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Abstract

Motivated by the needs for efficient similarity retrieval in multimedia digital libraries, we present
basic principles of a new paged and balanced index structure, the M 2-tree. The M2-tree can be ap-
plied whenever “complex” range and/or best matches queries over different descriptions (features)
of objects need to be solved. The proposed approach combines within a single index structure in-
formation from multiple metric spaces, thus being able to efficiently support queries on arbitrary
combinations of indexed features. Efficiency of the structure is presented through preliminary exper-
imental results over a real-world data-set.

1 Introduction

Similarity queries are a primary concern for supporting content-based retrieval in multimedia digital libraries
(MM-DLs). A common approach views similarity search as a search for close points in some (high-dimensional)
feature space, with closeness measured through some domain- (and possibly user-) specific distance function.
For instance, retrieving images with similar colors can be approached by representing the color content of an
image through an histogram (i.e. a vector) and then by measuring the Euclidean distance between histograms.
For the efficient processing of “simple” similarity queries, i.e., where only one matching criterion/predicate is
specified, several index structures have been proposed, including multi-dimensional (spatial) trees, such as the
X-tree [1] and the SR-tree [7], metric trees (M-tree [3], Slim-tree [9], etc.), and signature-based approaches, such
as the VA-file [10]. These solutions, however, are not suitable for the more general case where more than one
similarity criterion is specified, each referring to a specific object’s feature, for instance: “Find video news where
Bill Clinton is talking about the Kosovo War”. Exploration of MM-DLs using such complex (multimodal) queries
is the rule rather than the exception. For instance, a major objective of the Informedia-II project at CMU is to:
“... allow multidimensional queries that may combine image elements, video clips, text and speech”. 1

The problem we address in this paper is how to efficiently support complex similarity queries over large MM-
DLs. Since we do not want to limit ourselves to a particular domain, the solution we seek should also satisfy the
two following requirements:

1. (Generality) Due to the complex nature of MM objects, it should work not only on vector spaces, but it
should also be able to deal with the more general case of metric spaces, i.e. when feature values can only
be compared using a distance function.

2. (Flexibility) We would also retain the possibility to issue queries over only a subset of objects’ features, as
well as to vary at query time the relevance of each feature in determining the final result.

Complex similarity queries are composed of simple predicates, each involving a single feature. Such pred-
icates are then combined so as to yield, for each object, an overall evaluation score (see Section 2.1). Current
approaches for processing complex queries can be summarized as follows.

Synchronized evaluation of predicates.This approach, well represented by Fagin’sA 0 [5] and Quick-Combine
[6] algorithms, deals with best-matches (also called k-nearest neighbors or k-NN) queries, where the k

objects with the best overall scores are sought. It is assumed that each predicate can be efficiently evaluated
by an index, and that indices provide a sorted access scan modality, with a GetNext() method that
returns the best match for that predicate among the not-seen-yet objects. At each step, the A 0 algorithm
checks whether the best solution computed so far can be improved by using objects not yet retrieved

1The CMU Informedia-II Website: http://www.informedia.cs.cmu.edu/dli2/.



by the scans. If not, the sorted access can be stopped; otherwise, at least another step is required. To
compute the final result, a second random access phase is required to evaluate, by taking into account
scores for simple predicates, the overall score for each object retrieved during the previous sorted access
phase. Unfortunately, the performance of this approach rapidly deteriorates with the number of predicates.

Statistics-based evaluation.In [2], the authors propose to transform a k-NN query into a multi-dimensional
range query by exploiting statistics on data distributions. However, this approach works only for (low-
dimensional) vector spaces, and can only support a limited class of scoring functions.

Signature-based approach.The VA-file [10], which is a sequential structure that stores binary approximations
of high-D feature values, can be straightforwardly used to process complex queries by building a VA-file
over each feature in the query. However, this solution only deals with vector spaces and its complexity
scales linearly with the data-set size.

“Collapsing” approach. Finally, one could use a single index for the combination of all features. Since we are
looking for a “metric solution” (1st requirement), this would require to predetermine an overall distance
function according to which objects could be organized, which is in conflict with our 2nd requirement.

