A Query-sensitive Cost Model for
Similarity Queries with M-tree *

Paolo Ciaccia Alessandro Nanni
DEIS - CSITE-CNR Computer Science Lab.
Bologna, Italy Bologna, Italy
pciaccia@deis.unibo.it nannia@cs.unibo.it

Marco Patella
DEIS - CSITE-CNR
Bologna, Italy
mpatella@deis.unibo.it

Abstract. We introduce a cost model for the M-tree access method
[Ciaccia et al., 1997] which provides estimates of CPU (distance com-
putations) and I/O costs for the execution of similarity queries as a
function of each single query. This model is said to be query-sensitive,
since it takes into account, by relying on the novel notion of “witness”,
the “position” of the query point inside the metric space indexed by the
M-tree. We describe the basic concepts underlying the model along with
different methods which can be used for its implementation; finally, we
experimentally validate the model over both real and synthetic datasets.

1 Introduction

Modern advanced database applications, such as sequence comparison in molec-
ular biology [Chen and Aberer, 1997], shape matching [Huttenlocker et al., 1993],
fingerprint recognition [Maio and Maltoni, 1996], and many others which typ-
ically occur in multimedia environments, often require the efficient evaluation
of similarity (range and nearest neighbors) queries over a set of objects drawn
from an arbitrary metric space. A metric space M = (U, d) is defined by a value
domain U and a metric d, satisfying the axioms of non-negativity, symmetry
and triangular inequality (d(O;, 0;) < d(O;, Ok)+d(Oy, 0;), ¥V 0;,0;,0, € U),
which measures the distance (dis-similarity) of points (objects) of U. As a partic-
ular case, metric spaces include multi-dimensional vector spaces, where objects
are usually compared using the L, distance, such as Euclidean (Ls) or Man-
hattan (L;), but they are far more general. As an example, the domain S of
text strings endowed with the edit (Levenshtein) distance, degq;t, which counts
the minimal number of changes (insertions, deletions, substitutions) needed to
transform a string into another one, is a metric space (S, deg;t)-

* This work has been funded by the EC ESPRIT LTR project no. 9141 HERMES,
and Italian C.N.R. MIDA.

Proceedings of the Tenth Australasian Database Conference, Auckland, New Zealand,
January 18-21 1999. Copyright Springer-Verlag, Singapore. Permission to copy this
work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or personal advantage; and this copyright notice, the
title of the publication, and its date appear. Any other use or copying of this document
requires specific prior permission from Springer-Verlag.

Metric trees are index structures developed to support similarity queries over
metric spaces; most of them, such as vp-tree [Chiueh, 1994], GNAT [Brin, 1995],
and mup-tree [Bozkaya and Ozsoyoglu, 1997], suffer from being intrinsically
static. In contrast, the M-tree [Ciaccia et al., 1997] is a paged and balanced
metric tree which acts as a dynamic database access method.

Theoretical analysis of metric trees is relevant for database design, query pro-
cessing, and optimization, since it provides the means to understand and tune
metric trees. Nowadays, the only cost model for metric trees is the one for M-
tree, introduced in [Ciaccia et al., 1998]. In this paper we improve on this model
by developing an effective query-sensitive cost model, which can change its esti-
mates according to the “position” of the query object. As in [Ciaccia et al., 1998],
the only information derivable from the analysis of the dataset and used by the
model is (an estimate of) the distance distribution of objects (no information on
data distribution is therefore used).

It has to be remarked that, among the many cost models [Kamel and Faloutsos,
1993; Faloutsos and Kamel, 1994; Theodoridis and Sellis, 1996; Papadopoulos
and Manolopoulos, 1997; Berchtold et al., 1997] developed for multi-dimensional
(spatial) access methods (such as R-tree [Guttman, 1984; Beckmann et al., 1990]),
only the one proposed in [Theodoridis and Sellis, 1996] is query-sensitive (all the
others only provide estimates for average costs). However, this model cannot be
applied at all to generic metric spaces.

