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ABSTRACT

In this paper we describe PIBE, a new Personalizable Im-
age Browsing Engine that allows an effective visual explo-
ration of large image collections combining computer vision
and database techniques. The principal features of PIBE
include the possibility of modifying the browsing structure
by means of graphical personalization actions provided by
the visual interface, and of persistently storing such cus-
tomizations for subsequent browsing sections. The PIBE
hierarchical browsing structure, called Browsing Tree, can
be locally customized, thus avoiding global reorganizations,
which are clearly unfeasible with large collections. Indeed,
each node of the Browsing Tree has associated a cluster of
images and a specific dissimilarity function. We present the
basic principles of the PIBE engine, and report some experi-
mental results showing the effectiveness and the efficiency of
the browsing and personalization functionalities provided.

1. INTRODUCTION

Exploration of large image collections is a complex and
often tedious task. This is a direct consequence of the
well-known difficulty one encounters when trying to pre-
cisely characterize the actual content of images and to define
suitable criteria for comparing such contents. Furthermore,
even specifying what one is actually looking for in an image
database (DB) is not a trivial problem [11].

In order to address this issue, researchers from computer
vision community have proposed, over the years, a plethora
of image retrieval systems that represent each image as a set
of low-level features, such as color, texture, and shape, and
typically provide the user with a query-by-example search
modality to explore the DB contents. Accordingly, the sys-
tem returns to the user those images that are more similar
to the provided query image, and these result images can
be in turn used as starting points for further searches. To
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improve the effectiveness of results, it is nowadays well rec-
ognized that the (dis)similarity criterion used to compare
images needs to be dynamically adapted, so as to properly
capture user preferences. In particular, relevance feedback
techniques can be used to this purpose [3], even if it has
to be understood that this comes at the price of a reduced
search efficiency [2].

An effective interaction with large image DB’s cannot be
based only on querying, rather it has also to include ad-
vanced browsing facilities [11]. These are needed, say, to
determine a “good” starting point for searching (e.g., a suit-
able query image might not be available at the beginning of
a user session), to get an overall view of the DB contents
(e.g., the user does not know yet what she is looking for),
and so on.

Although several browsing systems have been presented
in the literature (e.g., [1, 4, 5, 8, 11, 13]), they suffer some
major problems that limit their applicability to large image
DB’s. In particular:

1. With some notable exception, most image browsers
are based on a static browsing structure, that is, the
organization of images is based on a fixed (usually hi-
erarchical) layout that cannot be altered by the user.
This means that no personalization at all is possible.

2. Browsing systems that allow the user to modify the
browsing structure through interaction typically do so
by reorganizing the whole DB or, at least, a large part
of it. Clearly, this becomes unfeasible with very large
image collections.

3. All the browsing systems for which personalization is
an issue do not consider the possibility to make per-
sistent the so-modified browsing structure. Thus, each
time the user starts a new session she is faced with the
original (default) image DB organization.

Motivated by such observations, in this paper we propose
PIBE (Personalizable Image Browsing Engine), an adap-
tive image browsing engine aiming to overcome above lim-
itations. In particular, PIBE provides the user with a cus-
tomizable hierarchical browsing structure (called the Brows-
ing Tree), whose changes persist across different sessions,
and with a set of graphical personalization actions that can
be used to modify the Browsing Tree. The effects of such
actions are defined so as to guarantee that only a “local”
reorganization of the image DB is required. This is possi-
ble since PIBE maintains specific similarity criteria for each
portion (sub-tree) of the Browsing Tree.



Figure 1 provides an overall view of the PIBE architec-
ture. In particular, PIBE builds off-line a default Browsing
Tree (BT in the figure) over the image features. At run time
the user interacts with the system by means of a graphical
user interface (GUI), which, among others, can accept spe-
cific requests to modify the browsing structure. These are
actually managed by the Browsing Processor component.
Finally, the Visualizer component is in charge of display-
ing the content of the (possibly modified) Browsing Tree
at several abstraction levels. In particular, the Visualizer
implements spatial visualization techniques that are able to
arrange currently browsed images on a 2-D display by re-
specting their mutual dissimilarities (see Figure 3).
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Figure 1: The PIBE architecture (BT = Browsing
Tree).

