
FUZZY QUERY LANGUAGES FOR MULTIMEDIA DATA

Paolo Ciaccia*, Danilo Montesi
♦
, Wilma Penzo*, and Alberto Trombetta

◊

* DEIS-CSITE-CNR, Bologna, Italy, {piaccia, wpenzo}@deis.unibo.it
♦

 DSI, Dept. Of Computer Science , Milano, Italy, montesi@dsi.unimi.it
◊

DI, Dept. of Computer Science , Torino, Italy, tromb@di.unito.it

Abstract
This chapter presents a fuzzy-based algebra, called SAME

W
, to query multimedia objects.

SAME
W

 allows for dealing within a common framework with several aspects relevant to
similarity query processing as well as with the inherent imprecision that characterizes
data, user requests, and query results. Non-Boolean, namely fuzzy and similarity,
predicates are used to rank tuples according to specific criteria. Complex multi-predicate
queries can be formed by means of logical connectives, whose semantics is
parameterized in order to adapt to specific scenarios. The same holds for the semantics of
algebraic operators. These include properly extended traditional relational operators and
new operators which allow threshold and best-matches queries to be easily expressed. A
further important feature of SAME

W
is the possibility of weighting both predicates and

operands of algebraic operators so as to better fit user preferences/requirements. A
working example dealing with Web data is used throughout the chapter to show the
potentialities of SAME

W
. Optimization issues are also briefly discussed.

INTRODUCTION
The advent of the World Wide Web has made available a huge amount of text,
image, audio, and video data, collectively referred to as multimedia (MM) data.
In recent years, many commercial MM tools have been developed (Flickner,
1995), among which multimedia database systems (MMDBSs) whose aim is to
provide unified frameworks for retrieving and integrating MM data
(Subrahmanian, 1998). It is a fact that a key feature of MMDBSs should be the
capability of expressing highly powerful/complex queries by managing and
interpreting the intrinsic imprecision of MM data and by exploiting
classification processes that add semantic information to objects.

Many recent works have focused on the design of access methods suitable to
index complex features (Ciaccia, 1997; Seidl, 1997), as well as on other
performance-related issues, such as approximate queries (Shivakumar, 1998;
Ciaccia, 2000-a). On the other hand, more general issues relevant to MM query
processing have only been partially addressed. These include models able to
capture the “essential” aspects of MM objects needed by content-based queries ,
the impact of user preferences on query processing, the management of
imprecise queries, new kinds of predicates and operators, and so on. Indeed,
contributions to above issues (Fagin, 1996; Adali, 1998; Ciaccia, 1998; Montesi,
1999) often consider ad-hoc scenarios and/or completely ignore the other
coordinates of the problem, thus resulting in a set of difficult to integrate
recipes.

In this chapter we present an extended relational framework that takes into
account the two major sources of imprecision arising from queries on MM
databases (Soffer, 1998): 1) imprecision of classification of MM data, and 2)
imprecision in the matching of features that characterize the content of MM
objects. As to the first point we rely on basic concepts from fuzzy set theory, and
allow representation of vague classification both at tuple and at attribute level.
We then introduce a similarity algebra, called SAME

w
 (“Similarity Algebra for

Multimedia Extended with Weights”), that extends relational algebra in a
conservative way and incorporates the use of weights in predicates and
operators, in order to model user preferences. We show how complex queries
can be easily expressed in SAME

w
 and sketch how equivalence rules can be

exploited for the purpose of query rewriting and optimization.

RELATED WORK
Broadly speaking, there are two main approaches to deal with data imprecision.
They are based on probability and fuzzy set theories, respectively. Probabilities
are simple, yet intuitive to understand. However, the probability of complex
(joint) events can be easily computed only under the hypothesis of events’
independency. If this hypothesis does not hold (as it often happens), then an
interval of probabilities needs to be considered for complex events, as the
ProbView system does (Lakshmanan, 1997). Fuzzy concepts do not require such
hypothesis since they do not rely on the notion of event. Due to their generality,
they have been successfully applied to integrate information from different MM
systems (Fagin, 1996).