The rest of the paper is organized as follows. In Section 2 the basic principles
of M-tree and of its existing average-case cost model are reviewed. In Section
3 we show that such a model becomes inadequate when cost estimates for sin-
gle queries are needed. Section 4 introduces the concepts that lead to the new
query-sensitive model and discusses several methods which can be used for its
implementation. In Section 5 we provide some experimental results and, in Sec-
tion 6, we draw our conclusions.

2 The M-tree

The M-tree [Ciaccia et al., 1997] is a dynamic access structure able to index
objects from a generic metric space M = (U,d).? Given a set of objects O =
{O1,...,0,}, O C U, the M-tree stores them into fixed-size leaf nodes, which
correspond to regions (balls) of the metric space. Each entry in a leaf node
has the format [O;, 0id(O;)], where O; € O and 0id(0O;) is a pointer to the
corresponding description of O;. Internal (non-leaf) nodes store entries with
format [O,, r(N,), ptr(N,)], where O, is a so-called routing object, r(N,) > 0
is a covering radius, and ptr(N,) is a pointer to the child node N,. The basic
property of the covering radius is that each object O; in the sub-tree rooted at N,
satisfies the constraint d(O,,O;) < r(N,), that is, all the objects O; reachable
from node N, are in the ball of radius r(N,.) centered in O,.. Clearly, the actual

2 The code of M-tree, along with other information, is freely available at URL
http://www-db.deis.unibo.it/“patella/MMindex.html.

“shape” of such balls depends on the specific metric space (U, d). For instance,
balls are “diamonds” in (2, L), circles in (R?, Ly), and squares in (R?, Loo).
From an overall point of view, the M-tree organizes the database objects into
a set of, possibly overlapping, balls, to which the same principle is recursively
applied up to the root of the tree.

Similarity queries supported by the M-tree are of two basic types: (a) range
queries, denoted range(Q,rq), where, given a query (reference) object Q € U,
all the objects whose distance from) does not exceed r¢ are selected, and (b)
k-nearest neighbors queries, NN(Q, k), where the k (k > 1) closest objects to @
have to be retrieved, with ties arbitrarily broken.

2.1 The Average-case Cost Model

The existing average-case (A-C) cost model for M-tree [Ciaccia et al., 1998] gives
only estimates of average costs and makes use of statistics on the structure of the
M-tree. In the following we will consider only the so-called level-based variant,
which exploits statistics collected on a per-level basis. Relevant symbols are listed
in Table 1.

Symbol Description Symbol Description

F(x) distance distribution N number of indexed objects

f(z) distance density function ||M; no. of nodes at level [of the M-tree

dar upper bound on distances||T; average covering radius of nodes at level [
Q query object h height of the M-tree

rQ query radius nodes(. ..) estimate of avg. no. of nodes accessed

k no. of nearest neighbors ||dists(...) estimate of avg. no. of computed distances

Table 1. Summary of symbols.

A central role in the model is held by the overall distance distribution (d.d.),
whose cumulative and density functions are respectively defined as:

F(z) = Pr{d(0;,03) < z} fla) = L 1)

where O7 and O are two (independent) random points (objects) of the domain
U. The relative d.d. of an object O; € U is obtained by setting O1 = O;, i.e.:

Fo,(r) = Pr{d(0;, 02) < x} (2)

Given a range query range(Q,rq), a node at level [of the M-tree, having routing
object O, has to be accessed iff the ball of radius ¢ centered in the query object
@ and the region associated with the node intersect. Using average statistics on
the tree, this is the case iff d(Q, O,) <7 + r¢; therefore, the probability that a
node at level [has to be accessed can be expressed as:

Pr{a node at level { is accessed} = Pr{d(Q,0,) <7 +rg} =
= Fo(ri+rQ) = F(Ti+rq) (3)

where the approximation is due to the use of the overall d.d. F' in place of the
d.d. relative to the query point Q.

The average number of pages accessed and the average number of distances
computed (I/O and CPU costs, respectively) by a range query are estimated as:

h—1

nodes(range(Q,rq)) = Z M F(7 +1q) (4)
1=0
h—1

dists(range(Q,rq)) = Z M F(7 +1q) (5)

=0

where M; is the number of M-tree nodes at level I (I € [0,h — 1], with root at
level 0 and leaves at level h — 1) and My = N is the number of indexed objects.

