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Abstract. Efficient evaluation of similarity queries is one of the basic
requirements for advanced multimedia applications. In this paper, we
consider the relevant case where complex similarity queries are defined
through a generic language £ and whose predicates refer to a single
feature F'. Contrary to the language level which deals only with similarity
scores, the proposed evaluation process is based on distances between
feature values - known spatial or metric indexes use distances to evaluate
predicates. The proposed solution suggests that the index should process
complex queries as a whole, thus evaluating multiple similarity predicates
at a time. The flexibility of our approach is demonstrated by considering
three different similarity languages, and showing how the M-tree access
method has been extended to this purpose. Experimental results clearly
show that performance of the extended M-tree is consistently better than
that of state-of-the-art search algorithms.

1 Introduction

Similarity queries are a primary concern in multimedia database systems, where users
are interested in retrieving objects which best match query conditions. Efficient reso-
lution of similarity queries is usually based on a process which includes the extraction
of relevant features from the objects (e.g., color histograms from still images), and the
indexing of such feature values, typically through either spatial access methods, such
as the R-tree [Gut84], or metric trees, such as the M-tree [CPZ97]. In this context, low
distance between feature values implies high similarity, and vice versa. In general, in-
dex support is experimentally shown to be valuable under many circumstances, even if
the cost of evaluating a similarity query can sometimes be still very high — comparable
to that of a sequential scan.

Efficient processing of complex similarity queries - queries with more than one sim-
ilarity predicate - has some peculiarities with respect to traditional (Boolean) query
processing which have been highlighted by recent works [CG96, Fag96, FW97]. The ba-
sic lesson is that, since the “similarity score” (grade) an object gets for the whole query
depends on how the scores it gets for the single predicates are combined, predicates
cannot be independently evaluated.

Ezample 1. Consider an image database where objects can be retrieved by means of
predicates on shape and color features, and assume that the two sets of feature values
are separately indexed. In order to retrieve the best match for the query (shape =
‘circular’) and (color = ‘red’) it is not correct to retrieve only the best match
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for color (using an index on color) and the best match for shape (using an index on
shape), since the best match for the overall query needs not to be the best match for
the single conjuncts. a

The state-of-the-art solution to the above kind of queries is Fagin’s Ag algorithm
[Fag96], which returns the k best matches (nearest neighbors) for a complex query,
on the assumption that evaluation of the single predicates in the query is carried out
by independent subsystems, and that access to one subsystem is “synchronized” with
that to others (a special case of the Ag algorithm is described in Section 6).

In this paper we concentrate on a relevant class of complex similarity queries, which
arises when all the similarity predicates refer to a single feature.

FEzample 2. Consider an image database whose objects can be retrieved using a Query-
by-Sketch modality. When a user draws a shape on the screen, the system searches the
DB, and returns those, say, 10 images which contain a shape best matching (according
to given similarity criterion for shapes) the user’s input. The user can then “refine”
the search by selecting those objects which are similar to what he/she had in mind
and which are actually not. Suppose two “positive” and one “negative” samples are
specified. Now, the system has to search the DB for those 10 objects which are most
similar to both positive samples, and, at the same time, not similar to the negative one.
This interactive process can be iterated several times, until the user gets satisfied with
system’s output. m|

An interactive retrieval process, such as the one sketched above, typically occurs when
querying multimedia repositories [Jai96], where the user has no clear idea on how
to express what he/she is looking for, and relies on previous results to improve the
effectiveness of subsequent requests.

Complex single-feature queries could be casted in the more general framework of

multi-feature queries, however their nature suggests that a more efficient evaluation
strategy could indeed be possible to devise. The one we propose starts from the idea
to extend access methods in such a way that they can process complex queries as a
whole, thus evaluating multiple predicates at a time. Since access methods typically
evaluate the similarity of two objects by means of their distance in some feature space,
we ground our proposed extension on a sound formal basis, which specifies how multiple
distance measures (corresponding to multiple similarity predicates) should be combined
to perform a both efficient and correct pruning of the search space. The three basic
ingredients of the framework we introduce are: (a) a distance function, d, which com-
pares feature values, (b) a functional mapping, h, from distances to similarity scores,
and (c) a similarity language, £, which, given scores for the single predicates, tells us
how to combine them to yield a global score. Our solution is parametric on d, h, and
L, thus it provides a solution to the following general problem:
Given a similarity language £, a distance function d, and a function A which converts
distance values into similarity scores, determine how to efficiently evaluate a query Q
expressed in the language £, when @ consists of predicates on a single feature F', and
values of F' are indexed by a distance-based access method.

We show the feasibility of our approach by considering three different languages
and by providing an extension of the M-tree access method [CPZ97]. Since the only
assumption we need about the nature of the access method is that it uses distances to
prune the search space, our results apply to any spatial (multi-dimensional) or metric
access method. Experimental results show that our solution consistently outperforms
state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section 2 we provide the necessary
definitions, review how access methods are used to solve simple similarity queries,
and introduce three specific query languages for illustrative purpose. In Section 3 we
establish the basis for evaluating similarity queries through distance measures, and
Section 4 presents the basic result which allows a distance-based access method to



process complex queries as a whole. In Section 5 we describe how the M-tree access
method has been extended to this purpose. Section 6 shows some experimental results,
and Section 7 considers related works and concludes.

