially vector-based, (b) they try to reduce only I/O and not CPU costs,
and (c) the cluster analysis is performed off-line with expensive, multiple-pass
algorithms.

3 The M-tree

The M-tree stores the objects into fixed-size nodes, which correspond to regions
of the metric space. Nodes of the M-tree can store up to M entries – this is the
capacity of the nodes. Each entry in a leaf node has the format

entry(Oj) = [Oj, oid(Oj), d(Oj , P (Oj))]

where oid(Oj) is the identifier of the object which resides on a separate data file,
Oj are the feature values of the object, and d(Oj , P (Oj)) is the distance between
Oj and P (Oj), the parent object of Oj (see below). An entry in an internal node
stores a feature value, Or, also called a routing object , and a covering radius,
r(Or) > 0. The entry of Or includes a pointer, ptr(T (Or)), to the root of sub-
tree T (Or) – the covering tree of Or – and d(Or, P (Or)), the distance from the
parent object:2

entry(Or) = [Or, ptr(T (Or)), r(Or), d(Or, P (Or))]

The basic property of the covering radius is that each object Oj in the covering
tree of Or satisfies the inequality d(Oj , Or) ≤ r(Or). A routing object thus de-
fines a region in the metric space M, centered on Or and with radius r(Or), and
Or is the parent of each object Oj stored in the node referenced by ptr(T (Or)),
i.e. Or ≡ P (Oj). This implies that the M-tree organizes the metric space into a
set of, possibly overlapping, regions, to which the same principle is recursively
applied. The covering radius, r(Oj), and the distance between the object and
its parent object, d(Oj , P (Oj)), both stored in each entry of the tree, are used
2 This is undefined for entries in the root node.

by the search algorithms to “prune” the search space (for more specific details,
see [Ciaccia et al., 1997]).

3.1 How M-tree Grows

As any other dynamic balanced tree, M-tree grows in a bottom-up fashion. The
overflow of a node N is managed by allocating a new node, N ′, at the same level
of N , partitioning the M + 1 entries among the two nodes, and then promoting
relevant information about the two nodes to the parent node, Np. When the root
splits, a new root is created and the M-tree grows by one level. Figure 1 shows
this in the case M = (�2, L2), i.e. the real plane with the Euclidean distance.

Op

r(Op)

Op1

Op2

r(Op1)

r(Op2)

Fig. 1. Split of an internal node in (�2, L2).

In [Ciaccia et al., 1997], we have proposed a suite of heuristic policies for
splitting a node. Here, we recall only a few of them:

mM RAD The “minimum Maximum of two RADii” algorithm is the most complex
in terms of distance computations. It considers all possible pairs of objects
and, after partitioning the set of entries, promotes the pair of objects for
which the maximum of the covering radii, r(Op1) and r(Op2), is minimum.

RANDOM The reference object(s) are selected randomly.
M LB DIST This policy only uses the pre-computed stored distances, sets Op1 ≡

Op, and determines Op2 as the farthest object from Op, that is d(Op2 , Op) =
maxj{d(Oj , Op)}.

4 The BulkLoading Algorithm (base version)

The bulk loading algorithm we propose performs a clustering of n data objects
S = {O1, . . . , On}, with constraints on minimum, umin, and maximum, umax,
node utilization, and returns an M-tree T .

Given the set of objects S, we randomly sample k objects Of1 , . . . , Ofk
from

S, insert them in the sample set F , and then assign each object in S to its
nearest sample, thus producing k sets F1, . . . ,Fk. Then, we invoke the bulk
loading algorithm on each of these k sets, obtaining k sub-trees T1, . . . , Tk.3 The
effect of these recursive calls is that, in the leaves of each sub-tree, we obtain a
partition of the dataset up to the desired level of granularity. Then, we have to
3 This is similar to the generation of seeded trees presented in [Lo and Ravishankar,

1995].

invoke the bulk loading algorithm one more time on the set F , obtaining a super-
tree Tsup. Finally, we append each sub-tree Ti to the leaf of Tsup corresponding
to the sample object Ofi

, and obtain the final tree T .
Of course, the partitioning of the dataset highly depends on the choice of

the sample objects: taking samples in a sparse region would produce very low
sub-trees, since the corresponding sets will have a very low cardinality, while a
sample in a dense region would produce a higher sub-tree.