As for query languages for MM data, specific functionalities have been
investigated in recent years. For instance, the modeling of imprecisely classified
data was thoroughly analyzed in (Raju, 1988). An interesting approach for
“ranking” query results coming from different data sources is proposed in
(Gravano, 1997), whereas (Carey, 1997) introduces an operator for selecting
only the n “best” results of an SQL query. An algebraic setting more suitable for
the integration of similarity measures coming from different sources rather than
for similarity searches is proposed in (Adali, 1998).

In summary, there are no proposals considering a full-fledged query language
expressing the basic MM functionalities within a uniform framework. This
language must blend imprecision on data and their classification, specific
operators needed to express complex queries on multimedia data, and user
preferences. This is the subject developed in the remaining of this chapter.

A WORKING EXAMPLE
As a working example, we consider the repositories of text and images collected
in the Web sites of the Uffizi Gallery (www.uffizi.firenze.it) and of
the Louvre Museum (www.louvre.fr). The user visiting, say, the Uffizi site
has several ways to browse through the paintings, accessing them by author’s
name, time of composition, and geographical provenance, or simply by clicking

on the rooms’ map, and then entering the corresponding room where links to the
available paintings are collected. However, no search capabilities over the
paintings are provided. To this end, let us assume that the stored information
about a painting includes ordinary data (such as the title and the author’s name),
as well as other attributes that describe the content of the painting. These can be
either feature attributes or fuzzy attributes.

A feature attribute contains complex data extracted from the painting, such as its
color histogram, texture vector, and so on. In order to compare feature values,
similarity predicates are used to support content-based retrieval , e.g.:

(Q1) “Find paintings with a texture similar to a given input texture vector” .

When applied to a painting, a similarity predicate returns a score, normalized in
the interval [0,1], assessing the degree of similarity between the feature value of
the painting and the input query value.

A fuzzy attribute stores information obtained from a (possibly manual)
classification process. Because of the inherent imprecision arising when
classifying MM data, a numerical score is also present. This is a membership
degree to the fuzzy set represented by the value of the fuzzy attribute. We remind
that a fuzzy set F over a “universe” U is a set characterized by a membership
function µFU:[,] →01 where µFx() is the degree of membership of x in F
(Klir, 1995). For instance, a painting could be classified as “well preserved”
with score 0.8. Note that classification is also possible with respect to properties
that can be represented as feature attributes (e.g., a painting could be classified
as “red” with score 0.65). A fuzzy predicate such as:

(Q2) “Find paintings in a very good state of conservation”

returns very well preserved paintings with their classification scores.

Complex queries like:

(Q3) “Find red paintings with a texture similar to a given input texture vector”

are evaluated by properly combining the scores corresponding to the single
predicates (see next section for details).

When dealing with scores, it is useful to allow the user to assign a distinct
relevance to the predicates in a complex query. Weights are introduced with this
aim and provide additional flexibility to express user requirements. They can be
attached to the predicates of a complex query so that the resulting score depends
more on the scores of the highest weighted predicates. For instance:

(Q4) “As (Q3). However, color is twice as relevant as texture” .

Weights are also useful when combining results from different sources, possibly
because one trusts more one source with respect to others, e.g.:

(Q5) “Find paintings in the Uffizi Gallery and in the Louvre Museum that are in
a very good state of conservation. Results from the Uffizi Gallery have weight
0.6, whereas those from the Louvre Museum have weight 0.4”.

In order to limit the cardinality of query results, two basic mechanisms are
available. The first one discards all the objects for which the computed score is
below a user-specified threshold value, e.g.:

(Q6) “Find paintings whose texture is similar to a given input texture vector
with score at least 0.8”.