2 Preliminaries

Consider a collection (class, relation, etc.) C of objects which are indexed on a feature
F, whose values are drawn from a domain D, D = dom/(F'). For simplicity, we assume
that values of F' univocally identify objects, thus no two objects have the same feature
value.

A generic similarity predicate p on F' has the form ' ~ v, where v € D is a constant
(query value) and ~ is a similarity operator. Evaluating p on an object O returns a
score (grade), s(p, O.F) € [0, 1], which says how similar is object O to the query value
v. The evaluation of predicate p on all the objects in C then yields a “graded set”
{(O, s(p,0.F))|O € C}. For instance, evaluating the predicate color ~ ‘red’ means
to assign to each image in the collection a score assessing its “redness”.

We consider two basic forms of similarity queries: range and nearest neighbors (best
matches) queries. Given a predicate p : F' ~ v, a simple range query returns all the
objects whose similarity with respect to v is at least a (e.g. images which are “red
enough”), whereas a simple nearest neighbors query would return the & (k > 1 being
user-specified) objects having the highest similarity scores with respect to v (e.g. the
10 “most red” images), with ties arbitrarily broken.

Since our objective is to deal with complezr (single-feature) similarity queries, we
need a language £ which allows multiple predicates to be combined into a similarity
formula, f. The nature of the specific language is uninfluential to our arguments. We
only require that, if f = f(p1,...,pn) is a formula of £, then the similarity of an object
O with respect to f, denoted s(f, O.F), is computed through a corresponding scoring
function [Fag96], sy, which takes as input the scores of O with respect to the predicates
of formula f, that is:

s(f(p1,.--ypn), O.F) = ss(s(p1,0.F),...,s(pn, O.F)) (1)

Shortly, we will introduce three specific sample languages to construct similarity for-
mulas. For the moment, we provide the following definitions which exactly specify the
kinds of queries we are going to deal with:

Complex range query Given a similarity formula f € £ and a minimum similarity
threshold «, the query range(f,a,C) selects all the objects in C (with their scores)
such that s(f,O0.F) > a.

Complex nearest neighbors (k-NN) query Given a similarity formula f and an
integer k > 1, the k-NN query NN(f, k,C) selects the k objects in C having the highest
similarity scores with respect to f. In case of ties, they are arbitrarily broken.

2.1 Distance-based Access Methods

Evaluating the similarity of an object with respect to a query value can be done in
several ways, depending on the specific feature. A common approach, which is the
basis for efficiently processing similarity queries through indexing, is to have an indirect
evaluation of similarity scores. In this case, what is actually measured is the distance
between feature values, being understood that high scores correspond to low distances
and low scores to high distances.

In general, distance evaluation is carried out by using a distance function, d, which,
for any pair of feature values, yields a non-negative real value, d : D? — §R3‘ . Although
arbitrary distance functions can in principle be used, it is both reasonable and useful to
limit the analysis to “well-behaved” cases. In particular, we assume that d is a metric,
that is, for each triple of values vg, vy, v, € D the following axioms hold:

1. d(vz,vy) = d(vy, vsz) (symmetry)
2. d(vg,vy) >0 (v # vy) and d(vy,vz) =0 (non negativity)



3. d(va,vy) < d(vg,v2) + d(vz,vy) (triangle inequality)

Relevant examples of metrics include, among others, the Minkowski (L,) metrics over
n-dimensional points, which are defined as (p > 1) Lp(vz,vy) = (Z;;l | ve 7] —vyld] P

)}/P_and include the Euclidean (Ls) and the Manhattan, or “city-block”, (L;) metrics,
and the Levenshtein (edit) distance over strings, which counts the minimal number of
changes (insertions, deletions, substitutions) needed to transform a string into another
one.

Most tree-like access methods able to index complex features share a substantial
similar structure, which can be summarized as follows. Each node N (usually mapped
to a disk page) in the tree corresponds to a data region, Reg(N) C D. Node N stores
a set of entries, each entry pointing to a child node N, and including the specification
of Reg(N.). All indexed keys (feature values, i.e. points of D) are stored in the leaf
nodes, and those keys in the sub-tree rooted at N are guaranteed to stay in Reg(N).

Ezample 3. The R-tree [Gut84] organizes n-dimensional point objects by enclosing
them into Minimum Bounding Rectangles (MBR). This principle is applied at all lev-
els of the R-tree, so that the region of each node in the R-tree is a (hyper-)rectangle,
defined as the MBR of its child regions. a

Ezample 4. The M-tree [CPZ97] can index objects over generic metric spaces (see also
Section 5). Given a distance function d, the region of a node N is implicitly defined
by the predicate d(v,,v) < r(v,), where v, is a so-called routing object (or routing
key value), and r(v,) is the covering radius of v,. The intuition is that all objects v
reachable from node N are within distance r(v,) from v,. Note that the actual “shape”
of M-tree regions depends on the specific metric space (D, d). a

The usual strategy adopted by access methods to process simple range similarity
queries consists of two basic steps:

1. Take as input a (single) query value, vq, and a mazimum distance threshold, r(vq).
This defines a query region, centered at vq. In general, r(vq) is inversely related to
the minimum similarity one wants to accept in the result.

2. Search the index, and access all and only the nodes N such that Reg(N) and the
query region intersect. This is practically done by computing dmin(vq, Reg(N)),
that is, the minimum distance an object in Reg(N) can have from the query value
Vg. If dmin(vg, Reg(N)) < r(vq) then N has to be accessed, otherwise it can be
safely pruned from the search space.

