Relevance Ranking Tuning for
Similarity Queries on XML Data

Paolo Ciaccia and Wilma Penzo

DEIS - CSITE-CNR
University of Bologna, Italy
{pciaccia,wpenzo}@deis.unibo.it

Abstract. Similarity query techniques integrating semantics and struc-
ture of XML data have been recently investigated. Mostly, query relax-
ations are not fully exploited to retrieve data that approximate query
conditions on data organization. In this paper we present a method to
widen the spectrum of relevant data, and we define a measure to tune
the ranking of results, so that also information on relevance quality of
data retrieved can be inferred from scores.

1 Introduction and Motivation

Several researchers have recently profused their efforts in the integration of se-
mantics and structure for querying XML data [5,7,13]. Because of the hetero-
geneity of large digital libraries, and in absence of knowledge of data organiza-
tion, Boolean query conditions often lead to empty results. Thus, relaxation on
query requirements has been acknowledged as a “must”. As to data content, some
proposals suggest the use of vague predicates to formulate queries [7,13]. These
assume thesauri, ontologies, and semantic networks to find out the relevance of
terms inside documents. As to data organization, relaxations of structural condi-
tions only allow for “larger results”, where all hierarchical dependencies between
data are (somehow) preserved [11]. This is the case of path expressions contain-
ing wildcards. The basic idea is that results are relevant no matter how “sparse”
they are. This flattens the relevance of the retrieved data. In fact, although all
required information is found, it possibly appears in different contexts, and this
is supposed to affect relevance. Further, a total match approach is restrictive,
since it limits the set of relevant results. Actually, most of existing works do not
cope with the problem of providing structurally incomplete results, i.e. results
that only partially satisfy query requirements on text organization.

Let us consider, for instance, a user looking for stores selling CD’s authored
by a singer whose lastname is “John”!, and containing songs with “love” in
the title. Among the documents shown in Fig. 1, only Doc1 fully satisfies query
requirements. This is because Doc1 is the only document that presents a “last-
name” tag, thus making condition on “John” checkable. But, it is evident that
also documents Doc?2 is relevant to the query, and should be returned.

! Suppose the user does not remember the firstname “Elton” and, since “John” is a
very common name, she wants to specify that “John” must be a lastname.

<cdstore>Artist Shop <musicstore <cdshop>
<cd> name="CD Universe" > Music Planet
<title>One night only <cd> <cd>
< /title> <title> <title>
<singer> Love songs Disney solos for violin
Elton John < /title> < /title>
</singer> <singer> <price>£9.95< /price>
<song> Elton John <tracklist>
<title> </singer> <track>
Can you feel <year>1996< /year> <author>
the love tonight <song> Elton John
< /title> <title> < /author>
</song> Can you feel <title>
</ed> the love tonight Can you feel
</cdstore> < /title> the love tonight
<cdstore>Music Store <lyric> < /title>
<cd> There's a calm surrender < /track>
<title> to the rush of day ... <track>
Chartbusters go pop </lyric> <author>
< /title> < /song> Alan Menken
<singer> </ed> < /author>
<firstname> <cd> <title>
Elton <title> The bells of Notre Dame
< /firstname> Songs from the west coast < /title>
<lastname> < /title> < /track>
John <singer> <track>
</lastname> Elton John <author>
</singer> < /singer> Elton John
<song> <year>2001< /year> < /author>
<title> <song> <title>
Love of the <title> Circle of life
common people | want love < /title>
< /title> < /title> < /track>
</song> < /song> < /tracklist>
</ed> </ed> </ed>
</cdstore> < /musicstore> < /cdshop>
Doc1l Doc2 Doc3

Fig. 1. Sample XML documents

The above-cited approaches do not capture this approximation, except for Ap-
proXQL [12] and [5]. In these proposals, however, both Docl and Doc2 would
be evaluated with the same score, although Doc2 contains two relevant CD’s
rather than only one as in Doc1. Further, also Doc3 is expected to be returned as
relevant, and it is not. This is because data is organized in a slight different way:
Elton John appears as a song author rather than as the CD author, as specified
by the query. This structure disagreement does not allow to recognize Doc3 as
relevant. This points out that evaluation of structure conditions should be made
more flexible. Basically, a finer tuning of relevance scores should be provided:
partial matches on structure, as well as approximations, actually are supposed
to influence relevance, but should not be the cause of data discarding. Then,
documents that present more occurrences of query requirements are expected to
score higher, and this should be captured by an effective measure of relevance.
Current methods usually produce absolute ranking values that, individually, do
not provide information on the query rate satisfied by an answer. For instance,
it is not possible to realize if, given a query, a document is assigned a low
score because of an approximate yet complete match, or because of a partial
yet exact match of query requirements. Since the output of a query is usually
large, additional information that justifies scores would lighten the user from

the burden of discovering which solutions come up better to her expectations.
Thus, in general, an effective relevance ranking method is expected to provide
information to infer the overall quality of data retrieved.