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the state-of-the-art. Section 3 reports
the main facilities that distinguish PIBE from other brows-
ing systems, describing in details each component of its ar-
chitecture. In Section 4 we report implementation notes and
present some experimental results showing the effectiveness
and the efficiency of PIBE. In Section 5 we conclude, draft-
ing possible directions for future work.

2. RELATED WORK

The main peculiarity that distinguishes browsing systems
presented in literature in the last few years is the informa-
tion they consider to evaluate the similarity between im-
ages. A first case is represented by those systems in which
the similarity is assessed in terms of automatically extracted
low-level features (e.g., [1, 4, 8]). A second class of systems,
on the other hand, considers either high-level semantic con-
cepts, manually associated to each object, or some extra
information, as, for example, the shoot time recorded for
each photo by modern digital cameras (e.g., [5, 13]). Fi-
nally, only a limited number of systems combine informa-
tion considered by the previous cases (see e.g., [11]). PIBE
is inspired by state-of-the-art browsing systems that belong
the first class and that, in some way, integrate user-system
interaction mechanisms. Even if such systems are not purely
browsing systems, but also include image retrieval function-

alities, they represent a good starting point in defining a
customizable browsing system like PIBE, and for this rea-
son in the following we briefly review their main features.

The well-known image database system El Nino [11] pro-
vides the user with a set of instruments which allow to ex-
plore the image DB in a way that reflects her preferences.
In details, during each session, the user gives some relevance
feedback on an initial (random) configuration of images dis-
played on the screen. The user can also decide which is the
more appropriate location for each image, by dragging it
with the mouse to the desired position on the display. De-
pending on the user personalization, the system reorganizes
the whole image DB, showing the updated configuration to
the user. However, El Nino suffers a main limit: The brows-
ing structure is represented by means of a flat organization
(instead of a hierarchical one). Thus, the reorganization of
the image DB is a costly operation, because the whole DB
is considered. Moreover, browsing heavily depends on the
initial random configuration that does not guarantee the vi-
sualization of images of interest for the user.

Another image retrieval system that provides some adap-
tive browsing facilities is PicSOM [8]. PicSOM uses Self-
Organizing Maps (SOM’s) as a way to cluster and visualize
the images in a 2-D grid, and defines a hierarchical brows-
ing structure based on SOM’s (i.e., the Tree Structured Self-
Organizing Map, TS-SOM). Using PicSOM, the user can
browse the different levels of the browsing structure and
modify the organization of the images by providing a rele-
vance feedback on the displayed images. Depending on the
TS-SOM, PicSOM is able to perform a reorganization (con-
volution) of the tree maps without considering the whole
DB. However, the browsing functionality is not intuitive for
the user: It is based on maps represented by colored regions
(i.e., dark/light regions correspond to positive/negative val-
ues of the convolution of a map) that do not give the user
any idea about the actual images present in the involved re-
gion (thus, the user browses the structure without knowing
where she is going).

The work presented in [4] proposes an approach, called
active browsing, that integrates relevance feedback into the
browsing environment to update the image DB organiza-
tion. This is done by defining a browsing structure (called
stmilarity pyramid) by means of a hierarchical clustering al-
gorithm. At a coarse level, the similarity pyramid allows to
get a view of the image DB as a set of clusters represented
by some representative images. On the other hand, in a finer
layer the user can see the specific images within each cluster.
However, the reorganization of the similarity pyramid is a
costly operation: Given the set of relevant images selected
by the user, the system defines a threshold to prune from
the structure the images that are far from the selected ones.
Then, it reorganizes the pyramid in order to have similar
images close in the image layout. It has to be noted that, if
the set of images selected by the user are scattered within
the structure, the pruning phase will eliminate only a few
images and the update will have to consider a large portion
of the image DB.

3. PRINCIPLESOF PIBE

The basic idea of our browsing system is to customize the
default Browsing Tree (BT) depending on the users inter-
actions. Before reporting details of how PIBE builds and
updates the BT, it is important to highlight the three main



ingredients behind the browsing structure, namely: Image
descriptors, (dis)similarity functions, and clustering algo-
rithms. In doing so we abstract from the differences arising
from specific implementation choices and just concentrate
on implementation-invariant functionalities.