In the case of k-NN queries, the basic difference with respect to above strategy is that
the distance threshold r(vq) is a dynamic one, since it is given by the distance of the
k-th current nearest neighbor from the query value vq. Because of r(vq) dynamicity,
algorithms for processing nearest neighbors queries also implement a policy to decide
the order to visit nodes which have not been pruned yet. Details can be found in
[RKV95] (for R-tree) and [CPZ97] (for M-tree).

If we try to naively generalize the above approach to complex queries, some diffi-
culties arise, which are summarized by the following questions:

1. Can a “distance threshold” be defined for arbitrarily complex queries?
2. Can we always decide if a query region and a data region intersect?

It turns out that both questions have a mnegative answer, as we will show in Section 4,
where we also describe how our approach can nonetheless overcome these limitations.

2.2 Similarity Languages

A similarity language £ comes with a syntax, specifying which are valid (well-formed)
formulas, and a semantics, telling us how to evaluate the similarity of an object with
respect to a complex query. Although the results we present are language-independent,
it also helps intuition to consider specific examples.



The first two languages we consider, FS (fuzzy standard) and F.A (fuzzy algebraic),
share the same syntax and stay in the framework of fuzzy logic [Zad65, KY95]. Their
formulas are defined by the following grammar rule:

fa=plf NFIFV FISFI)

where p is a similarity predicate. The semantics of a formula f is given by the following
set of recursive rules:

FS FA

s(f1 A f2,v)[min{s(f1,v), s(f2,v)} s(f1,v) - s(f2,v)

s(f1V fa,v)|max{s(f1,v), s(f2,v)}|s(f1,v) + s(f2,v) — s(f1,v) - s(f2,v)
S(_\f,’l)) 1—S(f,’l)) 1—S(f,’l))

The last language we consider, WS (weighted sum), does not use logical connectives
at all, but allows weights to be attached to the predicates, in order to reflect the
importance the user wants to assign to each of them. A formula f has the form:

f = {(p1,91)7 (p2792)7 ey (p’ﬂae’ﬂ)}

where each p; is a similarity predicate, the ;’s are positive weights, and Zl 0; = 1.
The semantics of a WS formula f is simply s(f,v) =" 0i - s(pi,v)

Although the subject of deciding on which is the “best” language is not in the scope
of the paper, it is important to realize that any specific language has some advantages
and drawbacks, thus making the choice a difficult problem. We also remark that
above languages are only a selected sample of the many one can conceive to formulate
complex queries, and that our approach is not limited only to them. In particular, our
results also apply to fuzzy languages, such as FS and F.A, when they are extended
with weights, as shown in [FW97].

Example 5. Assume that we want to retrieve objects which are similar to both query
values v1 and ve. With the S and F A languages we can use the formula f1 = p1 Aps,
where p; : F' ~ v;. With WS, assuming that both predicates have the same relevance
to us, the formula fo = {(p1,0.5), (p2,0.5)} is appropriate. Given objects’ scores for
the two predicates p; and p2, Table 1 shows the final scores, together with the relative
rank of each object. It is evident that objects’ ranking highly depends on the specific
language (see object O1) — this can affect the result of nearest neighbors queries — and
that the score of an object can be very different under different languages — this can

influence the choice of an appropriate threshold for range queries. O
FS FA WS
Object|s(p1, O;.F)|s(p2, O;.F)||s(f1,0;.F) rank|s(fi,0;.F) rank|s(f2, O;.F) rank
O:; 0.9 0.4 0.4 4 10.36 3 10.65 1
O 0.6 0.65 0.6 1 10.39 2 10.625 3
Os 0.7 0.5 0.5 3 10.35 4 10.6 4
O4 10.72 0.55 0.55 2 10.396 1 |0.635 2

Table 1. Similarity scores for complex queries.

Above example also clearly shows that determining the best match (the object with
rank 1 in Table 1) for a complex query cannot be trivially solved by considering only
the best matches for the single predicates. For instance, the best match for formula f;
under F.A semantics is object O4, which is neither the best match for p; nor for ps.

Similar considerations can be done for complex range queries too. Refer again to
Table 1, and consider the query range( f2,0.63,C), to be evaluated under WS semantics.
Given the threshold value 0.63, which leads to select objects O1 and Os, which are (if
any) appropriate thresholds for the single predicates such that the correct answer could
still be derived?



3 Evaluating Similarity Through Distance

The first step towards an efficient evaluation of complex queries concerns how to com-
pute similarity scores when only distances between feature values can be measured,
which is the usual case. For this we need the definition of a correspondence function.

Definition 1 : Correspondence function.
We say that h: R — [0,1] is a (distance to similarity) correspondence function iff it
has the two following properties:

h(0) = 1 2)
1 < To = h($1) > h(fﬁz) Vl’l,l’z (S %3— (3)

In other terms, a correspondence function assigns maximum similarity in case of 0
distance (exact-match), and makes similarity inversely related to distance. Usually,
correspondence functions are not considered “first-class” elements in the context of
similarity processing. The reason is that either only simple queries are considered or
no reference is done to the actual work performed by indexes [CG96]. In the enlarged
context we consider, where both complex queries and access methods are present,
correspondence functions have a primary role. Indeed, they represent the “missing
link” of the chain leading from feature values to similarity scores. The essence of this
chain is captured by the following definition.