Let us now consider a query of type NN(Q, k); as a first step, the distribution of
the distance nng ;, between @) and its k-th nearest neighbor is determined. The
probability that nng j is at most r equals the probability that at least k objects
are inside the ball of radius r centered in @, that is:

k—1
N i N—i
P, (1) =Pr{angs <1} == 1= 3 (V) Fyia - F0)™ 0
i=0
and the average costs for a k-nearest neighbors query are estimated as:
dt
APy
costs(NN(Q, k)) = / costs(range(Q,r)) %(r) dr (7)
0

where costs(range(Q,r)) is given by Equation 4 (I/O costs) or by Equation 5
(CPU costs), and d* is a finite upper bound on distances.

3 Limitations of the Average-Case Cost Model

In order to evaluate the accuracy of a cost model, it is important to precisely
define how estimate errors are assessed. To this end, given an experimental
testbed consisting of a set @ = {q1,...,q,} of n queries, we consider three
different kinds of error, as explained in the following.

Cqg — Cq
Cq

— Average absolute relative error, defined as AvgErr = %Z

)

|

qeEQ

where ¢, is the cost of query ¢ and ¢, is its estimate.

Cqg — Cq
Cq

— Mazximum absolute relative error, defined as MaxErr = max,eco {
— Absolute relative error on average costs, defined as AvgCaseErr = e
avg

where cqpg = % qug cq is the average cost due to the execution of the n
queries and Cqyg is the model estimate for the average execution cost.

Cavg — Cavg

Y

Note that the performance of average-case cost models is typically evaluated by
the AvgCaseErr measure (see [Faloutsos and Kamel, 1994; Berchtold et al., 1997;
Ciaccia et al., 1998]). In this light, as shown in [Ciaccia et al., 1998], the A-C
cost model performs well both on real and synthetic datasets, with AvgCaseErr
assuming values typically around 10%-15%.

The inadequacy of the A-C model to estimate the cost of single queries is demon-
strated by Figures 1 (a) and 1 (b), that show, respectively, AvgErr and MaxErr
values resulting from the execution of 500 different range queries on synthetic
datasets (see Table 2). It can be seen that AvgErr is generally around 20%-
30% and sometimes close to 40%, whereas MaxErr assumes high values, tipically
around 100%-200%, with peaks near 700%. It can also be observed that the
accuracy of the A-C model increases with the space dimensionality. This is be-
cause, for high dimensionalities, the “Homogeneity of Viewpoints” of the metric
space, as defined in [Ciaccia et al., 1998], is very high, i.e. relative d.d.’s of dif-
ferent objects are very similar; thus, the main approximation of Equation 3 has
a minor impact on the performance of the model. The performance of the model
for uniform datasets has a different explanation: in high dimensional spaces,
the so-called dimensionality curse is such that, when D > 16, for (almost) ev-
ery query the whole index has to be accessed [Weber et al., 1998], which makes
quite easy to predict costs. For this reason, in subsequent analyses we will mainly
concentrate on clustered datasets.

40 700

T
Clustered -—
Uniform —+-

T
Clustered -—
Uniform -+

35 - 600 |-

30
500

25
400 |

Average relative error (%) on /0 cost
Maximum relative error (%) on I/O cost

(a) (b)
Fig. 1. AvgErr (a) and MaxErr (b) for the A-C model — I/O costs for range queries
on synthetic datasets.

4 The Query-sensitive Cost Model

Our approach to obviate the poor performance of the A-C model is to try to
provide an estimate better than F' of the d.d. Fi relative to the query object
Q (see Equation 3). Indeed, as Figures 2 (a) and 2 (b) show, both AvgErr
and MaxErr are considerably reduced when Fg is known. This means that the
probabilistic arguments used by the A-C model are “good”, but Fg is poorly
approximated by F'.

