Imprecision and User Preferences
in Multimedia Queries:
A Generic Algebraic Approach*

Paolo Ciaccial, Danilo Montesi?, Wilma Penzo!, and Alberto Trombetta?

! DEIS - CSITE-CNR, Bologna, ltaly, {pciaccia,wpenzo}@deis.unibo.it
2 DSI, Dept. of Computer Science, Milano, Italy, montesi@dsi.unimi. it
9 DI, Dept. of Computer Science, Torino, Italy, tromb@di.unito.it

Abstract. Specification and efficient processing of similarity queries on
multimedia databases have recently attracted several research efforts,
even if most of them have considered specific aspects, such as indexing,
of this new exciting scenario. In this paper we try to remedy this by
presenting an integrated algebraic framework which allows many relevant
aspects of similarity query processing to be dealt with. As a starting
point, we assume the more general case where “imprecision” is already
present at the data level, typically because of the ambiguous nature of
multimedia objects’ content. We then define a generic similarity algebra,
SAMEY, where semantics of operators is deliberately left unspecified in
order to better adapt to specific scenarios. A basic feature of SAMEWis
that it allows user preferences, expressed in the form of weights, to be
specified so as to alter the default behavior of most operators. Finally, we
discuss some issues related to “approximation” and to “user evaluation”
of query results.

1 Introduction

The fact that “traditional” (Boolean) queries are not really appropriate for deal-
ing with multimedia (MM) data has been early recognized, and many systems
now exist that allow users to issue queries where some form of “imprecision” is
allowed. For instance, in the QBIC system [10] one can look for images which
are “similar” to a target one, according to color, texture, and shape of embedded
objects. Since MM queries can lead to (very) high response times, many efforts
have been spent in order to devise access methods able to efficiently deal with
complex features [6]. This line of research has been somewhat complemented by
activity aiming to provide users with a full-fledged query language able to express
complex similarity queries [17]. Although the processing of such complex queries
has been the subject of some recent works [1,7,8,15], a full understanding of
the implications (both at a formal and at a system level) of similarity query
processing is still lacking. In particular, several important issues have only par-
tially been addressed, such as models able to capture the “essential” aspects of

* This work has been partially supported by the InterData MURST Italian project.

2 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

MM objects needed by similarity queries, the impact of “user preferences” on
query processing, the management of “approximate” queries (and the relation-
ship of this concept to those of query equivalence and query containment), the
complexity and expressiveness of similarity-based query languages, and so on.
Furthermore, contributions to above issues typically consider ad-hoc scenarios
and/or completely ignore the other coordinates of the problem, thus resulting in
a set of difficult-to-integrate recipes.

In this work we address several of the above points in a unified algebraic
framework. We have deliberately chosen to “start simple” from the modeling
point of view, in order to better focus on those aspects which are peculiar to
similarity query processing. Thus, we consider a (extended) relational framework
which takes into account the two major sources of “imprecision” arising when
querying MM databases [21]: 1) imprecision of classification of MM data, and
2) imprecision in the matching of features that characterize the content of MM
objects. As to the first point we rely on basic concepts from fuzzy set theory,
and allow representation of “vague classification” both at tuple and at attribute
level (Sect. 2). This reflects the fact that in some cases imprecision characterizes
an object as a whole, whereas in others it only affects some of its attributes. We
then introduce a “similarity algebra”, called SAMEY ! which extends relational
algebra in a conservative way and incorporates the use of “weights” in most of its
operators, in order to adapt to user preferences (Sect. 4). We show how complex
similarity queries can be easily expressed in SAMEW (Sect. 5) and how equiva-
lence rules can be exploited for the purpose of query rewriting and optimization
(Sect. 6). In Sect. 7 we present some extensions to our framework that consider
such relevant issues as “approximation of results” and user feedback. Finally, we
briefly discuss related work and conclude.

2 The Data Model

For the sake of clarity, we first remind some standard notation and definitions.
Given a set of attribute names, A, and a function dom() which associates to
each A € A a value domain, dom(A), a (named) relation schema is formed by
a relation name, R, and a subset of attributes X = {A;,...,A,} C A2 A
tuple t over R(X) is any element of dom(X) = dom(A1) x ... x dom(A,), and
t.A; = t[A;] denotes the value of A; in . For any Y C X, #[Y] denotes the
restriction of ¢ on Y| that is, the (sub-)tuple obtained from ¢ by considering only
the values of the attributes in Y.

Our data model extends the relational one by allowing both fuzzy attributes
and fuzzy relations. Remind that a fuzzy set F' over a “universe” U is a set
characterized by a membership function pp : U — S, where pp(2) is the degree
of membership of z in F, also called “score” or “grade”. In the following we will
always consider a normalized score domain S = [0, 1].