In conclusion, no known processing technique can efficiently support complex queries and, at the same time,
satisfies both our requirements.

2 The M2-tree

Consider a collection C of database objects than can be described by way of a set F = fF 1; : : : ; Fmg of features
(in this work, we do not consider the problem of choosing the number and the type of features which are more
suitable, from the efficiency and/or effectiveness point of view, for the domain at hand). For each feature F i,
whose values are drawn from a domain D i = dom(Fi), (dis-)similarity between feature values is assessed by
way of a distance function di : D2

i
! <+

0 , which, for any pair of feature values from D i, yields a non-negative
real value, being understood that low distances correspond to similar values and high distances to dissimilar
values.

In the following, we assume that di is a metric, i.e. a non-negative and symmetric function which also satisfies
the triangle inequality. Each couple of feature domain and distance function, thus, forms a metric space (D i; di).

2.1 Query Model

We consider generic (simple) predicates p having the form F i � q, where q 2 Di is a constant, also called query
value, and� is a (dis-)similarity operator. Evaluating p on an objectO 2 C equals to compute d i(q; O:Fi), where
with O:Fi we denote the value of feature Fi extracted from object O. In the following, for ease of representation,
we will write Æ(p;O) = di(q; O:Fi), meaning that assessing the distance between a simple predicate p : F i � q

and an object O equals to compute the di function between the query value q and the feature value O:F i. Metric
trees, like the M-tree [3], are able to solve range and k-NN queries based on simple predicates.

Since our objective is to generalize to complex queries, we need a way to combine multiple predicates, pos-
sibly referencing different features, into a formula f in order to obtain a single distance value, to compare with
the user-provided threshold, for a complex range query, or on which to order objects, for a complex k-NN query.
We only require that, if f = f(p1; : : : ; pn) is a formula composed of predicates p1; : : : pn, then the overall dis-
tance value of an object O with respect to f , denoted as Æ(f;O) is computed by way of a corresponding scoring
function [5], df , taking as input the distances of O with respect to each predicate p j of f , that is:

Æ(f(p1; : : : ; pn); O) = df (Æ(p1; O); : : : ; Æ(pn; O)) (1)

Although, in line of principle, any kind of scoring function would do the job, in this work we only consider
monotonic scoring functions, in the sense of the following definition.

Definition 1 (Monotonicity) We say that a scoring function df (Æ(p1; O); : : : ; Æ(pn; O)) is monotonic increas-
ing (respectively decreasing) in the variable Æj if, given any two n-tuples of distance values (Æ1; : : : ; Æj ; : : : ; Æn)
and (Æ1; : : : ; Æ

0
j
; : : : ; Æn) with Æj � Æ0

j
, it is df (Æ1; : : : ; Æj ; : : : ; Æn) � df (Æ1; : : : ; Æ

0
j
; : : : ; Æn) (respectively

df (Æ1; : : : ; Æj ; : : : ; Æn) � df (Æ1; : : : ; Æ
0
j
; : : : ; Æn)). If a scoring function df is monotonic increasing (resp. de-

creasing) in all its variables, we simply say that df is monotonic increasing (resp. decreasing). 2



Such property is surely reasonable from a user’s point of view. It is also the case that commonly used scoring
functions are monotonic in all their arguments: For example, the min and max functions are monotonic increas-
ing. As another example, weighted sums, with df (Æ1; : : : ; Æn) =

P
n

j=1 �jÆj , where �j’s are positive weights,
and
P

n

j=1 �j = 1, are monotonic increasing [4].
Given a formula f whose scoring function df is monotonic in all its arguments, we consider range queries

range
f;r

(C), selecting all the objects whose overall distance (computed by way of the scoring function d f ) to
f is not higher than a specified threshold r (Æ(f;O) � r), and k-NN queries NNf;k(C), selecting the k objects
having the lowest Æ(f;O) distance to f .