The key idea around which we develop our query-sensitive (Q-S) cost model is to
approximate Fg by means of several relative d.d.’s, each one corresponding to a
point of U, conveniently called a witness. For every witness W; (7 =1,...,nw)

40

T
Average case o—
nFy ==

T
Average case -—
wn Fy -

35

30 -

25

Average relative error (%) on I/O cost
Maximum relative error (%) on I/O cost

Fig. 2. AvgErr (a) and MaxErr (b) for the model with known Fy and for the A-C model
— I/O costs for range queries on synthetic clustered datasets.

we store the relative d.d. Fy,(z) = Pr{d(W;,0) < x}, and exploit the “po-
sition” of the query object @ with respect to the witnesses (see Figure 3) to
provide an approximation of Fy. For this, two problems have to be addressed:
(a) how witnesses have to be chosen among all the objects of the dataset, and
(b) how their relative d.d.’s have to be combined.

Fig. 3. The d.d. of query object) is approximated by using d.d.’s of witnesses W;.

4.1 How to Choose Witnesses

The choice we make about which objects of the dataset have to be designated
as witnesses has its own importance, since it affects the way the metric space
is “covered” by them: a bad choice, for instance, could lead to have regions of
the metric space within which the relative d.d.’s are (highly) different and not
enough witnesses are present to capture this variability. A related topic is also
the choice for the number nw of witnesses to use: we expect the estimates of the
model to improve with nw, since more information can be exploited.

Ideally, we should select witnesses in such a way that, for every “possible” query
object @, a witness with a d.d. arbitrarily close to F exists. The basic heuristics
we consider is to minimize the distance between each possible query object, @,
and the set of witnesses, by assuming that close objects have similar d.d.’s. To
this end, witnesses should provide an appropriate “coverage” of the data space.
With this in mind, we propose two basic criteria to choose the witnesses.

‘Random’ — the nw witnesses are chosen in a random way. In this way, since
witnesses are distributed like objects in O, it is very likely that each query
object will have a close witness, under the assumption of a biased query
model, i.e. indexed and query objects follow the same distribution [Ciaccia
et al., 1998].

‘GNAT’ — nw witnesses are chosen in a way similar to the one used in the
GNAT access method [Brin, 1995] to designate “split points”. The ‘GNAT’
method first extracts from the dataset a random sample C of 3-nw candidate
objects; then, nw witnesses are chosen from C as follows: the first witness
is picked at random and removed from C; the i-th witness (i = 2,...,nw)
is the object in C which maximizes the minimum distance from the already
chosen 7 — 1 witnesses. This method aims to choose witnesses far apart each
other and to “cover” the metric space in a somewhat homogeneous way, thus
avoiding the “crowding” of witnesses in dense regions of the space. In other
terms, ‘GNAT’ tries to minimize the maximum possible distance between a
query object and its nearest witness.

4.2 How to Combine Relative Distance Distributions

Starting from the relative d.d.’s of the witnesses, the next problem is how to
combine them to estimate F. We consider two main criteria to cope with this
problem, and we propose a specific variant for the second one. In all cases, the
basic rationale is, again, that close objects have similar d.d.’s.

‘Nearest Witness’ Method This method estimates F as follows:
Fo(x) >~ Fwyy () with d(Wyw,Q) <d(W;,Q), j=1,...,nw (8)

that is, the unknown d.d. relative to @ is approximated with the one of its
nearest witness. This method is quite easy to use and does not require a new
d.d. to be computed.

‘Distance Weighted’ Method This method estimates Fy as a weighted av-
erage of all the relative d.d.’s of the witnesses, that is:

Fo(z) ~ ;FWJ. (x) - aj/Z;aj (9)

In order to assign appropriate a; weights, we rely on the assumption that wit-
nesses closer to @) are supposed to be more “reliable”, since their d.d.’s are more
similar to that of (). Therefore, weights a; should be inversely related to the dis-
tances between () and the witnesses W;. Our choice is to use the Fzp-th power of
the inverse of the distance between a witness and Q, that is, a; = d(W;, Q)= F*P.

We point out that the ‘Nearest Witness’” method is the limit of the ‘Distance
Weighted” method when Fxp goes to infinity. On the other end, for EFxp = 0 we
obtain the classic arithmetic average, which equally weighs the contribution of
each witness.