' SAMEY stands for “Similarity Algebra for Multimedia Extended with Weights”.
2 We will adopt the conventional list notation for sets, thus writing A for {A} and

XY for X UY.

Imprecision and User Preferences in Multimedia Queries 3

Imprecision at the attribute level is captured by the notion of “fuzzy domain”.
We say that A; is a fuzzy attribute if its values are pairs of the form Fj : s;, where
F; is a fuzzy set and s; € S. The two components of A; can be referred to as
AY (the “value”) and A} (the “score”), respectively. Intuitively, given a tuple ¢,
t.A; is interpreted as “¢.A? is an appropriate value, with score t. A, of attribute
A; for t 7| or, equivalently, that “t fits AY with score A!'”. In practice, ¢.A? will
be a real-world, application-specific concept, used to classify ¢ according to A;.
For instance, an image can be classified, considering its Brightness, as dark
with score 0.8.3 For lack of space, in this paper we do not explicitly consider the
case where t.A; 1s set-valued, which is appropriate when multiple non-exclusive
classifications are possible (for instance, an image could be classified, according
to its Color, as red with score 0.8 and as orange with score 0.7). However,
as shown in [4], this is not restrictive, since set-valued attributes can be easily
“normalized” into single-valued attributes.

Non-fuzzy (crisp) domainsinclude “ordinary” sets of values, like integer and
string, as well as more complex domains, like, say, color histogram, which are
required to represent feature values extracted from MM objects. We conveniently
call feature attribute an attribute defined over such domains, in order to empha-
size that for such attributes similarity predicates (rather than exact-matching)
are the usual way to compare feature values (see Sect. 3.1).

Imprecision can also occur at the whole tuple level, and motivates the in-
troduction of fuzzy relations. A fuzzy relation r over R(X) is a fuzzy subset of
dom(X), r C dom(X), characterized by a membership function pg (or simply p
if R is clear from the context)* which assigns to each tuple t a grade ug(t) € S.
The notation t.ugr will be used with the same meaning of pg(t). We say that ¢
belongs to r (t € r) iff t.ug > 0, and r is called a crisp instance iff t.up = 1 for
each ¢ € r. The intuition about fuzzy relations is that, if a schema R(X) rep-
resents some real-world “fuzzy” concept, the introduction of tuple imprecision
permits to model how much a given object (tuple) “fits” the concept expressed

by R(X).

3 The SAMEWY Algebra: Preliminaries

SAMEW extends relational algebra (RA) with a set of peculiarities that make
it amenable to easily formulate complex similarity queries. SAME"Y expressions
operate on fuzzy relations and always return a fuzzy relation, and can use or-
dinary (Boolean), similarity, and fuzzy predicates. Semantics of expressions is
parametric in the semantics of logical operators, which can therefore be varied
in order to better adapt to user and application requirements. “Weights” can
also be used to bias the behavior of most operators.

% Clearly, the fuzzy sets which can occur as values of A? must be defined over the
same universe.

* There is a slight notational inconsistency here, since the membership function should
be denoted by pr. In practice, however, the best thing is to use, when needed, the
relation name, since instances are usually unnamed.

4 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

3.1 Predicates and Formulas

A logical formula f is obtained by combining predicates with logical connectives,
respecting the syntax f ::= p|f A f|f V fI=f|(f), where p is a predicate. The
evaluation of f on a tuple t is a score s(f,t) € S which says how much ¢ satisfies
f. We simply say that ¢ satisfies f iff s(f,t) > 0. How s(f,¢) depends on (the
evaluation on ¢ of) the predicates in f is intentionally left unspecified, in order
to achieve parametricity with respect to the semantics of logical operators. The
basic constraint we impose is that s(f,t) has to be computed by means of a
so-called “scoring function” [8], s¢, whose arguments are the scores, s(p;,t), of ¢
with respect to the predicates in f, that is:

s(f(p1,.--,pn)st) = sp(s(p1,t), ..., s(pn,t)) . (1)

Besides Boolean predicates, which evaluate to either 1 (true) or 0 (false), we
also consider similarity and fuzzy predicates. A similarity predicate has either
the form A ~ v, where A is a feature attribute, v € dom(A) is a constant (query
value), and ~ is a similarity operator, or Ay ~ As, where both A; and A, are
over the same domain.? Then, the evaluation of p : A ~ v on ¢ returns a score,
s(p,t) € S, which says how much ¢.A is similar to the query value v. For instance,
evaluating the predicate Color ~ red over an image ¢ returns a score assessing
the “redness” of ¢.°