Since setting adequate threshold values can be rather tricky (low values risk to
still return too many objects, whereas high values could lead to empty results), a
more effective control on the cardinality of the result can be achieved by just
requesting the k “best/top matches”, e.g.:

(Q7) “Find the 3 paintings whose texture is most similar to a given texture
vector”.

FORMALIZATION
In this section we present the formal material underlying the SAME

W
 algebra.

Our data model is a fuzzy extension of the relational model. A relation schema
is formed by a relation name, R, and a subset of attributes, XAAn ={,,} 1K,
where each A� i has a corresponding value domain, dom() Ai.

For simplicity, we

adopt the conventional list notation for sets, thus writing A for {A} and XY for
XY ∪. A tuple t over R(X) is any element of

 domdom(dom(())) XAAn =×× 1L, and tAi . denotes the value of A� i in t. For
anyYX ⊆, t.Y denotes the restriction of t on Y, that is, the (sub-)tuple obtained
from t by considering only the values of the attributes in Y.

Given a tuple t, a fuzzy attribute A in t is formed by two components, A
v
 (the

“value”) and Aµ (the “score”) that, intuitively, have the following meaning: “ t
fits A

v
 with score Aµ”. A fuzzy relation r over the schema R(X) is a fuzzy set

of tuples characterized by a membership function µR, which represents how
much a given tuple “fits” the concept expressed by R(X). In the following, the
notation tR .µ will be used with the same meaning of µRt().
Predicates are combined into formulas according to the syntax
fpffffff ::||||() =∧∨¬, where f is a formula and p is a predicate. The

evaluation of f on a tuple t is a score, sft (,) [,] ∈01, which says how much t
satisfies f. How sft (,) depends on (the evaluation on t of) the predicates in f is
intentionally left unspecified, in order to achieve parametricity with respect to
the semantics of logical operators. More precisely, the score sft (,) is computed
by means of a so-called “scoring function”, sf, whose arguments are the scores,

spt i (,), of tuple t with respect to the predicates appearing in f, that is,

sfpptssptspt nfn ((,,),)((,),,(,)) 11 KK =. A similarity predicate has either the

form Av ≈, where A is a feature attribute, vA ∈ dom() is a constant, and ≈ is a
similarity operator, or AA 12 ≈, where bothA1 and A2 are over the same
domain. The evaluation of p on t returns a score, spt (,) [,] ∈01, which says

how much t.A is similar to the value v. The evaluation on t of a fuzzy predicate
q: A = w, where w is a fuzzy set, is the score sqttA (,). =µ, if tAw

v
.=,

otherwise sqt (,)=0. For fuzzy predicates of the form qAA :12 =, it is

sqt (,)=0 if tAtA
vv

.. 12 ≠, otherwise the score is computed as a “parametric

conjunction” of the two membership degrees, that is, sqtstAtA (,)(.,.) =∧12
µµ,

where s∧ denotes the And scoring function. For the sake of definiteness, in the
following we consider scoring functions corresponding to fuzzy t-norms and t-
conorms (Klir, 1995), for which the And (∧) and Or (∨) operators are both
associative and commutative, and, together with the Not (¬) operator, satisfy
boundary and monotonicity conditions (Klir, 1995). For instance, FS (fuzzy
standard) and FA (fuzzy algebraic) interpretations of the logical operators are as
follows:

FSFA
sfft (,) 12 ∧min((,),(,)) sftsft 12sftsft (,)(,) 12 ⋅
sfft (,) 12 ∨max((,),(,)) sftsft 12sftsftsftsft (,)(,)(,)(,) 1212 +−⋅

sft (,) ¬1−sft (,)1−sft (,)

User preferences are expressed by means of weights as shown in (Fagin, 1997).
The weighted version sfΘof a scoring function sf for a formula f on a set of

predicates ppn 1,, K is defined as follows. Let xspt ii =(,), Θ�=[,,] θθ 1Kn,
with θi∈[] , 01 and θi i ∑�=1, and assume, without loss of generality,

 θ�θθ 12 ≥≥≥ Ln. Then:

sxxxsxxnsxx fnfnfn Θ112123121 2 ,,,,, KLK ()=− ()⋅+⋅− ()⋅()++⋅⋅() θθθθθ

Although above formula is usually used to weight the predicates appearing in a
formula, our position is that whenever scores have to be “combined”, then a
weighting should be allowed. Accordingly, most of the SAME

W
 operators that

compute new tuples’ scores can use weights.