It should be noted that metric trees are already able to efficiently process complex similarity queries when all
the predicates refer to a single feature (Fi1

= Fi2 = : : : = Fin ) [4]. In this work we deal with the more general
case of multi-feature queries.

2.2 Principles

Our approach reconciles the two requirements of Section 1 by providing a solution which can be seen as a “multi-
dimensional” extension of the M-tree [3], much like as spatial access methods can be viewed, at some extent, as
generalizations of the B+-tree to D-dimensional vector spaces. The following table summarizes this point.

no. of “coordinates”
1 many

Space type Vector B+-tree R-tree, X-tree, : : :
Metric M-tree, : : : M 2-tree

For metric indices, like the M-tree, we say that they use 1 “coordinate” since they can organize objects by
using only 1 distance function. Given a query value q j , a metric space can be viewed as an half-line departing
from qj , the so-called distance space. All points of Dj are mapped to this line with a distance from the origin
which is equal to their distance from qj . A simple range query is equivalent to an interval query over such space
(see Figure 1 (a)). If we consider a complex formula f(p 1; : : : ; pn), with pj : Fij � qj , each qj induces an
independent distance space on Dij

, and we obtain what can be conventionally called a multiple distance space. 2

Thus, a complex range query is equivalent to a region query over such space (see Figure 1 (b)). Therefore, just
as spatial access methods are generalizations of the B+-tree, since they are able to organize multi-dimensional
feature (scalar) spaces, the M2-tree generalizes the M-tree in the sense that it can support multiple distance spaces.
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Figure 1: A simple range query in a distance space (a) and a complex range query in a multiple distance space
(b).

From the above table it can be seen that the M2-tree: (1) can deal with the more general case of metric spaces,
and (2) can index objects by using many distance functions at the time. These are indeed the key ingredients to
satisfy both requirements expressed in Section 1.

Just as the M-tree, the M2-tree is a balanced and dynamic tree whose fixed-size nodes are mapped to disk
pages and where indexed feature values are stored in the leaf nodes. To highlight the main difference between
M-tree and M2-tree, it is useful to show how regions associated with each node of these structures are defined:

� Each node N of the M-tree correspond to a region of the indexed metric space (D; d). The region of node
N is Reg(N) = fv 2 Djd(v; v[N ]) � r[N ]g, where v[N ] is the routing value of node N and r [N ] is its
covering radius. All the objects in the sub-tree rooted at N are then guaranteed to belong to Reg(N),
thus their distance from v [N ] does not exceed r[N ] (the region is equivalent to the interval [0; r [N ]] of the
distance space induced by v [N ]).

2It should be noted that each coordinate in such space corresponds to a single (possibly multi-dimensional) feature space.



� For an M2-tree built over a set of m (m � 1) features F = fF1; : : : ; Fmg, with corresponding metric
spaces (Di; di) (i = 1; : : : ;m), the region associated to node N is now defined as:

Reg(N) = f(v1; : : : ; vm) 2 D1 � : : :Dmjdi(vi; v
[N ]
i

) � r
[N ]
i

; i = 1; : : : ;mg

where v[N ]

i
is the routing value for the i-th feature and r

[N ]

i
is the corresponding covering radius. Thus,

Reg(N) consists of the hyper-rectangle [0; r
[N ]
1 ] � : : : � [0; r

[N ]
m ] in the m-dimensional distance space

induced by the routing values.

2.3 Format of M2-tree Entries

Each entry e in an M2-tree node consists of a set of m values vi 2 Di for each considered feature Fi. For
entries in a leaf node, such values correspond to the features extracted from each indexed object, whereas, for
internal nodes, such values are obtained by way of a specific promotion algorithm (for space reason, we do not
give details here of M2-tree maintenance algorithms). Entries of internal nodes also include a set of m covering
radii r[N ]

i
and a pointer ptr(T (e)), referencing the root N of a sub-tree T (e), whereas entries in leaf nodes

include an identifier oid(e), which is used to provide access to the whole object, which may reside in a separate
data file. The semantics of the covering radii is similar to that of M-tree: All the objects stored in the sub-tree
pointed by ptr(T (e)) are within distance r

[N ]
i

, considering the metric di, from v
[N ]
i

, i.e. 8O 2 T (e);8i =

1; : : : ;m; di(v
[N ]
i

; O:Fi) � r
[N)]
i

. As for M-tree, the distances between entry feature values and parent routing

values di(vi; v
[N ]
i

) are stored within each entry in order to prune sub-trees during the search phase.