Image visual descriptors: Each image is represented by
content-based descriptors representing the image in
terms of low-level features such as color, texture, shape,
etc. In PIBE, the so-obtained descriptors are only re-
quested to be representable as points (feature vectors)
in a N-dimensional space. Usually, the more the de-
scriptors are robust in representing the image content,
the more the dimensionality of the associated space
and the complexity of the algorithms applied for their
extraction increase. A simple example of feature vec-
tors are color histograms, where one has the degree of
freedom of choosing a suitable numbers of bins (e.g.,
N =32,64,128,...).

Classes of similarity functions: When comparing two im-
ages, PIBE needs a (dis)similarity function able to es-
tablish in which measure their descriptors are close.
In order to support personalization actions on the BT,
the (dis)similarity function has to be part of a param-
eterized class of functions. Relevant examples of such
classes include L, norms (e.g., p = 2 yields the Eu-
clidean distance), weighted Euclidean distances (where
the parameter is the N-dimensional weight vector),
and the class of quadratic distances (parameterized by
an N x N matrix of weights). Note that there is a
natural trade-off between the complexity of a distance
function and its capability of adequately reflecting the
user-perceived image similarity.

Clustering algorithms: For large image DB’s, the default
BT is automatically built using some clustering algo-
rithm on the images’ descriptors. Further, a default
dissimilarity function is used to compare the feature
vectors. The same applies when the BT is customized
through some personalization actions. As it will be
clear in Section 3.4, in such cases a partial re-clustering
has to be performed, now with a personalized dissimi-
larity function.

Since the BT is a hierarchical structure, a natural
choice for deriving/updating it would be to use a hi-
erarchical clustering algorithm [7]. Alternatively, one
could use as well a partitioning (flat) algorithm, such
as k-means [7], by recursively applying it down to the
desired granularity level. Aspects to be considered in
choosing a specific clustering algorithm are time com-
plexity, the ability of discovering arbitrarily shaped
clusters, and the sensitivity to noise and outliers.

Although PIBE is parametric with respect to the particular
choices adopted for the above points, it is clear that each in-
stantiation should satisfy a number of requirements in order
to obtain satisfactory levels of efficiency and effectiveness.
First, the combination of choices (for images’ descriptors,
class of distance functions, and clustering algorithm) should
guarantee an overall scalability with respect to the cardinal-
ity of the image DB. Second, because of visualization con-
straints, a fundamental requirement for the BT consists in
guaranteeing a suitable cardinality for each cluster: Clusters

too small have poor significance, whereas clusters too large
are not effectively visualizable.

In the following we illustrate in detail the Browsing Tree,
motivating the particular choices we have adopted for the
above described points, and showing how the structure can
be customized by the user. In particular, Section 3.1 de-
scribes how PIBE builds the default BT. Section 3.2 depicts
the set of provided browsing skills. Finally, in Sections 3.3
and 3.4 we accurately illustrate the adaptive personalization
actions the user can perform to persistently modify the BT.

3.1 TheBrowsing Tree

In the current implementation of PIBE, we extract from
each image a 32-D HSV color histogram and compute the
dissimilarity of two histograms p and q as a weighted Eu-
clidean distance, that is:

32 1/2
d(p,q;w) = (Z wi(ps — qz‘)2> (1)

where w is a vector of weights, whose components are de-
termined as explained in the following.

The choice of using such simple image descriptors as the
color histograms, together with the class of weighted Eu-
clidean distances, is mainly motivated by the observation
that their combination represents a good compromise be-
tween quality of results and complexity of computation when
user interaction has to be taken into account [3]. The alter-
native of using, say, quadratic distance functions, which are
indeed able to take into account the correlation between col-
ors, would indeed lead to prohibitive (i.e., quadratic) costs
for distance computation. This would negatively affect both
the spatial visualization algorithm (see Section 3.2) and the
(re-)clustering of images.

The hierarchical structure of the default BT is obtained
by first applying the k-means algorithm to the whole image
DB. Each of the so-obtained k clusters is then recursively
partitioned into k£ sub-clusters, and so on until less than k
images are left in a cluster. During this phase, the weights
in Eq. 1 all assume their default value, w; = 1.