THE SAME
W

 ALGEBRA
Basic operators of SAME

W
 conservatively extend those of Relational Algebra

(RA) in such a way that, if no “imprecision” is involved in the evaluation of an
expression, the semantics of RA applies. Genericity with respect to different
semantics is achieved by defining SAME

W
 operators in terms of the (generic)

scoring functions of the logical operators. Thus, if a given semantics is adopted
for formulas, the same is used by SAME

W
 operators. As an example, the

semantics of Union (∪) is based on that of the Or (∨) operator.

In order to show the potentialities and flexibility of SAME
W

, we refer to the
Virtual Museum database in Figure 1. For lack of space, we only present a
subset of SAME

W
 operators. A complete description, as well as the formal

specification of operators’ semantics, can be found in (Ciaccia, 2000-b). For

simplicity, in the following examples the computation of scores is always based
on the FS language.

UffiziPaintings (UP)
PIdTitleAuthorRoomColorTexture
P015AnnunciazioneLeonardo15green: 0.78T0015
P002Adorazione dei MagiLeonardo15red: 0.8T0002
P005Battesimo di CristoLeonardo15red: 0.5T0005
P004Madonna del RosetoBotticelli10yellow: 0.6T0004
P003Madonna d’OgnissantiGiotto2yellow: 0.85T0003

LouvrePaintings (LP)
PidTitleAuthorColor_HistogramTexture
P007La belle jardiniereRaffaelloC007T0007
P008La jocondeLeonardoC008T0002
P011VenusIl CorreggioC011T0011
P006L’ApparitionA. CarracciC006T0004
P001La CharitéA. del SartoC001T0001

Conservation (C) PaintingClasses (PC)
PidStateMuseumPidMovementµ
P002good:0.58UffiziP002Renaissance art0.6
P003good: 0.8UffiziP003Renaissance art0.72
P003very good: 0.7UffiziP004Renaissance art0.52
P004good: 0.65UffiziP005Expressionist art0.45
P004very good: 0.5UffiziP015Flemish art0.38
P005medium: 0.7UffiziP015Cubism0.2
P015very good: 0.78UffiziP011Expressionist art0.25
P011low: 0.35LouvreP007Impressionist art0.84
P007good: 0.85LouvreP008Renaissance art0.9
P007very good: 0.7LouvreP008Cubism0.1
P008good: 0.67LouvreP006Impressionist art0.52
P006low: 0.4LouvreP001Flemish art0.31
P001medium: 0.9LouvreP001Renaissance art0.75
P001very good: 0.65Louvre

Figure 1. The Virtual Museum database.

Selection (σ). The Selection operator applies a formula f to the tuples of a
relation r and filters out those that do not satisfy f. The novel point here is that,
as an effect of f and of weights, the score of a tuple t can change . Weights can
be used for two complementary needs: in the first case, they weight the
importance of predicates in f, whereas in the second they are used to perform a
weighted conjunction, between the score computed by f and the “input” tuple
score, tR .µ.