Definition 2 : Distance-based similarity environment.

A distance-based similarity environment is a quadruple DS = (D, d, h, L), where D is a
domain of feature values, d is a metric distance over D, h is a correspondence function,
and L is a similarity language. a

Given any similarity environment DS, we are now ready to perform sequential eval-
uation of arbitrarily complex similarity queries. The algorithm for range queries is
described below; the one for nearest neighbors queries is based on the same principles,
but it is not shown here for brevity.

Algorithm Range-Seq (sequential processing of range queries)

Input: similarity environment DS = (dom(F'),d, h, L), collection C,
formula f = f(pi,...,pn) € £, minimum threshold «;

Output: {(O,s(f,0.F))|0 € C,s(f,0.F) > a};

1. For each O € C do:

2. For each predicate p; : F' ~ v; compute d; = d(v;, O.F) ;

3. Letsi:h(di),izl,...,n;

4. I s(f,O0.F) = S¢(81,...,8n) > a then add (O, s(f,0.F)) to the result;

Ezample 6. Consider the environment DS = (R? L;,1 — 0.1 - =, FS), and the query
Q@ : range(p1 A p2,0.8,C), with p; : F ~ v;(i = 1,2). Refer to Figure 1, where
v1 = (3,2) and v2 = (5,3), and consider the point (feature vector) v = (3.5,1). To
evaluate its score, we first compute di = Li(vi,v) = |3 — 3.5 + |2 — 1] = 1.5 and
d2 = La(v2,v) = |5 — 3.5/ 4+ |3 — 1| = 3.5 (line 2 of the Range-Seq algorithm). In step
3, we apply the correspondence function h(z) = 1 — 0.1 - = to the two distance values,
thus obtaining s1 = h(d1) = 0.85 and s2 = h(d2) = 0.65. Finally, since we are using the
FS semantics, we have to take the minimum of the two scores to compute the overall
score, i.e. s(p1 A p2,v) = min{s1, s2} = 0.65. Since this is less than the threshold value
0.8, point v does not satisfy the range query Q. m|

It is important to observe that the choice of a specific correspondence function can
affect the result of similarity queries. This is easily shown by referring to the above
example, and redefining h as h(z) = 1—0.05-z. After simple calculations, it is derived
that s(p1 A p2,v) = 0.825, thus point v will be part of the result.
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Fig. 1. The region of the query range((F ~ v1) A (F ~ v2),0.8,C) is shaded

4 Extending Distance-based Access Methods

The Range-Seq algorithm is correct but clearly inefficient for large objects’ collections.
Exploitation of an index built over a feature F' is possible, in principle, with two
different modalities. The “traditional” one independently evaluates the predicates, and
then combines the partial results outside of the index itself. This approach, besides
being inefficient because it leads to access parts of the index more than once, cannot
be applied at all for generic complex queries. The case of nearest neighbors queries
has been analyzed in [Fag96]. Here, the problem is that the best match for a complex
query cannot be determined by looking only at the best matches of the single predicates
(see also Example 5). In the case of complex range queries, independent evaluation is
possible only under the strict assumption that a distance constraint for each single
predicate in the query can be derived from the overall minimum similarity threshold,
which is not always the case.

Ezample 7. Consider Example 6. In order to process the query range(p1 Ap2,0.8,C), by
independently evaluating predicates p1 and p2, we can proceed as follows. Since we are
using the FS semantics and the correspondence function h, it has to be min{1 — 0.1 -
d(v1,v),1—0.1-d(v2,v)} > 0.8. This can also be expressed as max{d(vi,v),d(ve,v)} <
2. It can be easily verified that if v satisfies above inequality, then v lies in the shaded
query region of Figure 1. Since above constraint can be also written as (d(vi,v) <
2) A (d(v2,v) < 2), the complex query can be evaluated by independently performing
two simple range queries, taking the intersection of objects’ results, and then computing
the final scores. m]

Ezample 8. Assume now that the correspondence function has the form h(z) = exp(—=x),
and consider the query range({(p1, 0.4), (p2,0.6)},0.5,C) in the WS language. The sim-
ilarity constraint is:

0.4-e 1) 1 0.6- e "2 > 0.5

which cannot be decomposed into two bounded simple range queries. Indeed, if v is in
the result, then v necessarily satisfies the two constraints (each using a single query
value) 0.4 - e~4"1¥) 4 0.6 > 0.5 and 0.4+ 0.6 - e~ 4¥2*) > 0.5, which are obtained by
setting, respectively, d(v2,v) = 0 and d(v1,v) = 0. However, since the first constraint is
satisfied by any d(vi,v) value, the corresponding simple range query is d(vi,v) < oo,
which amounts to access the whole data collection. a

The second possibility of evaluating complex queries is the one we propose, and
suggests that the index should process complex queries as a whole. We first show how
queries in the two above examples would be managed by the new approach, then we
generalize to generic similarity environments.