Fuzzy predicates, on the other hand, operate on fuzzy attributes. Remind
that if A is a fuzzy attribute, then #.A is a pair t.A” : t.A* where t.AV is
(the name of) a fuzzy set and t.A* is the membership degree of ¢ in ¢t.AY. The
evaluation on ¢ of a fuzzy predicate ¢ : A = w, where w is a fuzzy set, is the score
s(q,t) = t. A, if t.AY = w, otherwise s(¢q,?) = 0. This is to say that we assume
that different fuzzy sets are incomparable. The same applies to the predicate
q : A1 = As. In this case s(¢q,t) = 0 if t.A7 # t.AY, otherwise the score is
computed as a “parametric conjunction” of the two membership degrees, that
is, s(q,t) = sa(t. A}, t.A%), where sp denotes the AND scoring function.

For the sake of definiteness, in the following we restrict our focus on the class
F of scoring functions corresponding to fuzzy t-norms and ¢-conorms [13,8], for
which the AND (A) and OR (V) operators satisfy the following properties:

1. They are both associative and commutative;
2. sa(z,1) = z and sy (z,0) = 2 (boundary condition);
3. w1 < @y = sa(x,21) < sa(x,x9) and sy (2, 21) < sv(x, x2) (monotonicity).

As to the NoT (—) operator, it is assumed to satisfy the two properties:

1. s5(1) =0 and s4(0) = 1 (boundary condition);
2. 21 < ®y = s4(x1) > s.(x2) (monotonicity).
5 This is a simplification. It suffices that the domains are compatible for ‘~’ to be

well-defined.

 Note that red is just a name for a value of dom(Color), and not a string constant.

Imprecision and User Preferences in Multimedia Queries 5

For instance, FS (fuzzy standard) and F.A (fuzzy algebraic) [13] semantics are
given by the following set of rules:

FS FA
s(fi A fo,t)|min(s(f1,t), s(f2, 1)) s(f1,t) - s(fo,1)
s(fiV fo,t)max(s(f1,t), s(f2,0))|s(f1,t) + s(f2,t) — s(f1,t) - s(f2,1)
s(=f,t) 1—s(f,?) 1—s(f,t)

Considering the general case of n-ary t-norms and t-conorms, the following in-
equalities hold Vaq,..., 2, € S [13]:

sa(®1,.. ., on) <min(z, ..., 2,) < Vie[l..n] (2)

sv(@1,...,&n) > max(1,...,&n) > & Vie[l.n] . (3)

3.2 Dealing with User Preferences: Weights

With a non-Boolean semantics, it is quite natural and useful to give the user the
possibility to assign a different relevance to the conditions he states to retrieve
tuples. Such “user preferences” can be expressed by means of weights, thus say-
ing, for instance, that the score of a predicate on Color is twice as important as
the score of a predicate on the Texture of an image. The seminal work by Fagin
and Wimmers [9] shows how any scoring function sy for a formula f(p1,...,pn)
can be properly extended into a weighted version, s¢,, where © = [0;,...,0,] is
a vector of weights (also called a “weighting”), in such a way that:

1. sfo reduces to sy when all the weights are equal;

2. sy, does not depend on s(p;,t) when 6; = 0;

3. 57, is a continuous function of the weights, for each fixed set of argument
scores.

Let ; = s(p;,t) denote the score of ¢ with respect to p;, and assume without
loss of generality 6y > 62 > ... > 6,, with §; € [0,1] and >, §; = 1. Then, Fagin
and Wimmers’ formula is:

Ste (X1, ... 2n) = (1—02)-2142-(02—03) -sp(21, 22)+- - 4+n-Op-5¢(x1,...,25) .

(4)
Although above formula is usually used to weigh the predicates appearing in a
(selection) formula, our position is that whenever scores have to be “combined”,
then a weighting should be allowed. For instance, if we take the union of two
relations, it might be reasonable to require that tuples in the first relation are
“more important” than tuples in the second one. A meaningful example is when
we want to integrate results from different search engines, but we trust more one
than the other. Accordingly, most of the SAME"Y operators” that compute new
tuples’ scores can use weights.

" We only leave out Difference, because we were not able to conceive any meaning-
ful “weighted Difference” query. As to Projection, since the duplicate tuples to be
combined together are not a priori known, it is not possible to assign weights to
them.