Example 1. Query (Q3) can be expressed in SAME
W

 as:

σColor`TextureUffiziPaintings) =∧≈ redt '(

where t stands for the input texture vector. Assuming that the following scores
are obtained for the texture predicate:

TextureScore
T00010.85
T00020.58
T00030.45
T00040.8
T00050.6
T00070.7
T00110.55
T00150.72

the resulting tuples are:

UffiziPaintings
PidTitleAuthorRoomColorTextureµ
P002Adorazione dei MagiLeonardo15red: 0.8T00020.58
P005Battesimo di CristoLeonardo15red: 0.5T00050.5

Now consider the presence of weights. Query (Q4) can be expressed as:

σColor`TextureUffiziPaintings) =∧≈ redt '(2313

and the result becomes:

UffiziPaintings
PidTitleAuthorRoomColorTextureµ
P002Adorazione dei MagiLeonardo15red: 0.8T00020.653
P005Battesimo di CristoLeonardo15red: 0.5T00050.5

Projection (π). As in RA, the Projection operator removes a set of attributes
and then eliminates duplicate tuples. Projection can also be used to discard
scores, both of fuzzy attributes and of the whole tuple. In this case, however, in
order to guarantee consistency of subsequent operations, such scores are simply
set to 1, so that they can still be referenced in the resulting schema. This
captures the intuition that if we discard, say, the tuples’ scores, then the result is
a crisp relation, that is, a fuzzy relation whose tuples all have score 1. In order to
retain the original tuples’ scores, “ µ” has to be specified in the Projection list of

attributes, whereas if A� i is a fuzzy attribute, specifying Ai
v
 in such list sets to 1

the scores for A� i. Note that, when tuples’ scores are preserved, the scores of

result tuples are computed by considering the “parametric disjunction”, s∨, of
the scores of all duplicate tuples arising from the Projection.

Example 2. Consider the query which returns all the artistic movements
represented in the Virtual Museum, together with corresponding classification
scores. This can be expressed as:

πµ Movement,PaintingClasses ()
and the selected tuples are:

Movementµ
Renaissance art0.9
Expressionist art0.45
Flemish art0.38
Cubism0.2
Impressionist art0.84

 Join («). In SAME
W

 the weighted (natural) Join is an n-ary operator that, given
n relations ri with schemas RX ii (), computes the score of a tuple t as a

weighted conjunction,

stt RnRn ∧()

Θ
11 .,,. µµ K with Θ=[] θθ 1,, Kn, of the

scores of matching tuples. For simplicity, we also use the infix notation,

R1«
θθ 12 , []R2, when only two operands are present.

Example 3. The following query looks for yellow (with weight 0.7) paintings in
the Uffizi Gallery and in a very good state of conservation (with weight 0.3):

σColorUffiziPaintings =() `' yellow«
0703 .,. []σStateConservation =() ` ' verygood

The resulting tuples are the following ones, where, for space reasons, some
columns are omitted:

PidTitleColorStateMuseumµ
P004M. del Rosetoyellow: 0.6very good: 0.5Uffizi0.54
P003M. d’Ognissantiyellow: 0.85very good:0.7Uffizi0.76

In order to see how final scores are determined, consider tuple P003. Since the
predicate on color yields a score 0.85, whereas the predicate on state of
conservation is satisfied with score 0.7, the weighted conjunction leads to:

µ=− ()⋅+⋅⋅()= 070308520308507076,.. . min

Union (∪). Also the Union is an n-ary operator, where the score of a result

tuple t is a weighted disjunction,

stt RRn ∨() .,,. µµ 1K, of the input tuples’

scores. Note that, because of the presence of weights, Union is not associative

anymore. This implies that the n-ary Union cannot be defined in terms of n-1
binary unions, as it happens in RA. As with Join, infix notation is used for a
binary Union.

Example 4. The following SAME
W

 expression retrieves texture vectors and
scores of those paintings that belong to the Renaissance movement. Further, it
specifies that paintings from Uffizi (UP) have relevance 0.6 and, consequently,
those from Louvre (LP) have relevance 0.4.