In this paper we provide a method to find the approzimate embeddings of a
user query in XML document collections. Our proposal captures the relaxations
described above, and provides a measure that, besides ranking, also specifies
quality of results. The outline is as follows: In Section 2 we introduce a basic
query language and a tree representation for queries and documents. In Section
3 we start from the unordered tree inclusion problem [9] to relate query and data
trees through embeddings; this is extended in two directions: 1) to capture also
partial matching on query structure, and 2) to assign a score to the retrieved
embeddings. To this end, we define the SATES (Scored Approzimate Tree Em-
bedding Set) function, to retrieve and score embeddings. We also show how some
“critical” queries are effectively managed by our method. Our relevance ranking
measure is then presented. Then, we compare our method with other approaches
in Section 4 and, finally, in Section 5 we conclude and discuss future directions
we intend to follow.

2 XML Query Language and Trees

XML (eXtensible Markup Language) is a markup language for defining content
and organization of text documents. For the sake of simplicity, we do not require
validity for XML documents, in that we do not assume the presence of DTDs.
We also do not consider further features (e.g. IDREFs, namespaces) provided by
the XML specification [2].

As a starting point, we consider a subset of the XQueryl.0 grammar [4],
that we call XQuery~. Queries are path expressions, with predicates restricted
to equality on attribute and element values. An X Query~ expression has the

form:
[<sep>] (<StepExpr><sep>) “<PrimaryExpr>" ["<Expr>"]"

with the <sep> hierarchical separator having possible values “/” and “//” to
denote parent-child and ancestor-descendant relationships, respectively; the ex-
pression (<StepExpr><sep>)”<PrimaryExpr> denotes a path in a document
where conditions are expected to be checked in; <PrimaryExpr> indicates the
query output; conditions are expressed between square brackets, as a boolean
combination of predicates. The following is an example of complex query:

Example 1 Retrieve data about musical CDs on sale at stores in Manhattan,
where author’s lastname is “John”, being produced in “1996”, and containing
songs’ lyrics:

cdstore/cd[author/lastname=*““John’’ and ../address/* =
‘‘Manhattan’’ and O@year=°°1996°’ and .//song/lyric]

X Query~ expressions are mapped to trees in a natural way [3]. Trees are made of
typed labelled nodes and (possibly labelled) edges. Nodes may have the following
types: element, attribute and content. A content leaf expresses the value its

parent element/attribute node is required to assume. An element/attribute
leaf specifies a condition on the presence of that specific attribute/element in the
given context. Non-leaf nodes denote the context where information is expected
to be found in. Finally, each edge connecting two nodes either model simple
parent-child relationship, or it may be labelled with the “x” symbol, to denote
a path of positive length, thus expressing an ancestor-descendant relationship.

We briefly recall some basic definitions on trees, and we introduce some
additional functions. A tree t is a pair (IV, E), with N finite set of typed labelled
nodes, and E binary relation on N. Hierarchical relationships on a tree ¢, are
defined as: Yny,ny € N, 1) parent(ni,n2) <= (n1,n2) € E; 2) ancestor(ny,ns)
<= (parent(ni,n2) V 3In € N such that parent(ni,n) A ancestor(n,ns)).

Alr € N such that: 1) Zn € N such that parent(n,r); 2) Vn € N,n # r,
ancestor(r,n). r is called the root of the tree. Vno € N, 3n; € N such that
parent(ny,ns2). If ancestor(ni,ny) holds, the sequence of edges that connect ng
with no is called a path from nq to ns.

Let T be the set of all typed and labelled trees: Vt € T, root(t) and nodes(t)
return the root and the set of all nodes of the tree ¢, respectively. Given a tree
t = (N,E), Vn € N, label(n) and type(n) return the label | € £, with £ set of
labels, and the type k € K, with K set of node types, for a node n, respectively;
children(n) returns the set of all children of node n; leaf(n) <= children(n) =
0; support(n) is the subtree of ¢ rooted at n, called the support of n in t.