Example 1 We have to index a collection of images, which have been manually annotated by different human
operators, who assigned a set of keywords to each of them. We also would like to search the collection for images
having similar color distributions. To this end, a color descriptor is extracted from each image by using the
technique described in [8], resulting in a 9-dimensional vector (see Figure 2). Distance between images for the
description feature is assessed as the number of common keywords divided by the total number of keywords for

the images, i.e. d1(vi1 ; vj1) = 1 �
kvi1\vj1k

kvi1[vj1k
, whereas distance between color descriptors is computed as the

Euclidean distance between associated vectors, i.e. d2(vi2 ; vj2 ) =
qP9

h=1 jvi2 [h]� vj2 [h]j
2

image name keywords color distribution vector

tiger.bmp nature, animals, mammals, feline, tiger (1:73, 0:381, 0:483, 1:97, 0:407, 0:518, 0:957, 0:133, 0:0903)

lion.jpg nature, animals, mammals, feline, lion (1:32, 0:380, 0:729, 1:60, 0:480, 0:776, �2:27, �0:686, �1:34)

tiger cat.jpg animals, domestic, feline, cat (0:754, 0:325, 0:730, 0:922, 0:409, 0:757, 1:58, 0:645, 1:41)

tiger shrimp.jpg nature, animals, crustacean, tiger, shrimp (3:23, 0:104, 0:853, 3:42, 0:189, 0:884, �1:24, 0:222, �0:282)

Figure 2: Four images with their description and the corresponding color distribution vectors.

Suppose that the images of Figure 2 are inserted in an M2-tree node: The two chosen routing values could be,
for example, v[N ]

1 = (nature, animals, feline, tiger) and v [N ]
2 = (1:76, 0:297, 0:699, 1:98, 0:371, 0:734,�0:243,

0:0786, �0:0293). The corresponding structure of leaf node N is depicted in Figure 3. The representative of
node N in the parent node P (N) is shown in Figure 4, along with a graphical representation of Reg(N) in the
multiple distance space induced by v [N ]. 2

2.4 Solving complex queries with M2-tree

In this Section we show how complex queries can be resolved by the M 2-tree access structure. Suppose that
we want to solve the query range

f;r
(C): In order to see whether a node N of the M2-tree has to be accessed,



oid(e) O:F1 O:F2 d1(O:F1 ; v
[N]
1

) d2(O:F2 ; v
[N]
2

)

e1 tiger.bmp nature, animals, mammals, feline, tiger (1:73; 0:381; 0:483; 1:97; 0:407; 0:518; 0:957; 0:133; 0:0903) 0:2 1:25

e2 lion.jpg nature, animals, mammals, feline, lion (1:32; 0:380; 0:729; 1:60; 0:480; 0:776;�2:27;�0:686;�1:34) 0:2 2:60

e3 tiger cat.jpg animals, domestic, feline, cat (0:754; 0:325; 0:73; 0:922; 0:409; 0:757; 1:58; 0:645; 1:41) 0:667 2:80

e4 tiger shrimp.jpg animals, crustacean, tiger, shrimp (3:23; 0:104; 0:853; 3:42; 0:189; 0:884;�1:24; 0:221;�0:282) 0:5 2:33

Figure 3: The structure of an M2-tree node N .
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Figure 4: The routing object for node N (a) and a graphical representation of Reg(N) (b).

we compute a lower bound on the distance between any object reachable from N and the complex query for-
mula f , that is, between f and the region associated to N , Æmin(f;Reg(N)), just as we would do for a simple
query with an M-tree. To compute such bound we compute a lower bound for each predicate p j : Fij � qj in
f , and combine such bounds by way of the scoring function d f . Therefore, Æmin(f;Reg(N)) is computed as
df (Æmin(p1; Reg(N)); : : : ; Æmin(pn; Reg(N))). Since the scoring function df is monotonic increasing in all its
arguments, no object reachable from N could lead to a value of Æ lower than Æmin(f;Reg(N)).