πµ Texture,UP («σMovementPaintingClasses =
[] ())∪ ` '

.,.
Renaissanceart

0604

 πµ Texture,LP («σMovementPaintingClasses =()) ` ' Renaissanceart

Then, the resulting tuples are:

Textureµ
T00010.6
T00020.84
T00030.72
T00040.52

Top (τ). The Top operator retrieves the first k (k is an input parameter) “best
ranked” tuples of a relation r, where the ranking criterion is expressed by a
ranking function g. If weights are used to rank tuples according to gΘ, then g
has to be a formula of predicates. If r has no more than k tuples, then Top has no
effect. When g is omitted, the default ranking criterion, based on the score of
tuples, applies, thus the k tuples with the highest scores are returned. In all cases,
ties are arbitrarily broken.

Example 5. The following expression returns the two paintings in the Uffizi
Gallery whose texture vector is most similar to a given one. Since the ranking
criterion of the Top operator is not specified, tuples are retrieved according to
their scores, as computed by the Selection operator.

τσ
2

TextureUffiziPaintings ≈() () t

Given the similarity table of Example 1 the result is:

PidTitleAuthorRoomColorTextureµ
P015AnnunciazioneLeonardo15green: 0.78T00150.72
P004M. del RosetoBotticelli10yellow: 0.6T00040.8

Cut (γ). The Cut operator simply “cuts off” those tuples that do not satisfy a
formula g. Unlike Selection, Cut does not change tuples’ scores . The major
reason to introduce Cut is the need of expressing (threshold) conditions on

tuples’ scores, e.g. µ>06.. Such predicates cannot be part of a Selection, since
they do not commute with others (Ciaccia, 2000-b).

Example 6. The following expression retrieves only the paintings in the Uffizi
Gallery whose texture vector is similar to the given value t with a score higher
than 0.75:

γσ µ>≈() () 075 .TextureUffiziPaintings t

As a result of the threshold condition, only one tuple is returned:

PidTitleAuthorRoomColorTextureµ
P004M. del RosetoBotticelli10yellow: 0.6T00040.8

QUERY OPTIMIZATION
The introduction of fuzzy attributes and fuzzy relations, as well as the presence
of weights in user queries, introduces new aspects to be considered when
reasoning about query rewriting and evaluation. This is mainly due to the
different semantics all the operators have with respect to the Relational Algebra,
as well as to the introduction of new operators.

To give a flavor of the optimization opportunities that are available in SAME
W

,
in the following we present an example of query rewriting that exploits the
following equivalence rules, whose proofs can be found in (Ciaccia, 2000-b).

γσγσγσ αα
θθ

α θθ pppp EE
1

1
2

22
21

1 ∧
[] ()





≡() () ()







,
 (R.1)

 σppn 1∧∧(L«

EEn 1,, K ())≡«

σσ ppn EE n 11 ()() () ,, K (R.2)

γα(«
θθ 1,, Kn []

EEn 1,, K ())≡(γα«

θθ 1,, Kn []

γγ αα 11EE nn ()() ()) ,, K (R.3)

where R.1 applies when θθ 12 ≥, and in R.3 it is:

ααθθθθ ijj
j

i

jj
j

i
jj =−⋅− ()









−⋅− ()









 +

=

−
+

=

−
∑∑ 1

1

1

1
1

1
1 in ∈[] ,, 1K

Briefly, rule R.1 allows the predicate with the highest weight to be “pushed-
down” and a Cut to be added to discard tuples; rule, R.2 distributes predicates of
a conjunctive formula over the corresponding Join operands; and rule R.3 allows
the introduction of new Cut operators over the operands of a weighted Join, with
thresholds values determined by the set of weights, as shown above.

The example query we consider requests information on paintings in the Uffizi
Gallery, whose painter is Leonardo, having a good state of conservation (weight
0.6), and whose texture is similar to a given value t (weight 0.4). The resulting

score has to be greater than 0.7. It is anticipated that the evaluation of the
predicate on Texture is costly, thus query optimization should aim to evaluate
the predicate on as few tuples as possible. The initial query formulation is:

γσσ 070604 .`''' .. StateTextureAuthorC =∧≈=((
goodtLeonardo«UP)))

where C stands for Conservation and UP for UffiziPaintings. Thanks to rule R.1,
the predicate on State can be pushed-down, i.e.:

γσγσσ 0707 ..`'`' Texture
0.4,0.6

StateAuthorC ≈
[]

== (((((tgoodLeonardo«UP)))))
Then, from the associativity of t-norms and the definition of Selection:

γσγσ 0707 ..`'`' Texture
0.4,0.6

StateAuthorC ≈
[]

=∧= ((((tgoodLeonardo«UP))))
Now, the application of rule R.2 leads to:

γσγσ 0707 ..`' Texture
0.4,0.6

StateC ≈
[]

= (() ((tgood«σAuthorUP =()))) `' Leonardo

At this point rule R.3 can be applied to the inner Cut, which yields:

γσγγσ 07
0406

0707 .
.,.

..`' TextureState ≈
[]

=() () ((

tgoodC«γσ 07.`' AuthorUP =() ()))) Leonardo

The Cut on UP can be eliminated, since the relation is crisp and the Selection
has a Boolean predicate, thus scores of tuples are equal to 1. Since tuples in the
left Join operand are guaranteed to have score higher than 0.7 (due to the Cut on
C), whereas tuples in the right operand are crisp, the resulting scores of the
joined tuples are also higher than 0.7. This means that the Cut following the Join
can be safely dropped:

γσγσ 07
0406

07 .
.,.

.`' TextureStateC ≈
[]

=() () (
tgood«σAuthorUP =())) `' Leonardo

In conclusion, the costly-to-evaluate predicate on Texture is applied only to
those tuples that already satisfy the other (cheap) predicates, thus leading to
considerable cost reduction.

CONCLUSIONS AND FUTURE WORK
We have introduced an extended relational algebra, called SAME

W
, suitable for

expressing complex similarity queries on multimedia data, and dealing with
imprecision and user preferences in a uniform way. The novel query features
include new operators like the Cut and the Top, useful to express “threshold”
and “best-matches” queries, the presence of similarity and fuzzy predicates, the
use of scores to rank the answers, and the possibility of weighting subqueries
and predicates in order to express their relevance in user preferences. A working
example, dealing with collections of paintings retrieved from the Uffizi and
Louvre Web sites, has been used in order to describe the behavior of the

SAME
W

 operators and to sketch aspects related to query rewriting and
optimization, a subject that, for lack of space, we have not covered here in its
full extension.

The optimization issues arising in the context of the SAME
W

 algebra are the
main line of research we are following. Such issues do not restrict only to the
study of equivalence rules among SAME

W
 expressions including new operators

and weights. Indeed, the presence of similarity predicates influences heavily the
definition of cost models, since this kind of queries can be expensive to
compute, thus making the “selection push-down” rule of thumb not valid
anymore. Along this line, a prototype implementation of the SAME

W
 algebra is

under development.

In addition to optimization, there are many other issues worth investigating.
Among them, we mention the development of complex data models, in order to
better modeling complex multimedia objects. In this context, it is also of
particular relevance the development of an intuitive, yet fully expressive, non-
procedural user query language, along the lines of the SQL standard. Also, the
SAME

W
 algebra can be modified for modeling and querying semistructured data

like those expressed in XML. A further interesting research issue is related to
relevance feedback. The fact that the result of a query does not match user
expectation is common in multimedia systems, and leads to a “closed-loop”
interactive process, where user evaluation is fed back to the query engine and
then taken into account to compute a “better” result, and so on. The proposed
algebra can be extended to deal with user judgements that could be used to
adjust weights for query reformulation.

REFERENCES
(Adali, 1998) S. Adali, P. Bonatti, M.L. Sapino, and V.S. Subrahmanian. A
Multi-Similarity Algebra. In Proc. of the 1998 ACM-SIGMOD Int. Conf. on
Management of Data, pp. 402--413, Seattle, WA, 1998.

(Carey, 1997) M.J. Carey and D. Kossmann. On Saying “Enough Already!” in
SQL. In Proc.of the 1997 ACM SIGMOD Int. Conf. on Management of Data ,
pp. 219--230, Tucson, AZ, 1997.