We provide a tree representation also for documents so as to reason on query
and document similarity by means of tree comparison. We want to determine how
much a document tree satisfies semantics and structural constraints provided by
a query tree. Let D be the set of well-formed XML documents.

Definition 1 (From XML Docs to trees) Given a document d € D, its cor-
responding tree t4 € T, is such that each element, attribute, and content data
in d is mapped to a node ne, ng, and n., in t4, respectively, and:
1. type(n.) = element, type(n,) = attribute, type(n.) = content;
2. labels of nodes are element’s and attribute’s names, and content data values;
3. each nesting level of element /attribute/content data in d resolve to a parent-
child relationship between corresponding nodes in tg4.

Let 7o C T and Tp C T be the sets of query and data trees, respectively.

3 The Tree Embedding Problem

Satisfying a query ¢ on a document d may lead to different results, depending on
how much we are willing to relax constraints on query semantics and requirement
dependencies. In our tree view, when a query has to be completely satisfied, we
look for an embedding of a query tree ¢, in a document tree ¢4. This means
that all query nodes must have a corresponding matching node in the document
tree, and each parent-child relationship should be guaranteed at least by an
ancestor-descendant one in the data tree [9]. In many cases these conditions are
too restrictive, since data may not correspond completely and exactly to query
requirements.

Our work basically loosens the strictness of this approach, that often leads to
empty results. The key aspects of our proposal are:

1. the relaxation on the concept of total embedding of ¢, in ¢4, in that we admit
partial structural match of the query tree; further, exact match is relaxed to
consider semantic similarity between nodes;

2. approximate results, that are ranked with respect to the cohesion of retrieved
data, to the relaxation of semantic and structural constraints, and to the
coverage rate of the query. Our ranking function takes into account the
overall query satisfaction, in that a score provides a ranking value but also
a quality measure of results;

3. aset-oriented approach to results, that depending on different relaxations on
requirements, identifies possible alternatives that the user may be interested
in. This strengthens the relevance of data presenting multiple occurrences of
query patterns.

Point 1) leads to the introduction of our interpretation of approzimate tree em-
bedding.

Definition 2 (Approximate Tree Embedding) Given a query tree t, € Tg
and a document tree t; € Tp, an approzimate tree embedding of t, in tq4 is a
partial injective function €[ty,t4] : nodes(ty) - nodes(tq) such that Vg;,g; in
the domain of € (dom(é)):
1. sim(label(q;),label(é(q;))) > 0, with sim a similarity operator that returns a
score in [0,1] stating the semantic similarity between the two given labels
2. parent(q;,q;) = ancestor(é(q;),é(q;))
Let £ be the set of approximate tree embeddings.

As to the point 2), in order to specify the ranking of results, embeddings are to
be assigned a score, according to a relevance ranking function p.

Definition 3 (Relevance Ranking Function) We denote with p a ranking
function that, given a triple (t,,%q4, €[t,, tq]), returns a tuple:

X =(0,7,7%:7374,75)
of scores with values in § = [0, 1] such that, with respect to the approximate
embedding € of the query expressed by ¢, in the document expressed by t4:
— 7 indicates how much € is semantically complete with respect to the query;
— 72 denotes semantic correctness of €, in that it states how well the embedding
satisfies semantic requirements;
— 73 represents the structural completeness of € with respect to the given query;
it denotes the structural coverage of the query;
— 74 expresses structural correctness of €, in that it is a measure of how well
constraints on structure are respected in the embedding;
— 5 specifies cohesion of €, by providing the grade of fragmentation of the
retrieved embedding;
— o states the overall similarity score of the embedding, and it is obtained as
a combination of 1, ¥2, 73, V4, and 5.