‘Distance Weighted’, Adaptive Method Since the ‘Distance Weighted’
method depends on the Ezp parameter, it would be advisable to relate the
value of Exp to the specific query at hand. The adaptive variant we propose
determines Exp as a function of the distances between the W;’s and Q). When
these distances are all somewhat “high”, it does not make sense to rely on the
nearest witness, thus a low value for Fxp is chosen. On the other hand, when
witnesses are (very) close to @, Exp is assigned a higher value, since information
provided by the nearest witness(es) is more reliable.

We define the average distance of witnesses from @, normalized to maximum
distance dT, as follows:

nw d W‘7
maw =3 G (10)

Now, for a given @), Exp can be computed as Fxp = (1 —mgy) - MazExp, where
MazExp is the value of Fxp for which the ‘Distance Weighted’ and the ‘Nearest
Witness’ methods give very similar estimates. Experimentally we found out that
an acceptable value is MaxFEzxp = 10; this is also the value adopted in all the
tests we carried out.

5 Experimental Evaluation

In order to evaluate the accuracy of our cost models, we ran several experiments
on both synthetic and real datasets (see Table 2). Estimates are compared with
actual results obtained by the M-tree, which was built using the BulkLoading
algorithm described in [Ciaccia and Patella, 1998] with a node size of 4 Kbytes
and a minimum node utilization of 30%.

Name |Description Size|Dim. (D)|Metric
clustered|clustered distrib. points on [0,1]7]20,000] 2 — 64|L
uniform |uniform distrib. points on [0,1]” |20,000| 2 — 64|Le

D Decamerone 17,396 edit
DC Divina Commedia 12,701 edit
GL Gerusalemme Liberata 11,973 edit
OF Orlando Furioso 18,719 edit
PS Promessi Sposi 19,486 edit

Table 2. Datasets.

5.1 Datasets, Queries, and Distance Distributions

Synthetic datasets were obtained using the procedure described in [Jain and
Dubes, 1988] which generates normally-distributed clusters in a D-dimensional
vector space. In particular, this is the case of clustered datasets, for which
the number of clusters is 10, the variance is o2 = 0.1, and clusters’ centers
are uniformly distributed. We also considered uniform datasets, that is, vectors

uniformly distributed in the D-dimensional space. Distance on these datasets
was evaluated using the Lo, metric, i.e. Loo(Og, Oy) = maxj’-j:1 {10:15] — Oy 1411},
which leads to hyper-cubic search (and covering) regions. Real datasets are sets
of keywords extracted from 5 masterpieces of Italian literature; the metric used
on them is the edit distance.

For each test, 500 similarity queries were executed; unless otherwise stated, for
range queries we used a radius ro = ¥0.01/2 for synthetic datasets and a
radius rqg = 3 for real datasets. For k-nearest neighbor queries we considered
only k = 1, which is the most common case.

For each d.d. needed in the experiments we ran, an estimate of its density func-
tion f was obtained from an analysis of the dataset O. In particular, for the
overall d.d. we sampled all the N(N — 1)/2 pairwise distances between all the
N objects of O; for the relative d.d. of a witness, we considered all the N — 1
distances between the witness and the other objects of O. In all cases the density
function f was approximated by means of a 100 bins equi-width histogram of
type ASH (Averaged Shifted Histogram [Scott, 1992]).

5.2 Experimental Results

In this Section we present some results showing the performance of the Q-S
model, and also contrast it with the A-C model. The reported graphs only refer
to I/O costs, since errors on estimates of CPU costs show a very similar trend.

Figure 4 shows how the number of witnesses and the way they are chosen can
influence error estimates. For simplicity, we report only the values of AvgErr for
range queries on synthetic clustered datasets when the ‘Nearest Witness’ method
is used.

T
“ GNAT »—
20| Random -+~ | 2

Average relative error (%) on /O cost
Average relative error (%) on 1/O cost

Fig. 4. AvgErr for range queries. ‘Nearest Witness’ method: (a) ‘GNAT’ vs. ‘Random’;
(b) effect of the number of witnesses (‘GNAT’ chosen).