(Ciaccia, 1997) P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces. In Proc.of the 23rd
VLDB Int. Conf., pp. 426--435, Athens, Greece, 1997.

(Ciaccia, 1998) P. Ciaccia, M. Patella, and P. Zezula. Processing Complex
Similarity Queries with Distance-based Access Methods. In Proc. of the 6th Int.
Conf. on Extending Database Technology (EDBT’98) , pp. 9--23, Valencia,
Spain, 1998.

(Ciaccia, 2000-a) P. Ciaccia and M. Patella. PAC Nearest Neighbor Queries:
Approximate and Controlled Search in High-Dimensional and Metric Spaces. In
Proc.of the 16th Int. Conf. on Data Engineering (ICDE 2000) , San Diego, CA,
2000.

(Ciaccia, 2000-b) P. Ciaccia, D. Montesi, W. Penzo, and A. Trombetta.
Imprecision and User Preferences in Multimedia Queries: A Generic Algebraic
Approach. In First Int. Symp. on Foundations of Information and Knowledge
Systems, FoIKS 2000, pp. 50--71, Burg, Germany, 2000 (also available at
ftp://ftp-db.deis.unibo.it/pub/paolo/FOIKS00/FOIKS00.ps.gz).

(Fagin, 1996) R. Fagin. Combining Fuzzy Information from Multiple Systems.
In Proc. of the 15th ACM Symposium on Principles of Database Systems
(PODS’96), pp. 216--226, Montreal, Canada, 1996.

(Fagin, 1997) R. Fagin and E.L. Wimmers. Incorporating User Preferences in
Multimedia Queries. In Proc. of the 6th ICDT Int. Conf. , pp. 247--261, Delphi,
Greece, 1997.

(Flickner, 1995) M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B.
Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker.
Query by Image and Video Content: The QBIC System. IEEE Computer,
28(9):23--32, 1995.

(Gravano, 1997) L. Gravano and H. Garcia-Molina. Merging Ranks from
Heterogeneous Internet Sources, In Proc. of the 23rd VLDB Int. Conf. , pp. 196--
205, Athens, Greece, 1997.

(Klir, 1995) G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic . Prentice Hall
PTR, 1995.

(Lakshmanan, 1997) L.V.S. Lakshmanan, N. Leone, R. Ross, and V.S.
Subrahmanian. ProbView: A Flexible Probabilistic Database System. ACM
Transactions on Database Systems , 22(3), pp. 419--469, 1997.

(Montesi, 1999) D. Montesi and A. Trombetta. Similarity Search through Fuzzy
Relational Algebra. In Proc. of the 1st Int. Workshop on Similarity Search
(IWOSS’99), Florence, Italy, 1999.

(Raju, 1988) K. Raju and A. Majumdar. Fuzzy Functional Dependencies and
Lossless Join Decomposition of Fuzzy Relational Database Systems. ACM
Trans. on Database Systems , 13(32):129--166, 1988.

(Seidl, 1997) T. Seidl and H.-P. Kriegel. Efficient User-Adaptable Similarity
Search in Large Multimedia Databases.In Proc. of the 23rd VLDB Int. Conf.,
pp. 506--515, Athens, Greece, 1997.

(Shivakumar, 1998) N. Shivakumar, H. Garcia-Molina, and C.S. Chekuri.
Filtering with Approximate Predicates. In Proc. of the 24th VLDB Int. Conf. , pp.
263--274, New York, NY, 1998.

(Soffer, 1998) A. Soffer and H. Samet. Integrating Symbolic Images into a
Multimedia Database System using Classification and Abstraction Approaches.
The VLDB Journal , 7(4):253--274, 1998.

(Subrahmanian, 1998) V.S. Subrahmanian. Principles of Multimedia Database
Systems. Morgan Kaufmann, 1998.