Formally: p: Tg x Tp x € — S°®

Vtq € To,ta € Tp, SATES(ty,tq) is defined as:

case leaf(root(ty)) Aleaf(root(ts)):
if sim(tq,tq) >0
SATES iy, ta) = {[(5(t4,ta), {(root (ty), root(ta))}]}
else SATES(tq,ta) =0

case leaf(root(ty)) A —leaf(root(tq)):
if sim(tq,tq4) >0
SATES(ty,ta) = {[(s(ts, ta), {(root(t,), root(ta) D]}
else SATES(tq,ta) = |J ©a (SATES(tq, support(c)))

¢ € children(tg)

case —leaf(root(ty)) A leaf(root(tq)):
if sim(tq,tq) >0
SATES(t,ta) = {[(s(t,ta), {(root(t,), root(ta) D]}
else SATES(tq,ta) = | ©q (SATES(support(c),ta))

¢ € children(tq)

case —leaf(root(ty)) A =leaf(root(tq)):
if sim(tq,td) >0 SATES(tq,td)
U U s(tg,ta), st - s}lj\:/tll) {(root(ty), root(ts))} Um;, U ... U mM]
Mmid gk k) e m
& (s m)€ SATES(tF, i)
U e [1.. \SATES(t ’“)\]

else SATES (tq,ta) = U, Uy Us)

1 M| M|
where U1 Ut eq064 J [®(s),- - sl‘M‘) mi, U...Uml‘M‘]
Myl (k. k) em
(s ’“k) € SATES(tk tk)

" e .. |SATES(ik’ t)]
U, =U ©a (SATES(t,,c))
¢ € children(ty)
U, =U ©¢ (SATES(c,ta))

¢ € children(tq)

Fig. 2. The SATES Function
Now we are ready to introduce a scored approximate tree embedding. For the sake
of simplicity, we start considering embeddings scored with respect to the overall
scoring value . Complete relevance score computation is detailed in Section 3.1.

Definition 4 (Scored Approximate Tree Embedding) A scored approzi-
mate tree embedding €, is an approximate tree embedding extended with a score
in §. Formally: é5: S x €.

The similarity function we propose for retrieval and scoring of embeddings of
a query tree in a document tree, is given by the SATES (Scored Approzimate
Tree Embedding Set) function, shown in Fig. 2.

Definition 5 (SATES Function) We define the Scored Approzimate Tree Em-
bedding Set Function as:

SATES :Tg xTp — 25%x&

Vt, € Tg,Yta € Tp, SATES(t,,tq) returns a set of scored approximate tree
embeddings for ¢, in ¢4. This captures the possibility of having more than one
embedding between a query tree and a document tree.

Intuitively, the SATES function states “how well” a data tree t4 fits a query
tree t,, also taking care of multiple fittings. In order to determine the scored
embeddings, the function follows a recursive definition and examines different
cases for ¢, and t4:

Both leaves. Depending on the semantic similarity of node labels, the result set
is made of: 1) one scored embedding that relates the two nodes; 2) the emptyset
if no similarity is found for labels. If an embedding is returned, since structural
similarity between leaves can be considered “perfect”, semantic similarity as-
sumes the key role of determining the final score for the embedding.

Query leaf and Data tree. If the semantic similarity between roots’ labels is
positive, an embedding is found and its score is determined as in the previous
case. Here note that, even if the structure of the two trees is different (one of
them is indeed a leaf), the embedding’s score should not be influenced from this.
In fact, we can evidently conclude that the structural coverage is complete. In
case of null semantic similarity, t;’s children are entrusted to determine some
possible embeddings for the leaf ¢,. Then, the scores of the resulting embeddings
are lowered through the ©4 function,? so that the skip of the root of t4, that
did not match with the query node, is taken into account in the computation
of the structural similarity between t, and t4. Even if we can say that t4 covers
tq, indeed it provides a more generic context, that does not “exactly” satisfy
structural requirements (and consequently also semantics). Score lowering can
then be considered appropriate.

Query tree and Data leaf. This is the case that concludes recursion in the
next step. Its role is made evident by the following case.

Query tree and Data tree. This is the general case that usually starts a
SATES call. The result set is determined in a recursive fashion. Basically, two
cases may occur: either 1) semantic similarity of roots’ labels exists, or 2) no
similarity is found. The former is the simplest case. The idea is that, since roots
are semantically related, this means that the current data context is promising for
the examination of remaining query conditions. Thus, query root’s children get
involved in the recursive computation of embeddings. Matchings are considered
in the bipartite graph® between query root’s children and data root’s children.
In case 2) of null label similarity, the final embeddings are computed from
the union of three quantities, that, for simplicity, we call | J;, J,, and |J,. Ba-
sically, the final embeddings must consider the unsuccessful match of the roots.
This implies the final scores to be properly lowered. Then, two strategies can

2 Notation details are shown later in this section.

3 Consider a graph G = (V, E). G is bipartite if there is a partition V = AU B of the
nodes of G such that every edge of G has one endpoint in A and one endpoint in
B. A Matching is a subset of the edges no two of which share the same endpoint. In
our case A = children(root(ty)) and B = children(root(tq)).