Ezample 9. Consider Example 7, and assume, without loss of generality, that feature
values are indexed by an M-tree. We can prune a node N with routing object v, and
covering radius r(v,) if its region, Reg(N), only contains points v such that

min{l — 0.1 - d(v1,v),1 — 0.1 -d(v2,v)} < 0.8 (4)



Because of the triangular inequality and non-negativity properties of d, the following
lower bound on d(v;,v) can be derived:

d(vi,v) > dmin(vi, Reg(N)) def max{d(vs,vr) — r(vy),0} i=1,2
If we substitute such lower bounds into (4), we obtain
min{l — 0.1 - dimin(v1, Reg(N)),1 — 0.1 - dimin(v2, Reg(N))} < 0.8

From this, we can immediately decide whether node N has to be accessed or not. 0O

Ezample 10. Consider now Example 8. We can adopt the same approach as in Exam-
ple 9. Node N can be pruned if each point v in its region satisfies 0.4 - e~ )
0.6 - e~ Uv2v) ~ (5, By using the dmin(vi, Reg(IN)) lower bounds, it is obtained
0.4 - e~ dmin(v1.Rea(N) 4 6. g=dmin(v2:Res(N) < (0.5 Once again, checking above con-
straint is all that is needed to decide if node N has to be accessed. O

In order to generalize our approach to generic similarity environments and arbi-
trarily complex queries, we need a preliminary definition.

Definition 3 : Monotonicity.
We say that a scoring function sf(s(pi,v),...,S(pn,v)) is monotonic increasing (re-
spectively decreasing) in the variable s(p;,v) if given any two n-tuples of scores’ values
(815--+,8iy---,8n) and (81,...,85,...,8,) with s; < s, it is sp(s1,...,84,...,8n) <
sF(81,-- ., S5,

..y 8n) (resp. 85(S1,...y8iy...y8n) > S5(S1,...,8%,...,8,)). If a scoring function sy is
monotonic increasing (resp. decreasing) in all its variables, we simply say that sy is
monotonic increasing (resp. decreasing). O

Monotonicity is a property which allows us to somewhat predict the behavior of a
scoring function in a certain data region, which is a basic requirement for deciding
whether or not the corresponding node in the index should be accessed. Note that
both queries in Examples 9 and 10 are monotonic increasing.

Before presenting our major result, it has to be observed that a scoring function
can be “monotonic in all its arguments” without being meither monotonic increasing
nor monotonic decreasing (on the other hand, the converse is true). For instance,
s(p1,v) - (1 — s(p2,v)), which is the scoring function of p1 A —p2 in the F.A language,
is monotonic increasing in s(p1,v) and monotonic decreasing in s(p2,v).

In case a certain predicate occurs more than once in a formula, we need to distin-
guish its occurrences. For instance, the formula f : p1 A =p1 with p1 : F' ~ v1, has to
be rewritten as, say, p1 A —p2, with ps : F' ~ vz, and v1 = v2. Under the F.A semantics,
say, the scoring function of f, that is s(p1,v)-(1—s(p2,v)), is now monotonic increasing
in s(p1,v) and monotonic decreasing in s(p2,v). By distinguishing single occurrences
of predicates, it can be seen that the WS language can only generate formulas having
monotonic increasing scoring functions, whereas all scoring functions of formulas of
languages FS and F.A are guaranteed to be monotonic in all their arguments.

We are now ready to state our major result.

Theorem 4.

Let DS = (dom(F),d,h, L) be a similarity environment, f = f(p1,...,pn) € L (p; :
F ~wv,i=1...,n) a similarity formula such that each predicate occurs exactly once,
and C a collection of objects indexed by a distance-based tree T on the values of feature
F. Let s¢(s(p1,v),...,8(pn,v)) (v € D) be the scoring function of f. If sy is monotonic
in all its variables, then a node N of T can be pruned if

smaz(f, Reg(N)) = s (h(dp(v1, Reg(N))), .., h(dp(va, Reg(N)))) <& (5)



where

dis(vi, Reg(N)) = {dmin(vi, Reg(N)) if sy is monotonic increasing in s(p;,v) ©6)

dmaz(Vi, Reg(N)) if sy is monotonic decreasing in s(pi,v)

with dmin(vi, Reg(N)) (dmaz(vi, Reg(N))) being a lower (upper) bound on the mini-
mum (mazimum) distance from v; of any value v € Reg(N), and where « is

— the user-supplied minimum similarity threshold, if the query is range(f, a,C);
— the k-th highest similarity score encountered so far, if the query is NN(f, k,C). If
less than k objects have been evaluated, then o = 0. m]

Proof: Assume that Reg(N) contains a point v* such that sy(h(d(vi,v")),...,
h(d(vn,v™))) > a. By construction, it is d(vi,v™) > dg(vi, Reg(N)), if sy is monotonic
increasing in s(p;,v), and d(v;,v*) < dg(vi, Reg(N)), if sy is monotonic decreasing in
s(ps,v). Since h is a monotonic decreasing function, it is also

h(d(vi,0")) < (2)h(dz (v, Reg(N))) if d(vi,v") > ()da(vi, Reg(N))
Since sy is monotonic in all its arguments, it is impossible to have
sy(h(d(v1,07)), ..., h(d(vn,v7))) > sp(h(dp(vi, Reg(N))), . .., h(dp(vn, Reg(N))))

which proves the result. a

Theorem 4 generalizes to complex queries the basic technique used to process sim-
ple range and nearest neighbors queries. It does so by considering how a (single occur-
rence of a) predicate can affect the overall score, and by using appropriate bounds on
the distances from the query values. These are then used to derive an upper bound,
Smaz(f, Reg(N)), on the maximum similarity score an object in the region of node N
can get with respect to f, that is Smaz(f, Reg(N)) > s(f,v), Vv € Reg(N).