Figure 2 shows a 2-D example and the resulting tree with node capacity
M = 3 and umax = 1: at the first step, the algorithm selects the objects A, B,
and C as samples for the sub-trees. Other named objects are samples for other
sub-trees (note that, in order to simplify the drawing, in the example we assumed
that a sample at a higher level is also a sample for lower levels, e.g. C=C’=C”).

B

IF

C

H

G

A

D
E

B

root

G

C

F

H IC"

C’D E

A

A’

a) b)

sub-trees

super-tree

Fig. 2. A 2-D example (a) and the resulting tree (b).

If the sub-trees have different heights, or underfilled nodes, when a set Fi

has less than m
def= umin · M objects, the above algorithm can produce a non-

balanced tree (both cases are included in the example of Figure 2). To resolve
these problems we use two different techniques: (a) reassign the objects in un-
derfilled sets to other sets, and delete the corresponding sample object from F ;
(b) split the “taller” sub-trees, obtaining a number of “shorter” sub-trees; the
roots of the obtained sub-trees will be inserted in the sample set F , replacing
the original sample object. Note that the first heuristics leads to a lower number
of samples and ensures that each node of the sub-trees has a guaranteed mini-
mum utilization, while the latter technique increases the number of samples by
splitting the taller sub-trees. If a single set of objects results at the end of this
phase, we repeat the overall process, starting from a new sampling stage.

In the example of Figure 2, supposing umin = 1/2, nodes A’ and I are deleted
and their object reassigned to nodes D and H, respectively. Then, since the sub-
tree with minimum height is that having root in B, the sub-trees rooted in A
and C are splitted, generating the sub-trees rooted in D, E, C”, H, F, and G.
Finally, the algorithm builds the super-tree on all these sub-trees (see Figure 3,
supposing that the samples for the super-tree would be objects D, B, and C).

The algorithm proposed so far cannot guarantee the minimum utilization
umin for the root node of each sub- or super-tree. To obviate this, we check if
the root of the sub-tree just created is underfilled and, in this case, split the
sub-tree at the root level. The complete algorithm is given below.

F

C

G

E

B

D

C" H F

C

D E

D’

B G

B’

root

H

super-tree

sub-trees

b)a)

Fig. 3. The example of Figure 2 after the redistribution phase.

BulkLoading(S: objects set, M: integer, m: integer)

{ if ‖S‖ ≤ M, create a new M-tree T , insert all Oi in T and return T ;

else

{ sample k objects Of1 , . . . , Ofk
from S and insert them in F; // build the sampling set

for each Oi ∈ S, insert Oi in Fj, where d(Oi, Ofj
) ≤ d(Oi, Ofp), ∀Ofp ∈ F;

// assign each objects to its nearest sample

for each Fj, if ‖Fj‖ < m // redistribution phase

{ delete Ofj
from F;

for each Oi ∈ Fj, insert Oi in Fl, where d(Oi, Ofl
) ≤ d(Oi, Ofp), ∀Ofp ∈ F; }

if ‖F‖ = 1, restart from the sampling phase;

for each Fj // build the sub-trees

{ let Tj =BulkLoading(Fj , M, m);

if root(Tj) is underfilled, split Tj into p sub-trees Tj , . . . , Tj+p−1; }
let hmin be the minimum height of the sub-trees Tj;

let T ′ = ∅ be the sub-trees set;

for each Tj, if height(Tj)> hmin // split the higher trees

{ delete Ofj
from F;

split Tj into p sub-trees T ′
1 , . . . , T ′

p of height hmin;

insert T ′
1 , . . . , T ′

p in T ′; // build the set of sub-trees

insert the root objects of T ′
1 , . . . , T ′

p, O′
f1

, . . . , O′
fp

, in F; }
else insert Tj in T ′;
let Tsup =BulkLoading(F, M, m); // build the super-tree

append each Tj ∈ T ′ to the leaf of Tsup corresponding to Ofj
∈ F,

obtaining a new M-tree T ;