1 son a cd
~ 9)) /a/ o
2 R) song - b s
3 title c title . wong
el 7 "Simple Minds" N
4 “love" d (O)"love’ T .
Sl - N d title
T "love"
Fig. 3. Swap Fig. 4. Unbalance Fig. 5. Low cohesion

be followed: either looking for satisfying the remaining query conditions in the
current context, or changing the context. Consider Fig. 3. Assume semantic sim-
ilarity between roots’ labels “song” and “cd” is 0. Before asserting that certainly
no embeddings exist, we proceed in two directions: 1) We change the context
of our search, trying to satisfy the query in a more specific domain: thus we
move our target to the child(ren) of ¢4’s root (|J, computation); 2) we give up
looking for a complete match of the query, and we try to discover if the current
context satisfies at least the remaining conditions (|J; computation). Of course,
in both cases result scores are properly lowered to take into account the pres-
ence of unmatched nodes. This “crossed comparison” may point out possible
“swaps” between query and data nodes. In fact, in our example, two embed-
dings are retrieved: {(1,b),(3,c),(4,d)} and {(2,a),(3,c),(4,d)}. Even if they are
two separate solutions, it is worth noticing that the union of the two embeddings
provides a full coverage for the query tree. Thus, a more complete solution could
be derived, albeit including score penalization for the swap. Further, J, com-
putation captures also structural dissimilarites like that shown in Fig. 4 where a
possible embedding is dashed. Note that, “song” and “singer” nodes are siblings
in t, and parent-child in ¢4. This should penalize the final score of the embed-
ding, and it is captured by the &4 function when computing the embedding of
support(“singer”) in support(“song”).*

Further, when comparing subtrees as an effect of recursive calls of the SATES
function, the event of unsuccessful match for the document (current) root may
be interpreted as a sign of low cohesion of the global result. As an example,
let consider the trees of Fig. 5. The evaluation of SATES(t4,t4) leads to the
embedding {(1,a),(2,d),(3,e)}. In this case, although the query tree is totally
embedded in the document tree, cohesion of retrieved data is rather low. This
is captured by the double application of the &4 function, because of the two re-
cursive steps with unsuccessful match of (2,b) and (2,c). Note that the SATES
function is not symmetric. Consider trees in Fig. 5 again. Finding the “inverse”
approximate embedding of ¢4 in ¢, would result in a partial satisfaction of query
requirements since “side” and “song” elements do not have a correspondance in
ty. This means that the &, lowering function “weighs” differently (much more
indeed) from Sy. Thus, the retrieved approximate embeddings would be scored
differently. This captures the intuition that priority is on satisfaction of query
requirements, and then on cohesion of results.

* Note that labels of trees’ roots match.

SATES formal notation To reduce notational complexity in the definition of
the SAT ES function provided in Fig. 2, we used some abbreviations: sim(ty, tq)
stands for sim(label(root(ty)), label(root(tq))), and s(tq, tq) is the score obtained
by the p function with reference to the base case of embedding root(t,) in
root(tq). Then, Mﬁj is the Bipartite Graph Matching between the two sets
children(root(t,)) and children(root(tq)). When clearly defined in the context,
we use M in place of Mﬁj The 64, ©4, and ® functions are defined as follows.

Definition 6 (Lowering Functions) The ©, and ©4 functions change the
scores of a given a set of scored approximate tree embeddings, according to
a lowering factor. New scores capture the unsuccessful match of a query node
and a data node, respectively. Formally:

Ogt 25%¢ — 25%€ gquch that Vés = (s,€) € dom(©,) O4(€s) = (s',€) As' < s.
Sy is defined similarly.

Definition 7 (Combine Function) The ® function generates a new score
from a set of n given scores in S. Formally: ® : 2° — S.

3.1 Relevance Computation

An effective relevance ranking method is expected to provide information to in-
fer quality of data retrieved. Most approaches rank results according to scores
that depend on the satisfyiability of matching query conditions [7,13]. Others
use cost functions to combine the costs of relaxations required to (also partially)
satisfy the query [5,12]. In this case, combination (usually sum) produces abso-
lute ranking values that, individually, do not provide information on how much
of the query is satisfied by an answer. Assume to compare results coming from
two different queries ¢; and ¢2. According to these scoring functions [5, 12], it is
possible that one document that satisfies 1 condition (out of 2) of ¢; is assigned
the same score of a document that satisfies 9 conditions (out of 10) of the more
complex query ¢z. Although results are incomparable, one would expect docu-
ments (exactly) satisfying a high percentual of conditions to score higher than
documents (exactly) satisfying a lower rate.