Ezample 11. A query which has been proved in [Fag96] to be a “difficult one” is NN(p1 A
—p1,1,C), with p1 : F' ~ v;. This can be processed as follows. First, rewrite the formula
as p1 A —p2 (p2 : F' ~ va,v2 = v1). Without loss of generality, assume the standard
fuzzy semantics FS, and the correspondence function h(x) = 1 — 0.1 - z. The scoring
function can therefore be written as min{s(p1,v), 1 — s(p2,v)}. By substituting bounds
on distances and applying the correspondence function we finally get:

Smaz(P1 A —p1, Reg(N)) = min{1 — 0.1 - dpmin(v1, Reg(N)),0.1 - dmasz(v1, Reg(N))}

where we have turned back to the original v; notation. a

Theorem 4 provides a general way to handle complex queries in generic similarity
environments, using any distance-based index. The only part specific to the index
at hand is the computation of the dmin(vi, Reg(N)) and dmaz(vi, Reg(IN)) bounds,
since they depend on the kind of data regions managed by the index. For instance,
in M-tree above bounds are computed as max{d(v;,v,) — r(v.),0} and d(vs,vr) +
r(vr), respectively [CPZ97]. Simple calculations are similarly required for other metric
trees [Chi94, Bri95, BO97], as well as for spatial access methods, such as R-tree (see
[RKV95]).

4.1 False Drops at the Index Level

The absence of any specific assumption about the similarity environment and the access
method in Theorem 4 makes it impossible to guarantee the absence of “false drops” at
the level of index nodes. More precisely, if inequality (5) is satisfied, it is guaranteed
that node N cannot lead to qualifying objects, and can therefore be safely pruned. This
is also to say that Reg(N) and the query region do not intersect. On the other hand,
if (5) is not satisfied (i.e. Smaxz(v, Reg(N)) > «) it can still be the case that Reg(N)
and the query region do not intersect.



Ezample 12. Consider the environment DS = (R?, La,exp(—z), FS), and the query
range(p1 A p2,0.5,C), with p; = F ~ v;, v1 = (1,2) and v2 = (2,2). Consider the
M-tree data region: Reg(N) = {v|d(v, = (1.5,1),v) < r(v,) = 0.43}. As Figure 2
shows, Reg(N) does not intersect the query region, represented by the intersection
of the two circles of radius In(1/0.5) centered in v1 and vo. However, the maximum
possible similarity for Reg(N) is estimated as min{e™(4(v1-vr)=r(vr) o=(d(v2,vr)=r(vr)y
= 0.502 > 0.5. Therefore, node N cannot be pruned. a

12

0\

1

1 2

Fig. 2. The false drops phenomenon.

Although the phenomenon of false drops can lead to explore unrelevant parts of the
tree, thus affecting the efficiency of the retrieval, it does not alter at all the correctness
of the results, since, at the leaf level, we evaluate the actual similarities of the objects,
for which no bounds are involved and actual distances are measured.

Resolving the false drop problem for generic similarity environments appears to be
a difficult task. In order to derive a tighter smaz(v, Reg(N)) bound, the n - (n —1)/2
relative distances between the n query values could be taken into account. However,
without specific assumptions on the similarity environment, additional hypotheses on
the scoring functions (such as differentiability) seem to be needed to obtain major
improvements. We leave this problem as a future research activity.

In the case of spatial access methods, which only manage similarity environments
of type DSsam = (R”, Ly, h, L), that is, vector spaces with L, (Euclidean, Manhattan,
etc.) metrics,? the similarity bound established by (5) could be improved by trying to
exploit the geometry of the Cartesian space. However, for arbitrarily complex queries
this still remains a difficult task [SK97, HM95].

5 The Extended M-tree

In order to verify actual performance obtainable by processing complex queries with
a distance-based access method, we have extended the M-tree. The M-tree stores the
indexed objects into fixed-size nodes, which correspond to regions of the metric space.
Each entry in a leaf node has the format [v;, oid(v;)], where v; are the feature values
of the object whose identifier is oid(v;). The format of an entry in an internal node is
[vr, 7(vr), ptr(V)], where v, is a feature value (routing object), r(v,) > 0 is its covering
radius, and ptr(NV) is the pointer to a child node N. We remind that the semantics of
the covering radius is that each object v in the sub-tree rooted at node N satisfies the
constraint d(v,,v) < r(v,).* Thus, the M-tree organizes the metric space into a set of
(possibly overlapping) regions, to which the same principle is recursively applied.

Our M-tree implementation is based on the Generalized Search Tree (GiST) C++
package, a structure extendible both in the data types and in the queries it can support
[HNP95]. In this framework, a specific access method is obtained by providing the code
for a limited set of required methods. Among them, only the Consistent method is used

3 Indeed, they can also manage quadratic distance functions, as shown in [SK97], but
this does not make a substantial difference.

4 For performance reasons, each entry also stores the distance between the feature value
of that entry and the parent routing object. For more specific details see [CPZ97].



during the search phase, and had therefore to be modified to support complex queries.
The Consistent method returns false iff all objects in the sub-tree of the considered
node are guaranteed to be outside of the query region. The search algorithm uses this
information to descend all paths in the tree whose entries are consistent with the query.