// append each sub-tree to the corresponding leaf of the super-tree

update the radius of the upper regions of T ;

return T ; } }

5 Optimization Techniques

The proposed algorithm, as presented above, has proven itself to be very effective
with respect to search costs (as we will see in Section 6), but its major drawback
is the still high number of computed distances during the building phase, as
compared to other M-tree insertion strategies. This led us to investigate some
optimization techniques to reduce the number of distance computations during
the construction phase.

5.1 Saving some Distance Computations

At each call after the initial one, we have to build a tree Tr rooted in Or on a
subset Sr of S. By construction, observe that, for each Oj ∈ Sr, we have already
computed, in the previous step, the distance d(Or, Oj).

The sampling phase applied to Sr yields a set of k sample objects Of1 , . . . , Ofk
,

and we have to find, for each Oj ∈ Sr, its nearest sample object. Suppose O∗
f is

the nearest sample for object Oj obtained so far, and the distance between Oj

and a sample Ofp
has to be computed: since the value | d(Oj , Or)− d(Or, Ofp

) |
is a lower bound on d(Oj , Ofp

), if d(Oj , O
∗
f) ≤| d(Oj , Or)− d(Or, Ofp

) |, we can
safely avoid to compute d(Oj , Ofp

), because this would surely be greater than
d(Oj , O

∗
f). The root object, thus, acts as a vantage point for the computation of

the distance matrix [Shapiro, 1977].
This technique has two major limitations: (a) its application is possible only

during the construction of sub-trees, whereas a lot of distance computations are
performed after the initial sampling phase (where no distance has been computed
yet) and during the construction of the super-tree, and (b) the use of the root
object as a vantage point is not very effective, since it likely lies in the “center”
of the cluster constituted by the set Sr, while it is suggested [Shapiro, 1977] that
vantage points should be multiple and far from the center of the cluster.

5.2 Saving more Distance Computations

In the base version of BulkLoading, we do not compute the relative distances
between sample objects, since it is clear that the nearest sample of such objects
will be the sample itself. If we compute such distances, the sample objects can
play the role of multiple vantage points, like the root object in Section 5.1. In
this case, however, the sample objects are not crowded near the center of the
cluster, thus leading to a more efficient distance pruning. Experimental results
will show if the overhead introduced by the computation of the relative distances
between the sample objects can result in a lower number of computed distances.
The global algorithm for the distance matrix computation is given below.

DistanceMatrix(S: objects set, F: sample set, Or: root object, D: distance matrix)

{ for each Oi ∈ S
{ if Oi = Ofk

∈ F, then let Dj,i = ∞, ∀j �= k; let Dk,i = 0
else

{ D1,i = d(Of1 , Oi) ; // compute the first distance

j∗ = 1;
for each Ofj

∈ F, j > 1;

{ if (| d(Or, Ofj
) − d(Or, Oi) |< d(Ofj∗ , Oi) and ∀k < j : Dk,i < ∞,

| Dk,i − d(Ofj
, Ofk

) |< d(Ofj∗ , Oi)) then Dj,i = d(Ofj
, Oi);

else Dj,i = ∞; } // we can avoid this distance computation

if Dj,i < Dj∗,i then j∗ = j; } } } // update the nearest sample

Figures 4 and 5 show the results for both optimization techniques in terms
of percentage of distance computations saving and of total computed distances,
respectively, as a function of the space dimensionality (BulkLoading0 refers to
the original algorithm, BulkLoading1 to the first optimization technique, while
BulkLoading2 uses both optimization techniques). Here and in the experiments
of Section 6, the synthetic datasets we use consist of normally-distributed clusters
in a Dim-D vector space. Unless otherwise stated, the number of indexed objects
is 104. The number of clusters is 10, the variance is σ2 = 0.1, and clusters’
centers are uniformly distributed in the unit hypercube. The used metric is
L∞(Ox, Oy) = maxDim

j=1 {| Ox[j]− Oy[j] |}, and the node size is 4 Kbytes.
The second optimization achieves far better results than the first one, reach-

ing a 70% saving for Dim = 5. The decreasing trend of distance computations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

 s
av

in
g

Dim

BulkLoading1
BulkLoading2

Fig. 4. Percentage of distance computa-
tions saving during construction phase.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