Thus, besides information on correctness of results, a measure of complete-
ness is desirable. As to XML documents, this information is somehow made
more complex by the presence of structure inside documents. This implies that,
in addition to a measure of semantic satisfaction, as in the keyword case, some
knowledge on completeness is supposed to provide also information on the match-
ing rate of query structure. Also, cohesion of data retrieved is another important
feature to be considered. Cohesion provides a measure of how “sparse” the re-
quired information is. Apart from queries where the user explicitly specifies not
to take care of the depth where information may be found in, this information
is an important element to be considered when ranking data. As to this prop-
erty, existing approaches [7,13] do not treat this information. As a consequence,
quality of results can be considered an overall measure of all these features.

We provide a scoring method that takes into account semantic and structural
completeness and correctness of results, as well as cohesion of relevant data

retrieved. We start modeling a set of properties for each embedding é. Property
values are normalized in the interval [0, 1], where values close to 1 denote high
satisfaction. Then, we discuss how these measures can be combined to obtain an
overall score for an embedding. Properties are:

Semantic Completeness. It is a measure of how much the embedding is se-
mantically complete with respect to the given query. It is computed as the
ratio between the number of query nodes in the embedding, ng, and the total
number of query nodes, ng: i

m=-
Ng

Semantic Correctness. It states how well the embedding satisfies semantic
requirements. It represents the overall semantic similarity captured by the
nodes in the embedding. This is computed as a combination A (for instance,
product) of label similarities of matching nodes, possibly lowered by type
mismatchings (attribute vs. element nodes):

Yo = /\sim(label(qi),label(é(qi)))
a; € dom (&)

Structural Completeness. It represents the structural coverage of the query
tree. It is computed as the ratio between: 1) the number of node pairs in the
image of the embedding, hpf, that satisfy the same hierarchical® relationship
of the query node pairs which are related to, and 2) the total number of
hierarchy-related pairs in the query tree (hp,):

_ Iy

hpq
Structural Correctness. It is a measure of how many nodes respect struc-
tural constraints. It is computed as the complement of the ratio between the
number of structural penalties p (i.e. swaps and unbalances) and the total
number of hierarchy-related pairs in the data tree that also appear in the

embedding: =1 P

V3

~ hpf

Cohesion of results. It represents the grade of fragmentation of the resulting
embedding. It is computed as the complement of the ratio between the num-
ber of intermediate data nodes inj and the total number of data nodes in
the embedding, also including the intermediate ones n§:

ing

v =1-— —éd

ngq
These properties can be naturally partitioned in two sets: properties related to
semantics, and properties concerning structure. A combination of them indicates
a global measure, that summarizes the semantic and structural characteristics

of the retrieved data.

5 Either parent-child or ancestor-descendant relationship.

It is beyond the scope of this paper to evaluate which is the best function to
be used for combining these scores in the computation of the overall score o of
an embedding. In general, o is obtained as a function ¢ of the above properties:
o= &(v1,7%2,Y3,74,7s). The combination function ¢ can be derived, for instance,
experimentally, or they might be specified by the user. As an example, ¢ can be a
linear combination of its operands. Thus, additional flexibility can be reached by
assigning weigths to each ~y; to denote the different importance of each property.

Thus, given an embedding € for a query tree ¢, in a document tree ¢4, our
ranking function p provides a rich relevance score, equipped with additional
information on the grade of satisfaction of the above properties in é. This in-
formation helps the user to infer the overall quality of results. Further, the final
score is enriched with some knowledge on key aspects like completeness and
cohesion of data retrieved, usually neglected in scoring methods.