The new version of the Consistent method we have developed is based on the
results obtained in the previous Section, and is fully parametric in the similarity envi-
ronment DS. The overall architecture of the method is shown in Figure 3.

Reg(N) = (vr,7(vr)) Q= (fa)
' '
Consistent
Di 1. For each predicate p; : F' ~ v; do:

2. Compute the label I(p;);

1(ps)
Reg(N),vs, U(p:)

- 3. Compute the bound dg(v;, Reg(N));

dp(v;, Reg(N))
dp(v;, Reg(N))

Transform dp(vi, Reg(N)) in s;;

Sq

Sq

SREAAEY

. Compute Smac(f, Reg(N)) = s¢(s1,...,5n);
. Access = (Smaa(f, Reg(N)) > a);

!

Access Smax (f7 Reg(N))
Fig. 3. The Consistent method.

D Ot

Smaz (Vi, Reg(IN))

The input of the Consistent method is an entry Reg(N) = (vr, r(v;)), representing
the region of node N, and a query Q = (f,«), where f = f(p1,...,pn) is (a suitable
encoding of)) a formula of language £, and « is a minimum similarity threshold. In order
to optimize nearest neighbors queries, the new version of Consistent also returns an
upper bound, Smaz(f, Reg(N)), on the similarity between the objects in the region
Reg(N) and the formula f. At each step of the k-NN algorithm, the node with the
highest bound is selected and fetched from disk.

The architecture of Consistent is independent of the similarity environment DS,
since all specific computations are performed by external modules implementing each
component of the environment (these are shown on the left side in Figure 3). In par-
ticular, the two modules denoted with £ are those which encode language-specific
information. The execution flow closely follows the logic of Theorem 4 (refer to Figure
3): at step 2, we compute a Boolean label for each predicate p;, to determine if the
scoring function sy is monotonic increasing or decreasing in the variable s(p;, v). Then,
distance bounds are computed, depending on the value of I(p;) and transformed, by us-
ing the correspondence function h, into similarity bounds s;. The overall upper bound
Smaz(f, Reg(N)) is then computed, by applying the scoring function sy to the bounds
obtained for all the predicates. Finally, if Smaz(f, Reg(N)) is lower than « (Access =
false) N can be pruned from the search.

6 Experimental Results

In this Section we compare the performance of the extended M-tree with that of other
search techniques. For the sake of definiteness, we consider the specific similarity envi-
ronment DS = ([0,1)°, Leo, 1 — x, FS), where Loo(vs,vy) = max;{|va[j] —vy[j]|}. The
results we present refer to 10-NN conjunctive queries f : p1 Ap2 A ..., evaluated over a
collection of 10* objects. These are obtained by using the procedure described in [JD88],



which generates normally-distributed clusters. The intra-cluster variance is o® = 0.1,
and clusters’ centers are uniformly distributed in the 5-dimensional unit hypercube.
Unless otherwise stated, the number of clusters is 10. The M-tree implementation uses
a node size of 4 KBytes.

The alternative search algorithms against which we compare M-tree are a simple
linear scan of the objects — the worst technique for CPU costs, but not necessarily
for 1/O costs — and the Aj algorithm [Fag96], a variant of the general Ag algorithm
suitable for conjunctive queries under FS semantics, which is briefly described below.”

Algorithm A (Fagin’s algorithm for FS conjuctive queries)

Input: conjunctive FS formula f : pi A ... A pp, collection C, integer k > 1;

Output: the k£ best matches in C with respect to f;

1. For each p;, open a sorted access index scan and insert objects in the set X
stop when there are at least k objects in the intersection L = n; X".

2. Compute sim(f,v) for each v € L. Let vo be the object in L having the least
score, and p;, the predicate such that sim(f,vo) = sim(pi,, o).

3. Compute sim(f,v.) V candidate v. € X', such that sim(pi,,ve) > sim(piy, vo)

4. Return the k candidates with the highest scores.

In step 1, sorted access means that the index scan will return, one by one, objects
in decreasing score order with respect to p;, stopping when the intersection L of values
returned by each scan contains at least k£ objects. The scan ¢ is the one which returned
the object vo with the least score in L (step 2). For all the candidates [Fag96], that
is objects v. returned by such a scan before vy (sim(piy,ve) > sim(piy,vo), step 3
computes the overall score. Since the M-tree does not implement yet a sorted access
scan, to evaluate the costs of algorithm A we simulated its behavior by repeatedly
performing k; nearest neighbors query for each predicate, with increasing values of k;,
until 10 common objects were found in the intersection. The sorted access costs are
then evaluated as the costs for the last n queries (one for each predicate). Note that
this is an optimistic cost estimate, since it is likely that a “real” sorted access scan
would cost more than a single k; nearest neighbors query which “magically” knows the
right value of k;. Step 3 is charged only with CPU costs, since we assume that all the
candidates are kept in main memory.

Figures 4 and 5 compare CPU and I/O costs, respectively, for 10-NN queries con-
sisting of the conjunction of two predicates, f : p1 A p2, as a function of the distance
between the two query objects. CPU costs are simply evaluated as the number of dis-
tance computations, and I/O costs are the number of page reads. As the graphs show,
Aj performs considerably better when the query objects are relatively “close”, because
in this case it is likely that the two query objects will have almost the same neighbors,
thus leading to cheaper costs for the sorted access phase. On the other hand, the M-tree
approach is substantially unaffected by the distance between the query objects. When
query objects are “close” (i.e. the user asks for a conjunction of similar objects) the
CPU costs for both approaches are very similar, while I/O costs for A{, tend to be
twice those of our approach. Comparison with linear scan show that our approach is
highly effective in reducing CPU costs, which can be very time-consuming for complex
distance functions, and also lowers I/O costs. Ajp, on the other hand, is much worse
than linear scan for “distant” query objects.