 (
x

10
^5

)

Dim

BulkLoading0
BulkLoading1
BulkLoading2

Fig. 5. Computed distances during con-
struction phase.

saving is essentially due to two factors: (a) With increasing Dim, the number
of samples, k, decreases, so that the percentage of distances to be computed in-
creases accordingly. (b) Using the L∞ metric, distances between objects tend to
a constant value, for increasing space dimensionality, which reduces the positive
effect of having multiple vantage points. The most surprising result displayed
by Figure 5 is the initial increasing trend for low dimensionalities for the final
optimized algorithm, which shows the effectiveness of the pruning criterion when
the distances between data objects have a non-low variance distribution.

6 Performance Evaluation

In this section we provide experimental results on the performance of the pre-
sented algorithm compared to other M-tree insertion techniques. The split poli-
cies used are those briefly described in Section 3.1. For BulkLoading we always
use umax = 1, and both optimization techniques presented in Section 5.

As to the sample size k, its value is set to min(M,n/M), which equals M if
n ≥ M2, thus filling a single root node with the k samples. If n < M2, setting
k = M would likely result in underfilled sets. To avoid this, we choose k = n/M ,
thus reducing the probability of this unfavorable event.

6.1 The Effect of Minimum Utilization

Figures 6 and 7 show the CPU costs for building the M-tree and for 10-NN
queries when the minimum storage utilization threshold, umin, varies in the
range 0.1 . . . 0.4 – distance selectivity is just the ratio of computed distances to
the total number of objects. As expected, for increasing values of umin the search
costs are decreasing, whereas the building costs have an increasing trend. The
explanation for this behavior is that higher storage utilizations lead to a better
clustering of the objects within each node. Higher utilization thresholds, however,
induce higher building costs since it is more likely that the sets associated with
the samples would result in a single set because of redistribution of objects
in underfilled sets (in this case the distances computed so far are useless and
are discarded). Search costs, though, are quite similar to those obtained with
umin = 0.4.

I/O costs (not shown here) for the building phase are quite similar for dif-
ferent utilization thresholds, whereas higher umin thresholds lead to lower I/O

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

 (
x

10
^5

)

Dim

10%
20%
30%
40%

Fig. 6. Computed distances for building
the tree.

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 s
el

ec
tiv

ity

Dim

10%
20%
30%
40%

Fig. 7. Distance selectivity for 10-NN
queries.

search costs. This is explained by the lower number of pages of trees with higher
utilization and, as seen before, by the better objects’ clustering of such trees,
both effects inducing lower I/O costs.

6.2 Comparing BulkLoading with Standard Insertion Techniques

Now we consider how the dimensionality of the dataset influences the perfor-
mance of the BulkLoading algorithm. As with standard insertion methods, the
number of distances computed by the algorithm decreases with growing dimen-
sionalities, whereas I/O costs have an inverse trend, as shown by Figures 8 and
9. The reason for this behavior is that increasing Dim reduces the node capacity,
thus reducing the size of the distance matrix to be computed during the clus-
tering phase of the algorithm, and so the number of computed distances, but, of
course, leads to larger trees. The I/O costs for the BulkLoading algorithm are,
not surprisingly, the lowest, since this method makes massively use of internal
memory, e.g. to store the distance matrices at different levels of the tree. CPU
costs show that the proposed algorithm is very efficient in the index construction,
with costs very similar to, if not lower than, the cheapest RANDOM 2 split policy.
Indeed, Figure 9 also shows the effectiveness of the optimization technique to
reduce the number of distance computations with low dimensionalities, that can
lead to save the 50% of CPU costs for Dim = 5. Performance on 10-NN query
processing is summarized in Figures 10 and 11, where number of page I/O’s and
distance selectivities are shown, respectively.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