4 Related Work

A recent initiative of the DELOS Working Group [1] emphasizes the growing
importance of evaluating research methods against large collections of XML
documents. To this end, approximate matching techniques are acknowledged to
be powerful tools to be exploited. Thus, many proposals provide similarity query
capabilities that, besides semantics, also examines the structure of documents to
rank results [5,7,12,13]. However, these approaches present relevance ranking
functions that, in absence of knowledge of DTDs, either neglect some potential
solutions or provide too coarse-grained scores that flatten the differences among
actually different results. In XXL [13] partial match on query structure is not
supported. Similarity basically depends on content similarity, through the eval-
uation of vague predicates. Flexibility on structural match is obtained through
wildcards, but the number of skipped nodes is discarded in relevance computa-
tion, thus neglecting the grade of cohesion of data retrieved. XIRQL [7] intro-
duces the concept of index object to specify document units as non-overlapping
subtrees. Structural conditions only act as filters to determine the context where
information has to be searched in. Partial match on query structure yet is not
discussed. Few proposals consider partial match on query structure [5,12]. In
ApproXQL [12] similarity scores depend on the costs of basic transformations
applied on the query tree. Basic costs are added in a total cost, thus resulting in
a absolute scoring. Thus, it is not possible to realize the rate of query satisfied by
an answer. A similar approach is proposed in [5]. Nodes and edges in a query tree
are assigned pairs of weights that denote scores for exact and relaxed matching,
respectively. Sum is used to combine scores of each single node/edge matching,
yet producing an absolute scoring as in [12]. Despite the high flexibility provided
by relaxations, also in this case information on cohesion of data is not taken into
account for relevance. Further, to our knowledge, for a given document, all pro-
posed methods return only the best (in some cases, approximate) matching. The
set-oriented approach used in the SATES function also captures the relevance
given by multiple occurrences of the query pattern in the retrieved data.

Other related approaches deal with schema matching [10], and the semantic
integration of XML data [8].

5 Conclusions and Future Work

We presented an effective relevance ranking measure to infer quality of results
of similarity queries on XML data. Our measure widens the spectrum of rel-
evant data, including solutions that also partially satisfy query requirements,
and that approximate text organization inside documents. Then, our relevance
ranking method provides a more fine-grained scoring, in that it takes into ac-
count the matching rate of query conditions, the cohesion of data retrieved, and
the presence of multiple occurrences of query requirements inside data. Thus,
besides correctness, a measure of completeness of query satisfaction, as well as
knowledge about cohesion of results, are additional key elements to provide in-
formation on quality of data retrieved. Several issues urge to be investigated. In
order to augment query flexibility the user might be allowed to express prefer-
ences on either the semantics or the structure of a query. With regard to query
processing, in order to cope with the possible hugeness of approximate results
returned, we plan to exploit algorithms from works on top-k queries [6].

References

Eval. Initiative for XML Doc. Retrieval. http://qmir.dcs.qmw.ac.uk/XMLEval.html.
Extensible Markup Language. http://www.w3.org/TR/2000/REC-xm1-20001006.
XML Information Set. http://www.w3.org/TR/xml-infoset.

XQuery 1.0: An XML Query Language. W3C Working Draft, 2001,
http://www.w3.org/TR/xquery.

5. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern Relaxation. In Proc. of
the 8th Int. Conf. on Extending Database Technology (EDBT 2002), March 2002.

6. N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k Queries over Web-
Accessible Databases. In Proc. of 18th Int. Conf. on Data Engineering (ICDE
2001), San Jose, CA, 2001.

7. N. Fuhr and K. Grofijohann. XIRQL: A Query Language for Information Retrieval
in XML Documents. In Proc. ACM SIGIR Conference, 2001.

8. E. Jeong and C. Hsu. Induction of Integrated View of XML Data with Hetero-
geneous DTDs. In Proc. of 2001 ACM Int. Conf. on Information and Knowledge
Management (CIKM 2001), Atlanta, USA, November 2001.

9. P. Kilpeldinen. Tree Matching Problems with Application to Structured Text
Databases. PhD thesis, Dept. of Computer Science, Univ. of Helsinki, SF, 1992.

10. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with
Cupid. In Proc. of the 27th VLDB Conf., pages 49-58, Rome, Italy, 2001.

11. J. Robie, L. Lapp, and D. Schach. XML Query Language (XQL). In Proc. of the
Query Language Workshop (QL’98), Cambridge, Mass., 1998.

12. T. Schlieder. Similarity Search in XML Data Using Cost-Based Query Transfor-
mations. In Proc. of 4th Int. Work. on the Web and Databases (WebDB01), 2001.

13. A. Theobald and G. Weikum. Adding Relevance to XML. In Proc. 3rd Int.

Workshop on the Web and Databases (WebDB 2000), pages 35-40, May 2000.

L