Each node of the resulting k-ary tree, which corresponds
to a cluster C; of images, is then enriched with the follow-
ing information. First, the centroid, ¢(Cj;), i.e., the point
obtained by averaging all the feature vectors in Cj, is deter-
mined. Second, the local weight vector w; is computed. In
particular, following [6], the weight wj ; is:

1
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where o7 ; is the variance of feature vectors in cluster C;
along the i-th coordinate. More precisely, for each cluster C;
we maintain its cardinality, |Cj|, and the values of Zpecj P

and Zpecj p>. From these statistics the centroid and the
variance along each coordinate are immediately derived.

Finally, the representative image, p(Cj), of C; is defined
as the image in C; that is closest to ¢(Cj), that is:

p(C;) = argminy {d(p, ¢(C;); w;), p € Cj} 3)

The role of p(Cj) is to represent cluster C; for visualization
purposes. To this end, p(Cj) is stored in the parent node
of C; (thus, each node contains the representative images of
all its child sub-clusters).



To give an example of a BT, Figure 2 plots a portion of
tree with & = 3. The root node (cluster Cy in the figure)
represents the whole image DB, which is partitioned into 3
first-level clusters (namely, C1, Cs, and C3). Thus, at the
top-level of the BT the user can see the 3 representative
images associated to such clusters. Similarly, each internal
node contains 3 representative images, whereas leaf nodes
contain individual images.

C

P(Cy) P(Cs) P(Cy)
N
P(Cro) P(C0) P(Cr)

Figure 2: Example of Browsing Tree.

The fan-out of tree nodes, k, is an input parameter: Intu-
itively, high values for k give a more detailed view of the DB
content. However, the higher the value of k, the higher the
cost for the BT construction and reorganization. Indeed,
since the time complexity of k-means is O(kn) (n = num-
ber of images to be (re-)clustered), the (re-)clustering cost
is derived to be O(knlog, n), thus increasing with k. This
requires to trade-off the two requirements, as we discuss in
Section 4.

3.2 Browsing

As described in Figure 1, the Browsing Engine is the ba-
sic component of the PIBE architecture. It consists of the
Visualizer and the Browsing Processor that together imple-
ment the navigation mechanism. The Browsing Processor is
also in charge of the management of BT updates.

To show the content of the image DB, the Visualizer
adopts a spatial visualization approach, where high dimen-
sional feature vectors are mapped on the 2-D screen by
grouping together similar images, rather than presenting
them in a sequential way [10]. In particular, among the
available techniques in PIBE we have chosen to adopt Mul-
tidimensional Scaling (MDS) [12]. For an example, see Fig-
ure 3, where the display of k = 8 representative images is
reported using the PIBE GUI (for the sake of clarity, in the
following we will show only the image view instead of the
whole user interface).

To generate the image layout, MDS needs as input all
the dissimilarities between the involved images (i.e., repre-
sentative images for internal nodes of the BT, or individual
images for leaf nodes). For each pair of images p and q to
be displayed, a specific weighted Euclidean distance needs to
be used.! Remind that, at any time, the BT maintains a lo-
cal distance function for each cluster. Thus, p and q should
be compared using the distance function of the most specific
cluster containing both of them. Formally, let LC'A(p, q)

!For simplicity of explanation, in the following p will de-
note, with a slight abuse of notation, both an image or a
representative image.
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Figure 3: Example of spatial visualization with the
PIBE GUI (k =38).

be the least common ancestor of p and q in the BT. Then,
WLCA(p,q) 18 used to compare the two images. For the ex-
ample of Figure 2, to compare images p and s we use wis,
whereas for the comparison of images p(C14) and p(Chg) we
would use wi.