Figure 4 (a) shows that usually we obtain more accurate estimates when wit-
nesses are chosen in a ‘GNAT’ way, rather than using the ‘Random’ criterion.
The explanation for this is that the ‘GNAT’ method typically leads to a lower
average distance between the query object and its nearest witness, as compared
to the distance obtained by the ‘Random’ method. This trend, however, is in-
verted for higher dimensionalities of the space, with estimate differences lower

than 1%. In Figure 4 (b) errors obtained by varying the number of witnesses
are shown. As expected, by increasing the number of witnesses the estimates
of the model improve; anyway, it can be seen that this improvement is not di-
rectly proportional to the increase introduced and sometimes it is not really
appreciable.

In the following tests we analyze the behavior of the different variants of the
Q-S model, comparing them with the A-C model. All these tests were carried
out using 100 witnesses chosen in a ‘GNAT’ way.

40

700

Average case <—

Nearest Witness —---

Distance Weighted, Exp=3 -&-- |
Distance Weighted, Exp=5 -
Distance Weighted, adaptive -

Average case 4—
Nearest Witness -+-
Distance Weighted, Exp=3 -8-- | 600 -
Distance Weighted, Exp=5 -
Distance Weighted, adaptive -
win Fo, -~

35

30 -
500

25 -

20
300

PR
i
L4

200 |

Average relative error (%) on /O cost
Maximum relative error (%) on I/O cost

5L e R] 100 -

Fig. 5. AvgErr (a) and MaxErr (b) for range queries on synthetic datasets.

From the results shown in Figure 5 we can point out what follows:

— typically, Q-S methods exhibit a great improvement over the A-C model;
when average-case estimates are affected by high errors, Q-S methods allow
for an effective reduction of such errors;

— ‘Distance Weighted’ usually performs better than ‘Nearest Witness’;

the adaptive variant of ‘Distance Weighted’ exhibits good results, often close
to the best estimates over all Q-S methods.

To analyze the effect of query selectivity, in Figure 6 we compare the estimates
of two Q-S methods — ‘Nearest Witness’ and the adaptive variant of ‘Distance
Weighted’” — with the ones of the A-C model. We consider I/O costs for range
queries on a clustered dataset with D = 4, and vary the query volume between
0.0025 and 0.025 (note that all previous results refer to a query volume of 0.01).

From Figure 6 the improvement of the Q-S model over the A-C model is evident.
In the specific case, it can also be seen that the adaptive method performs
better than ‘Nearest Witness’, as regards AvgErr. Considering MaxErr, instead,
we observe exactly the opposite behavior.

Considering the results of experiments on real datasets, Figure 7 shows errors for
range queries. Concerning AvgErr, it is interesting to observe that the A-C model
exhibits quite good estimates on single queries, with relative errors between 10%
and 16%. Anyway, the Q-S model performs even better: the adaptive ‘Distance
Weighted” method and the ‘Nearest Witness’ method are very accurate, limiting
AvgErr to 6% — 10%.

a5 T T T T 280

40 - B 260
35 4 240 |

30 - 4

T T T
Average-case <—

Nearest Witness -

Distance Weighted, adaptive -5

220
25 | g 200 |
20+ @ e 4 180 |

160 -

Average relative error (%) on I/O cost
Maximum relative error (%) on I/O cost

10 Average-case — R
Nearest Witness -+~
Distance Weighted, adaptive -5

140 -

. 100 .
002 0025 0 0.005

001 0015 002 0025
query volume

(a) (b)
Fig. 6. AvgErr (a) and MaxErr (b) for range queries on a 4-D clustered dataset as a
function of the query volume.

.
0 0005 0.01 0.01
query volume

250 |

200 |

150

100 -

Average-case <—

Average relative error (%) on /0 cost
®
T

Maximum relative error (%) on /O cost

4l Average-case <— | Nearest Witness ~+- &
Nearest Witness ~+- sl Distance Weighted, Exp=3 -0 4
g\g:::gg nggm:g Exgig ': Distance Weighted, Exp=5 -

2L i ighted, Exp= 4 Distance Weighted, adaptive -+~

Distance Weighted, adaptive - isiance Welgnied, adaptve
0 o

D bC GL OF PS D bc GL OF PS
dataset dataset
(a) (b)

Fig. 7. AvgErr (a) and MaxErr (b) for range queries on real datasets.