Bounds on individual predicates can be easily computed by taking into account information about N stored
in its parent, i.e. the routing values v [N ]

i
and the covering radii r [N ]

i
:3

Æmin(pj ; Reg(N)) = minfÆ(pj ; v
[N ]
ij

)� r
[N ]
ij

; 0g = minfdij (qj ; v
[N ]
ij

)� r
[N ]
ij

; 0g

Only nodesN for which Æmin(f;Reg(N)) � r are accessed during the search. When the leaf level is reached, we
can easily compute the overall distance Æmin(f;O) for each object O in the leaf node using Equation 1. It should
be noted that above consideration can be also used for complex k-NN queries, by substituting the threshold value
r with the k-th lowest overall distance encountered so far.

3 Experimental Results

Existing approaches, like those proposed in [5, 2, 6], solve complex range queries by separately indexing each
feature, e.g. with an M-tree, and by independently accessing the indices to solve a corresponding simple range
query; finally, results of all queries are combined. In the case of Figure 5 (a), the M 1 index would retrieve objects
O2, O3, O5, and O6, whereas index M2 would retrieve objects O1, O2, and O5; then, objects O2 and O5 are
correctly returned as results. The M2-tree approach, on the other hand, combines information from all the metric
spaces, such that, in order to solve a complex range query, only those nodes whose region overlaps the query
region are accessed during the search (see Figure 5 (b)) and no work is wasted to access objects that do not
satisfy the query (like objects O1, O3, and O6 in Figure 5 (a)).

To show the efficiency of the M2-tree, we compared its performance for complex k-NN queries over a real
data-set composed of over 15,000 images with respect to those of theA 0 algorithm [5] and of a simple sequential
scan. Features used to assess object similarity were (1) a string representing the image name (compared using
the Ledit distance, i.e. the minimum number of characters to be inserted, deleted or substituted to transform a
string into another) and a 32-bins histogram representing color information for the image (compared using the
Euclidean distance). We built an M2-tree over the 2 features and 2 M-trees over each single feature, and executed
several k-NN conjunctive queries (df = maxfÆ1; Æ2g) by varying the value of k. Figures 6 (a) and (b) show the
average computed distances and the average page reads for each query as a function of k. From the graphs, we see
that the M2-tree is indeed more efficient than the A0 algorithm, for both CPU and I/O costs. Moreover, we also
see that, for high values of k, performance of the A 0 algorithm rapidly decreases beyond that of the sequential
scan, whereas M2-tree costs are always the lowest.

3If the df function is monotonic decreasing in its j-th argument, we compute a upper bound Æmax(pj ; Reg(N)) = dij (qj ; v
[N]

ij
)+r

[N]

ij

and use it in place of Æmin(pj ; Reg(N)).
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Figure 5: Solving a complex range query (df = Æ1 + Æ2) with 2 M-trees (a) and with an M2-tree (b).
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Figure 6: Average CPU (a) and I/O (b) costs for solving a complex k-NN conjunctive query.

4 Conclusions

In this paper we have presented basic principles of M2-tree, a balanced search tree designed for indexing multiple
metric spaces. We have shown how the M2-tree can be used to perform complex similarity search over multimedia
objects represented by multiple features. Structure of M2-tree nodes and the sketch of searching algorithms have
been illustrated. Finally, we have demonstrated the efficiency of the proposed structure over other state-of-the-art
approaches through some preliminary experiments.

Current and future work includes the complete specification of index maintenance algorithms (choosing the
node in which a new object should be inserted, splitting a node, choosing the routing values, etc.), as well as a
wider query model, to include other queries that can be efficiently solved by the M 2-tree (e.g. intersection and
composition of complex queries). Thorough experimentation with different real data-sets is also planned.
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