PIBE provides two browsing modalities to explore the DB
content:

Vertical: The user selects an image on the display (by click-
ing on it with the left mouse button) and zooms in
the cluster content (i.e., the k images representing the
child clusters are shown). This modality is the tradi-
tional top-down way of browsing a hierarchical struc-
ture. PIBE also gives the user the opportunity to view
the content of an entire subtree. To do this, the user
clicks on a cluster image with the right mouse but-
ton and provides a maximum number m of images to
be displayed (in order to avoid cluttering the screen if
the subtree contains a large number of images). The
Browsing Processor will then select the m images in
the subtree which are most similar (according to the
local distance function) to the cluster representative.
Figure 4 shows the result of a vertical exploration,
where the user has selected the image pointed by the
red arrow in Figure 3 (in the example, k = 8).

Horizontal: Vertical browsing only allows a top-down ex-
ploration of the DB content: If the user is interested in
something that is similar to two or more cluster repre-
sentative images, she has to visit all the relevant tree
branches one at a time. To overcome such limitations,
PIBE includes a novel browsing modality, called hor-
izontal (or continuous), that allows the user to also
explore the regions of the space where no representa-
tive image is present. These regions are also called the
empty space of the BT.

When the user clicks with the right mouse button on
a point in the empty space, she is required to enter
the maximum number m of images to be displayed.
The Browsing Processor then computes the distances
between the selected point and the centroids of clusters
at the next BT level, and returns to the Visualizer a



Figure 4: Results of vertical exploration on the ex-
ample of Figure 3 (k = 8).

set of m images, selected from closest clusters first. For
the example of Figure 3 (k = 8), if the user clicks on
the red cross and selects m = 20, and supposing that
all child clusters are not leaf nodes, the result images
would be obtained as follows: 8 from the cluster closest
to the selected point, 8 from the second closest cluster,
and 20 — (8 + 8) = 4 from the third closest cluster
(results are shown in Figure 5).

Note that if the user executes in sequence h steps of
horizontal browsing, the displayed (representative) im-
ages are guaranteed to belong to clusters whose least
common ancestor is no more than h+1 levels up in the
BT. In particular, with just 1 step we are guaranteed
to see images that all have a same grand-parent node.
This, as it will be explained in Section 3.4, allows to
bound the complexity of BT updating.

Figure 5: Results of horizontal exploration (m = 20)
on the example of Figure 3 (k = 8).

3.3 Personalization Facilities

State-of-the-art browsing systems that allow the user to
personalize the browsing structure usually only consider a
set of relevant examples, selected by the user, to modify
the structure. If the selected objects are included in differ-
ent portions of the structure, almost all the entire browsing
structure needs to be reorganized [4, 11, 8].

In PIBE we propose novel personalization modalities able
to guarantee a local reorganization of the BT. In particular,

PIBE allows the user to move a cluster representative im-
age p(Cs) (where s stands for “source”) using two different
actions:

1. move p(Cs) on the representative image, p(Cy), of a
“target” cluster C; as a single image (by dragging it
with the left mouse button). This is called a “moving
image” action;

2. move p(Cs) on p(C}) as representative of the whole
cluster Cs (using the right button). This is called a
“moving cluster” action.

Both actions are considered by PIBE as asymmetric oper-
ations. Thus, the leading character of the personalization
process is the target cluster C;.

The semantics behind a “moving image” action is to move
image p(Cs) into cluster C¢, deleting it from cluster Cs.2 In
this case, the user wants to tell the system that image p(Cs)
is similar to image p(C:). After such user action, w; is
updated accordingly, since now it is Cy = C: U {p(Cs)}. By
using the so-modified weights, in following browsing sessions
the user will see image p(Cs) close to images of Ct.

On the other hand, with a “moving cluster” action the
user adds all images of Cs to C, thus C; = Cy U Cs. Thus,
she means that all images of Cs, including p(Cs), are similar
to p(Cy). Also in this case, the Browsing Processor moves
Cs into C; in the BT and recomputes w;. Note that the
“moving cluster” action can be obtained by repeating the
“moving image” action for all images of Cs. Thus, it repre-
sents a faster, even if coarser, way to adapt the BT.

Since the actual outcome of a personalization action on
the tree is not always easy to predict, PIBE also provides
an useful preview functionality that allows the user to see
the resulting BT before its persistent update. In this way,
if the user is not satisfied with the result of an action, she
can undo it and return to her current tree.

3.4 Updatingthe Browsing Tree

In this section we detail how the Browsing Processor up-
dates the BT and provide some more details about the com-
plexity of personalization actions.