Considering nearest neighbor queries, not shown here for brevity, the difference
between query-sensitive estimates and those of A-C model reduces, since the
errors on average-case estimates are better than the respective ones for range
queries. Anyway, Q-S methods still obtain the best estimates.

6 Conclusions

In this work, starting from the existing cost model for M-tree [Ciaccia et al.,
1998], we introduced some new concepts — mainly the ones of witness and rel-
ative distance distributions — which led to a new query-sensitive (Q-S) cost
model, able to predict the cost of similarity queries by taking into account also
the “position” of the query object. The concepts we have introduced are inde-
pendent of the underlying cost model, and could therefore be applied to any
model for metric trees which now makes use of the overall distance distribution.

Experimental results demonstrated that the Q-S model yields reliable estimates
for both synthetic and real datasets, with a substantial improvement over the
previous average-case cost model. Different variants were proposed and tested
in order to determine how witnesses have to be chosen and how their relative
distance distributions are to be combined; we also briefly analyzed the influence
of the number of witnesses used.

In this work we have insisted on the usefulness of the proposed model in estimat-
ing execution costs for specific queries with M-tree. Issues concerning optimiza-
tion of the algorithm and of the used structures, e.g. histograms compression,
are left as subjects for future work.

References

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: An
efficient and robust access method for points and rectangles. SIGMOD’90, pp.
322-331, Atlantic City, NJ.

Berchtold, S., Bohm, C., Keim, D. A., and Kriegel, H.-P. (1997). A cost model for
nearest neighbor search in high-dimensional data space. PODS’97, pp. 78-86,
Tucson, AZ.

Bozkaya, T. and Ozsoyoglu, M. (1997). Distance-based indexing for high-dimensional
metric spaces. SIGMOD’97, pp. 357-368, Tucson, AZ.

Brin, S. (1995). Near neighbor search in large metric spaces. VLDB’95, pp. 574-584,
Zurich, Switzerland.

Chen, W. and Aberer, K. (1997). Efficient querying on genomic databases by using
metric space indexing techniques. PMIDS’97, Toulouse, France.

Chiueh, T. (1994). Content-based image indexing. VLDB’94, pp. 582-593, Santiago,
Chile.

Ciaccia, P. and Patella, M. (1998). Bulk loading the M-tree. ADC’98, pp. 15-26, Perth,
Australia.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for
similarity search in metric spaces. VLDB’97, pp. 426—435, Athens, Greece.
Ciaccia, P., Patella, M., and Zezula, P. (1998). A cost model for similarity queries in

metric spaces. PODS’97, pp. 59-68, Seattle, WA.

Faloutsos, C. and Kamel, I. (1994). Beyond uniformity and independence: Analysis of
R-trees using the concept of fractal dimension. PODS’94, pp. 4-13, Minneapolis,
MN.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. SIG-
MOD’94, pp. 47-57, Boston, MA.

Huttenlocker, D.P., Klanderman, G.A., and Rucklidge, W.J. (1993). Comparing images
using the Hausdorff distance. IEEE Trans. PAMI, 15(9):850-863.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall.

Kamel, I. and Faloutsos, C. (1993). On packing R-trees. CIKM’93, pp. 490499,
Washington, DC.

Maio, D. and Maltoni, D. (1996). A structural approach to fingerprint classification.
ICPR’96, volume C, pp. 578-585, Wien, Austria.

Papadopoulos, A. and Manolopoulos, Y. (1997). Performance of nearest-neighbor
queries in R-trees. ICDT’97, pp. 394-408, Delphi, Greece.

Scott, D. W. (1992). Multivariate Density Estimation. Theory, Practice and Visual-
ization. Wiley-Interscience, New York.

Theodoridis, Y. and Sellis, T. (1996). A model for the prediction of R-tree performance.
PODS’96, pp. 161-171, Montreal, Canada.

Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. VLDB’98, pp.
196-205, New York, NY.