I/O
s

(x
 1

0^
5)

Dim

RANDOM_2
M_LB_DIST_1

m_RAD_2
BulkLoading

Fig. 8. I/O costs for building M-tree.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

 (
x

10
^5

)

Dim

RANDOM_2
M_LB_DIST_1

m_RAD_2
BulkLoading

Fig. 9. CPU costs for building M-tree.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50

I/O
s

Dim

RANDOM_2
M_LB_DIST_1

m_RAD_2
BulkLoading

Fig. 10. I/O costs for processing 10-NN
queries.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40 45 50

D
is

ta
nc

e
se

le
ct

iv
ity

Dim

RANDOM_2
M_LB_DIST_1

m_RAD_2
BulkLoading

Fig. 11. Distance selectivity for 10-NN
queries.

Experimental results demonstrate that the good clustering of objects achieved
by BulkLoading is also reflected by query performance. In fact, the proposed
algorithm has CPU and I/O costs very close to, if not better than, those of the
mM RAD 2 strategy, the “smartest” split policy.

6.3 Comparing M-tree and mvp-tree

Finally, we compared the BulkLoading algorithm performance with that of mvp-
tree [Bozkaya and Özsoyoglu, 1997], a static indexing method for metric spaces,
considering only CPU costs, since mvp-tree is a primary memory organization.4

The mvp-tree partitions the data space using spherical cuts around vantage
(reference) points, and extra information for data objects is kept in the leaves
in order to effectively prune the search space. An mvp-tree is characterized by 4
parameters: (1) the number of vantage points in every node (we always used 2
vantage points), (2) the number of partitions created by each vantage point (v),
(3) the maximum capacity of leaf nodes (f), and (4) the number of distances to
be stored for the data objects at leaves’ level (p).

In each node of the mvp-tree, the first vantage point divides the space in v
parts, while the second vantage point divides each of these parts in v partitions.
The fanout of each node, thus, is v2. To partition the space in v spherical cuts,
the data objects are ordered with respect to their distances from the vantage
point, and then divided in v groups of equal cardinality. The v2 groups of data
objects are, then, recursively indexed by the v2 children of the root node. The
leaf nodes of the tree store the exact distances between the f data objects and
the 2 vantage points of that leaf, as well as the p distances between each data
object x and the first p vantage points along the path from the root to the leaf
node containing x. For our experiments we used the following values: v = 3,
as suggested in [Bozkaya and Özsoyoglu, 1997], f = M , so that leaves’ capacity
would be the same as in the M-tree, and p = 0, since this optimization, that could
be easily inserted in the BulkLoading algorithm, will cause consistency problems
should the index undergo re-organizations during a split phase subsequent to an
insertion (this problem is not present for mvp-tree, since this is a static index
and does not permit insertions and deletions of the objects in the database).
4 The authors thank T. Bozkaya and M. Özsoyoglu for providing the code of mvp-tree.

Results in Figures 12 and 13 compare CPU costs to search, respectively,
M-trees, using the BulkLoading algorithm, and mvp-trees, as a function of the
space dimensionality and of the number of indexed objects. Figure 12 shows
the search costs for range queries with side Dim

√
0.01. The graphs display quite

similar results for both the index structures, with M-tree penalized in higher
dimensionalities by a 10% overhead in terms of computed distances, which should
be a very good tradeoff for the dinamicity of this indexing method. Construction
costs, not shown here, highly amerce the M-tree, leading to a 350% overhead of
distance computations for Dim = 15, even if the gap decreases for increasing
dimensionalities, leading to a 250% overhead for Dim = 50. This is because the
CPU costs for BulkLoading, as seen, are decreasing for higher dimensionalities,
while the mvp-tree has a constant, slightly increasing, trend. Figure 13 shows the
search behavior of both index structures for datasets of increasing size (104 . . . 105

5-D objects): performances are very similar, with a difference almost independent
of the dataset size. As for construction costs, both indices exhibit a logarithmic
trend, typical of tree-like structures. The CPU overhead for M-tree, not shown
here (200% for Dim = 5), is independent of the number of indexed objects.