Without loss of generality, let us consider the more de-
manding case where the user moves cluster Cs to cluster C;
(i.e., a “moving cluster” action). The Browsing Processor
first recomputes w;. Then, the moved cluster C; is deleted
from the BT and, using the new weights w;, the k-means al-
gorithm is recursively applied on the updated Cy = C; U Cs,
thus obtaining a new sub-tree. Overall, the complexity of
restructuring C is O(k|C¢|logy, |C¢|). Although in the worst
case, arising when we move a cluster at the first level of the
BT, this can lead to high re-clustering costs, in the most
common situations, where the user acts on lower levels of
the BT, the complexity substantially reduces. This follows
from the simple observation that the average cluster size de-
crease exponentially with the level of the cluster itself in the
BT.?

Besides restructuring the target cluster Cy, the Brows-
ing Processor needs also to adjust the representative images
of clusters that contained the moved (deleted) cluster Cs.

2Clearly, a new representative image for cluster C, will be
computed.

3More precisely, for a cluster at level I, the root being at
level I = 0, the average size is n/k'.



Consider first the case where the personalization action has
been executed after an ordinary vertical browsing step. In
this case, we should determine the new representative image
for the parent cluster, call it Cp, of Cy and Cs. However,
since the personalization action has taken place within Cp,
and the local distance of C,, does not change, it is immediate
to see that p(Cp) will not change as well.

Let us now consider the case of a personalization action
that is executed after one horizontal browsing step. In this
case, as explained in Section 3.2, Cs and C} are guaranteed
to have the same grand-parent, Cy,, thus the personaliza-
tion action stays local to Cyp. It follows that the statistics
of Cyp do not change at all. However, we need to update the
statistics of the parent clusters of Cs and Cy. This general-
izes to the case of h consecutive horizontal browsing steps,
for which the statistics of at most 2h clusters need to be up-
dated. Although this might seem computationally demand-
ing, consider that, given the statistics stored within each
node of the BT, the new statistics for each cluster are im-
mediately derived from those of the child sub-clusters. The
only somewhat challenging task is to determine the new rep-
resentative images. Although in the current implementation
of PIBE this is done going through all images in the cluster
in a sequential way, an index-based solution is under de-
velopment. The idea is to index the whole image DB and
to select as representative image the one closest, according
to the local distance function, to the cluster centroid. Al-
though this does not guarantee that the representative image
belongs to the cluster, we expect that, because of the use
of local distance functions, this will be rather an exception
than the rule.

To give an intuitive idea of the effects of PIBE actions,
Figure 6 shows a default BT. In particular, Figure 6 (b)
shows the m = 20 images closest to the representative im-
age of the cluster, call it C:, pointed to by the arrow in
Figure 6 (a). From Figure 6 (b), it can be seen that im-
ages mainly share a similar color distribution, which only
partially captures actual images’ content.

Figure 7 shows how the BT changes when the user exe-
cutes some personalization actions aiming to move images
depicting “trees” into cluster C; . In particular, Figure 7 (a)
shows the new representative image of C; (the one pointed
to by the arrow). As expected, also representative images of
some sibling clusters (at least the ones involved as sources in
a “moving image” action) are changed. In Figure 7 (b) the
m = 20 images closest to the new representative image of
C'; are shown. It can be seen that in the so-modified C;, the
displayed images indeed provide a more variegated (thus,
complete) view of trees.

4. IMPLEMENTATION OF PIBE

We have implemented PIBE in Visual C++ under a Pen-
tium II 450 MHz PC equipped with 256 MB of memory run-
ning Windows NT, and tested it with over 2000 real-life
images extracted from the IMSI collection.* The BT was
stored in secondary memory to guarantee the persistence of
personalization actions.