6 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

4 The SAMEWY Algebra

Basic operators of SAMEY conservatively extend those of RA in such a way that,
if no “imprecision” is involved in the evaluation of an expression, the semantics
of RA applies (see Theorem 4.1). Genericity with respect to different semantics is
achieved by defining SAMEW operators in terms of the (generic) scoring functions
of the logical operators. Thus, if a given semantics is adopted for formulas, the
same is used by SAMEW operators, which avoids counter-intuitive phenomena
and preserves many RA equivalence rules. As an example, the semantics of Union
(U) is based on that of the ORr (V) operator.

In the following, Z(X) denotes an expression with schema X, and e = E[db]
is the fuzzy set of tuples with schema X obtained by evaluating F(X) over the
current database db. We say that a tuple ¢ belongs to e (¢ € €) iff t.ug > 0 holds.
Two tuples #1 and 5 with attributes X are equal iff t1[A;] = t2[A;] holds for
each A; € X. In case of fuzzy attributes, tuple equality thus requires that also
the attributes’ grades are the same. Two relations e and ey are equal iff: 1) they
consist of the same set of tuples, and 2) Vt1 € e1,Vig € eg 11 =ty = 1.0 = to.pu.

We start by extending “traditional” operators of RA, and then introduce
new operators which have no direct counterpart in RA.

Selection (o) The Selection operator applies a formula f to the tuples in e
and filters out those which do not satisfy f. The novel point here is that, as an
effect of f and of weights, the grade of a tuple t can change. Weights can be
used for two complementary needs: In the first case, they weigh the importance
of predicates in f, as in [9], thus leading to use the scoring function Ste, in

place of s¢.% In the second case they are used to perform a weighted conjunction,
52, between the score computed by f and the “input” tuple score, t.ug. This
determines the new tuple score, t.u:

a?@f (e)={t|tcentu=s%(s(fo, t),t.pup) >0} . (5)

Projection (w) As in RA, the Projection operator removes a set of attributes
and then eliminates duplicate tuples. Projection can also be used to discard
scores, both of fuzzy attributes and of the whole tuple. In this case, however, in
order to guarantee consistency of subsequent operations, such scores are simply
set to 1, so that they can still be referenced in the resulting schema. This captures
the intuition that if we discard, say, the tuples’ scores, then the result is a crisp
relation, that is, a fuzzy relation whose tuples all have score 1.

Formally, let e be a relation with schema F(X), Y C X, and V a set of
v-annotated fuzzy attributes, V = {A}Y}, where V contains exactly those fuzzy
attributes for which scores are to be discarded. Note that V' can include A} only
if A; € X — Y. Finally, let F' stand for either y or the empty set. Then, the
projection of e over YV F' is a relation with schema YW, where if A} € V' then

& When using weights, f is restricted to be either a conjunction or a disjunction of
predicates.

Imprecision and User Preferences in Multimedia Queries 7

A; € W, defined as follows:

71'YVF(€) = {t[YW]|EIt’ ce:t[YV]= tl[YV] AVA] e V. fAf =1 (6)
Atp=sy{t" uglt"[YV] =t[YV]}if F = pu, otherwise t.u =1} .

Thus, tuples’ scores are discarded (i.e. set to 1) when F' = {, whereas they are
preserved when F' = y. In the latter case, new scores are computed by considering
the “parametric disjunction”, sy, of the scores of all duplicate tuples with the
same values for YV.

Union (U) In SAMEY the Union is an n-ary operator,® which, given n relations
e; with schemas F;(X), computes the score of a tuple ¢ as a weighted disjunction,
sO(t.up,, ..., t.ug,), with @ = [f1,...,0,], of the input tuples’ scores, that is:

Uer,....en)={t|(t€er V...Vt Eey) ANtu=5sS(tum,,...,t.ur,) > 0} .

(7)
Note that, because of the presence of weights, Union is not associative anymore.
This implies that the n-ary Union cannot be defined in terms of n — 1 binary
unions, as it happens in RA.

Join (pa) Also the weighted (natural) Join is an n-ary operator, where the score
of a result tuple ¢ is a weighted conjunction, s% (t1.up,, ..., tn-pE,), of the scores
of matching tuples:

<@ (e1,. .., en) = {H[X1... X,] |31 €e1,..., Iy Een (8)
X =t1[X1] A A X =ta[Xn] At =@ (tipm,, - tapm,) > 0} .

Difference (—) Given relations e; and ey with schemas Fq(X) and E(X),
respectively, their Difference is defined as:
epr—ea={t|t€ey ANt.pu=spa(t.pp,,s-(t.pe,)) >0} . 9)
Renaming (p) The Renaming operator is as in RA, thus we do not repeat its
definition here.
The following result proves that the “RA-fragment” of SAMEY | that is,

SAMEW restricted to the above operators, is indeed a conservative extension of
relational algebra.