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

 (
x

10
^5

)

Dim

BulkLoading
mvp-Tree

Fig. 12. CPU costs for range queries as a
function of the space dimensionality.

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10

di
st

an
ce

 c
om

pu
ta

tio
ns

number of objects (x 10^4)

BulkLoading
mvp-Tree

Fig. 13. CPU costs for range queries as a
function of the number of indexed objects.

Finally, we compared the performance of the BulkLoading algorithm with
that of mvp-tree on real datasets. The 5 datasets consist of sets of keywords
extracted from masterpieces of Italian literature. The metric used was the edit
(Levenshtein) distance, i.e. the minimal number of changes (insertions, deletions,
substitutions of characters) needed to transform a string into another one. Table
1 describes each dataset and shows the average number of distance computations
required for a range query with radius rQ = 3, averaged over 1000 queries, for
both indexing methods.

Dataset Size BulkLoading mvp-tree

Decamerone 17396 12455.71 12537.13
Divina Commedia 12701 9630.857 10189.47
Gerusalemme Liberata 11973 9092.99 9528.955
Orlando Furioso 18719 13764.49 14761.37
Promessi Sposi 19846 13872.94 13991.98

Table 1. Performance for range queries on real datasets

7 Conclusions

The M-tree is a new access method able to index dynamic datasets from generic
metric spaces. In this paper we have presented and evaluated a bulk loading
algorithm for M-tree, comparing it with traditional insertion techniques and
with other metric trees. We also developed two different techniques to reduce
the number of distance computed by the algorithm during the building phase.
Results show that the presented algorithm achieves a good clustering of data
objects, leading to very low search costs, and having not very high construction
costs, and that its search performance is similar to that of other metric indexing
structures, that suffer from being intrinsically static.

References

Bozkaya, T. and Özsoyoglu, M. (1997). Distance-based indexing for high-dimensional
metric spaces. SIGMOD’97, pages 357–368, Tucson, AZ.

Brin, S. (1995). Near neighbor search in large metric spaces. VLDB’95, pages 574–584,
Zurich, Switzerland.

Chiueh, T. (1994). Content-based image indexing. VLDB’94, pages 582–593, Santiago,
Chile.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for
similarity search in metric spaces. VLDB’97, pages 426–435, Athens, Greece.

Faloutsos, C. and Lin, K.-I. (1995). FastMap: A fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets. SIGMOD’95,
pages 163–174, San Jose, CA.

Gavrila, D.M. (1994). R-tree index optimization. Technical Report CS-TR-3292, Uni-
versity of Maryland, College Park.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. SIG-
MOD’84, pages 47–57, Boston, MA.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall.
Kamel, I. and Faloutsos, C. (1993). On packing R-trees. CIKM’93, pages 490–499,

Washington, DC.
Leutenegger, S. T., Lopez, M. A., and Edgington, J. (1997). STR: A simple and efficient

algorithm for R-tree packing. ICDE’97, pages 497–506, Birmingham, UK.
Li, K.-J. and Laurini, R. (1991). The spatial locality and a spatial indexing method

by dynamic clustering in hypermap systems. SSD’91, pages 207–223, Zurich,
Switzerland.

Lo, M.-L. and Ravishankar, C. V. (1995). Generating seeded trees from data sets.
SSD’95, pages 328–347, Portland, ME.

Roussopoulos, N. and Leifker, D. (1985). Direct spatial search on pictorial databases
using packed R-trees. SIGMOD’85, pages 17–31, Austin, TX.

Shapiro, M. (1977). The choice of reference points in best-match file searching. Comm.
of the ACM, 20(5):339–343.

van den Bercken, J., Seeger, B., and Widmayer, P. (1997). A generic approach to bulk
loading multidimensional index structures. VLDB’97, pages 406–415, Athens,
Greece.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: An efficient data clus-
tering method for very large darabases. SIGMOD’96, pages 103–114, Montreal,
Canada.