In the present version, each image is represented in the
HSV color space as a 32-D histogram, obtained by quan-
tizing the Hue and the Saturation components in 8 and 4
equally-spaced intervals, respectively. As to the value of

4IMSI MasterPhotos 50,000: http://www.imsisoft.com.

the parameter k, which determines both the arity of the
BT and the number of images displayed in the PIBE GUI,
in our experiments we found that a value in the interval
[8,12] is appropriate. In particular, to this end, we used the
Davies-Bouldine cluster validity index, that is particularly
suitable to identify the k value (within an interval) that gen-
erates compact and well-separated clusters [7]. This allows
to avoid the cluttering of too many images on the screen
during the exploration of the tree structure, particularly at
higher levels of the hierarchy, and to obtain quick response
times for both the MDS algorithm (which is quadratic in the
number of images to be displayed) and the update of the BT.
This is also shown in Figures 6 (a) and 7 (a). In particu-
lar, for such visual results we used & = 11, the same value
selected for the rest of the experimental evaluation. With
this setup, the BT needs about 120 seconds to be built and
requires 3.29MB to be stored.

41 User Interface

Besides browsing and personalization
actions that are performed using the
mouse buttons on the main window, the
user interface of PIBE includes a set of
buttons (see Figure 8) that allow the user
to customize her current view of the image
DB. The first five buttons allow the user
to zoom in/out the current vista, to in-
crease/decrease the size of image thumb-
nails and to combine the zooming in with
the increment of image size, in order to
increase the level of detail of the display.
The following two buttons allow the user
to display or to delete additional informa-
tion related to each cluster that is very
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useful for experimental purposes. In de- Figure 8:
tails, it is possible to show the cluster The PIBE
identifier, the name of the representative toolbar.

image, the number of images belonging to
the cluster, and the identifier of the parent cluster.

Finally, the three buttons at the bottom let the user tra-
verse the BT, by navigating backward (to the parent node)
and forward (to the last visited child of the current node),
and to return to the root node of the BT.

4.2 Experimental Results

We tested the performance of PIBE in order to evaluate if
the system actually reflects the user’s needs. To this end we
defined appropriate indices able to quantify the effectiveness
of our system and to evaluate its efficiency.

The setup for the experiments was as follows. From the
whole dataset we selected a number of images of interest
defining the set G of target objects. In particular, in the
experiments we show G consists of 51 “fish” images. We
consider results obtained by two distinct scenarios:

e Default: This is the strategy that uses the default BT
(in this case, the 51 “fish” images are scattered through
24 distinct leaf nodes);

e PIBE: In this case, we consider a customized version
of the BT, derived from the default tree by applying
some personalization actions with the aim to insert the
images of GG into a single target cluster.



(a)

Figure 6: Spatial visualization with the default Browsing Tree (k = 11): (a) images in a node of the tree;
(b) the m = 20 images closest to the image pointed to by the red arrow.

(a)

(b)

Figure 7: Spatial visualization with a personalized Browsing Tree (k = 11): (a) images in a node of the tree;
(b) the m = 20 images closest to the image pointed to by the red arrow.

For the PIBE case, we envision two different approaches of
customization that we refer to as Top_down and Bottom_up.
With the first approach, the user first looks for a high-level
target cluster, containing a large number of target images.
Starting from this node, with only a few actions, the user
should be able to find all images in G, since the “moving
cluster” action concerns high-level, thus large, clusters. This
way, however, irrelevant images (i.e., images not in G) are
also moved into the target cluster. In the Bottom_up strat-
egy, on the other hand, the user selects, as target cluster, the
leaf node that contains the highest number of target images.
Working at the leaf level, the user will need a higher number
of actions to achieve her goal, because she will merge small,
but more precise, clusters. The Bottom_up strategy is thus
better suited to achieve a higher quality of the customized
BT, even if the Top_down approach will be much more faster
in terms of number of user actions.

Effectiveness: To measure the effectiveness of PIBE we

consider the classical precision measure. For a given cluster
C, the precision P is defined as the number of target objects
in C over the cardinality of C. Formally, P = |C N G|/|C]|.
Tables 1 and 2 show precision values of the target cluster for
the Top_down and Bottom_up strategies, respectively. More
in details, each row of the tables reports the number of ac-
tions performed by the user during the personalization pro-
cess, the number of images contained in the target cluster,
the number of target images in the target cluster, and the
precision values.

n. actions | n. images | n. relevant images | P (%)

0 34 23 67.65

1 62 48 77.42

2 80 51 63.75
Table 1: Precision vs. number of user actions

(Top_down approach).



n. actions | n. images | n. relevant images | P (%)

0 2 2 100

10 22 22 100

20 34 34 100

30 52 51 98.08
Table 2: Precision vs. number of user actions

(Bottom_up approach).