Figures 6 and 7 show the effect of varying data distribution, by generating 103
clusters. Now the distribution of objects’ relative distances has a lower variance with
respect to the previous case, thus making more difficult the index task. Major bene-
fits are still obtained from reduction of CPU costs, whereas I/O costs of M-tree are

® We have slightly changed notation and terminology to better fit our scenario. In
particular, we access data through index scans, whereas Fagin considers generic in-
dependent subsystems.
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comparable to that of a linear scan only for not too far query objects.
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We now consider the case where one of the two predicates is negated i.e. f : p1 A—pa.
In this case, as Figures 8 and 9 show, the trend of index-based algorithms is somewhat
inverted with respect to the previous cases, thus favoring, as to I/O costs, the linear
scan when query objects are close. The performance degradation of M-tree in this case
is because, due to negation, best matches are far away from both the query objects,
thus leading to access a major part of the tree.
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Finally, we compared our approach with Aj in the case of n positive conjuncts,
that is f : p1 A ... A py, for n in the range [2,5]. Results, not shown here, report
that I/O savings are never less than 90%, while CPU savings have a decreasing trend,
starting from 85% down to 45%. This is explained by observing that, at each call of the
Consistent method, we evaluate distances with respect to all the predicates. On the
other hand, Aj algorithm does this only for the candidate objects, as above explained.

The overall conclusions we can draw from above results, as well as others not shown
here for brevity, can be so summarized:

1. Processing complex queries as a whole is always better than performing multiple
sorted access scans (as Apy does), both as to I/O and CPU costs.

2. For a givenformula, our approach is almost insensitive to the specific choice of the
query objects, thus leading to stable performance. This is not the case for the Aj
algorithm.



3. In some cases linear scan can be preferable as to I/O costs, but our approach leads
in any case to a drastic reduction of CPU costs, which can become the dominant
factor for CPU-intensive distance functions typical of multimedia environments.

7 Related Work and Conclusions

In this paper we have considered the problem of efficiently evaluating complex similarity
queries over generic feature domains. We have introduced a general formal framework
to deal with complex queries and have shown how query evaluation can be carried out
by using any access method which assesses similarity through distance measures, which
is the usual case. Finally, we have demonstrated the effectiveness of our approach by
extending the M-tree metric access method, and showing how it leads to considerable
performance improvements over other query processing strategies.

The paper by Fagin [Fag96] on processing complex nearest neighbors queries has
been fundamental to the development of our work. However, while Fagin is concerned
with general queries over multiple features (and multiple systems), we have considered
the specific case of single-feature queries and have consequently exploited this fact
to derive a more efficient algorithm. The work by Chaudhuri and Gravano [CG96]
addresses issues similar to [Fag96]. The strategy the authors propose to transform
complex (multi-feature) nearest neighbors queries into a conjunction of simple range
queries could in principle be also applied to our framework. However, this requires
some knowledge of data and distance distributions, which might not be always available.
Furthermore, and more important, it only applies if distance constraints can be derived
for the single range queries, which is not always the case (see Example 8).

Our work shares some similarities with relevance feedback techniques used by text
retrieval systems [Har92]. Such techniques derive a new query from a previous one and
from user’s relevance judgments on previous results. In our terminology, this amounts
to a change of a (single) query value, trying to “move” it closer towards relevant
documents, whereas our approach queries the database with multiple query values,
without collapsing them into a single value. Although we have not worked out the
implications of our approach in the context of document retrieval, it is clear that we are
more flexible since known relevance feedback techniques might be obtained as special
cases, by setting up specific similarity environments. In some sense, our approach can
be viewed as a means to apply relevance feedback over any feature domain.

The only assumptions we have done throughout the paper concern the distance
functions, which are to be metrics, and the scoring functions used to evaluate the
overall objects’ scores, which have to be monotonic in all their arguments (but not
necessarily monotonic increasing or decreasing). Both these assumptions are general
enough to capture almost any scenario of interest in multimedia environments.

We need the distance function to be a metric only for practical reasons, since no
access method we are aware of is able to index over non-metric spaces. However, it
is easy to see that relaxing this assumption would not affect our main formal result
(Theorem 4). Thus, an hypothetical access method for non-metric spaces could exploit
the results in this paper without modifications. A practical non-metric distance for
which this would be helpful is described in [FS96].

‘We need scoring functions to be monotonic in all their arguments in order to derive
similarity bounds within a data region, which is a basic requirement for Theorem 4 to
apply. Although monotonicity is clearly a reasonable property to demand to a scoring
function [Fag96], there are indeed cases for which it does not hold. For instance, assume
one wants to retrieve all the objects v which are similar to vi as they are to v2 (up to
a certain tolerance €), that is, | s(F ~ v1,v) — $(F ~ v2,v) |< e. This “equi-similarity”
(or “equi-distance”) query does not fit our framework, however it appears that access
methods can indeed be further extended to process it too. We plan to investigate this
and similar problems in our future work.
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