In both tables, the first row (n. actions=0) represents the
Default case. For clarity of explanation, let us consider the
Top-down approach (Table 1): The user selects as target a
second-level cluster with 34 images, only 23 of which are
relevant (initial precision is 23/34 = 67.65%). After two
actions only, the user is able to obtain a single cluster con-
taining all the 51 relevant images with a final precision of
51/80 = 63.75%. Table 2 shows results for the Bottom_up
strategy: The user starts with a leaf node (i.e., a third-level
cluster) with 2 images with a precision of 100%. In this case,
the user needs 30 actions to achieve her goal, obtaining a
cluster of 52 images with a precision of 51/52 = 98.08%. It
has to be noted that in both cases the obtained BT’s are
quite successful in separating target and irrelevant images.
In fact, precision values, not included here for lack of space,
for children nodes containing target images are always close
to 100%. PIBE is therefore able to capture user’s goals of
clustering together target images, taking them away from
other images. Concerning the average costs of the personal-
ization actions, these are 2.3 and 1.7 seconds for the “moving
cluster” and the “moving image” actions, respectively. Such
values are however pessimistic, since in our prototype imple-
mentation images are stored on a CD-ROM, whose access
time is a major factor in determining above costs, and the
choice of representative images is done sequentially for each
cluster (see Section 3.4).

Efficiency: To evaluate the efficiency of PIBE we mea-
sure the time of a browsing session, represented by the num-
ber of the mouse clicks needed to reach all target images by
means of the PIBE GUI. For fairness, we consider that an
image is reached when the leaf node containing it is ac-
cessed. Thus, we compute the saved time (denoted by ST))

as ST = (1— %)*100, where TprpE is the time needed

using a personalized BT, whereas Tpeyaquis is that required
by a Default tree. Table 3 shows ST values (in percentage)
for both the Top_down and Bottom_up strategies.

strategy | Toefaur | Tripe | ST (%)
Top_down 55 29 47.27
Bottom_up 55 20 63.64

Table 3: Time saved by PIBE.

Using the Default tree, the user needs 55 clicks to reach
all target images, that is, the 24 leaf nodes containing them.
On the other hand, using PIBE the user is able to reach all
relevant images in 29 (Top_down) and 20 (Bottom_up) clicks.

Finally, it has to be noted that, by exploring the whole
content of a cluster (see Section 3.2), in the case of the
Top_down approach it is possible to visualize all target im-
ages with just 2 clicks (3 clicks for the Bottom_up strategy),
thus saving 96.36% (resp. 94.54%) of browsing time and still
obtaining high precision values, as shown in Table 1 (resp.
Table 2). This result is made possible by the combination

of the personalization actions and the visualization facilities
provided by PIBE.

5. CONCLUSIONS

In this paper we have presented a personalizable image
browsing system called PIBE, which provides the user with
a novel set of browsing and adaptive facilities allowing to
customize the Browsing Tree in an effective and efficient
way. Thanks to the intrinsic properties of the Browsing Tree,
namely its hierarchical nature and the association of local
similarity measures to each node/cluster, PIBE is able to
guarantee a persistent reorganization of the structure with
just local modifications.

We are investigating several issues in order to improve the
effectiveness and efficiency of PIBE. Among these, we are
studying how to obtain a Browsing Tree where each cluster
can have a variable number of child sub-clusters (thus, mak-
ing k a local value). We are also considering the integration
of “split” operations, that could be helpful to eliminate ir-
relevant images from a cluster. Concerning efficiency, we are
adding an index-based support for the fast determination of
representative images.

In its actual implementation, PIBE does not take into ac-
count textual descriptions, e.g., sets of keywords, that might
be linked with each image, but only relies on low-level im-
age descriptors. We plan to integrate semantic concepts
extracted by such textual descriptions to improve the explo-
ration capabilities of users: To this end, we are considering
the use of lexical ontologies, like WordNet [9].
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