Theorem 4.1. Let E be a SAMEY expression that does not use weights and
that includes only operators in {o,m,U,x,—, p}. If E does not use similarity
operators, the database instance db 1s crisp and the semantics of the scoring
functions is in F, then E[db] = Ega[db], the latter being evaluated with the
Boolean semantics of RA.

Proof. (sketch) Tt is sufficient to show that every operator in {o, m,U, 1, —, p},
when applied to crisp relations, yields a crisp relation. Here we only consider

® We also use the infix notation, Fj ylter.02] F>, when only two operands are present.

8 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

the case of Selection, arguments for the other operators being similar. A Selec-
tion o¢(E), where f does not contain similarity predicates and E[db] is a crisp
relation, computes the score of a tuple t € E[db] as sa(s(f,t),t.ur). Since sa is
a t-norm, t.ug is equal to 1, and s(f,t) is either 0 or 1, the Selection outputs a
tuple score that equals either 0 or 1, thus yielding a crisp relation. O

Two other operators of SAMEY | that can be derived from those already
introduced, are:

Boolean difference (i) The Boolean difference behaves “as expected”, in
that if a tuple ¢ belongs to both e; and es, with schemas F1(X) and FE3(X),
respectively, then it is not part of the result, regardless of its scores (in general,
this is not the case for the Difference), that is:

e Zen={t|tCei Atdes Ap=tpp >0} . (10)

B
Boolean difference can be defined in terms of other operators as e; — ey =

e1 — mx(ea), where mx(ez), according to the semantics of Projection, simply
discards the scores of the tuples in es.

Intersection (N) Asin RA| the Intersection can be defined as a particular case
of Join, where all the n operands have the same schema X:

N®er, .. en) ={t|tE€er A At Eey) Atu=s(tup,,... t.ug,) >0}
@(61,...,en) . (11)

The two new operators introduced in SAMEY are the Top and the Cut.

=X

Top (7) The Top operator retrieves the first & (k is an input parameter) tu-
ples of a relation e, according to a ranking criterion, as expressed by a ranking
function g. If weights are used to rank tuples according to ge,, then g has to be
a formula of predicates over the schema of €.'% If ¢ has no more than k tuples,
then 7'5@9 (e) = e, otherwise:
ho(e)={t|tcen|tE (e)|=k AVtETE (e):
ge, gog goy ’
AtV eent' ¢ T§@g(e) A go, ') > ge,(t)} (12)

with ties arbitrarily broken. When g is omitted, the default ranking criterion,
based on the score of tuples, applies, thus the k tuples with the highest scores
are returned.

Cut () The Cut operator “cuts off” those tuples which do not satisfy a formula
g, that is:
vele) ={t|t€ee A s(g,t)>0Atu=tug >0} . (13)

Unlike Selection, Cut does not change tuples’ scores. Thus, if g includes non-
Boolean predicates, the two operators would behave differently. However, the

0 If “bottom” tuples are needed, the ranking directive < can be used, written gog,<-

Imprecision and User Preferences in Multimedia Queries 9

major reason to introduce Cut is the need of expressing (threshold) conditions
on tuples’ scores, e.g. p > 0.6. Such a predicate cannot be part of a Selection,
since it does not commute with others. This is also to say that the expressions
Yus0.6(0f(E)) and ¢ (vu>0.6(E)) are not equivalent. Indeed, the first expression
is contained in the second one, that is:

Yu>a(r (B)) E 05 (Yu>alE)) - (14)

Proof. () Let Er, and Eg stand for the left and right hand side expression,
respectively. Since the Cut does not modify tuples’ scores, if a tuple ¢ satisfies
both Ey, and Eg, then its score will be the same, i.e. t.ug, = t.ur,. Ilft € Er[db],
then t.up, = sa(s(f,t),t.ur) > a holds. From the monotonicity and boundary
condition of t-norms it follows that t.ur > o holds too, thus ¢t € v,5q(E)[db].
This is enough to prove that ¢t € Er[db].

(2) Consider a tuple ¢ for which both t.upg > o and 0 < sp(s(f, 1), t.ug) <
hold. This implies that ¢ € Fr[db] but ¢ ¢ E[db]. O

5 Examples

Examples in this section, aiming to show the potentialities and flexibility of
SAMEY | refer to a biometric DB using faces and fingerprints to recognize the
identity of a person. Stored data include extracted features relevant for identifi-
cation,!! and modeled by the FaceFV and FP_FV attributes, respectively. Because
of the huge size of biometric databases, a viable way to improve performance
is, at face and fingerprint acquisition time, to classify them with respect to
some predefined classes. As to fingerprints, as demonstrated in [14], a “contin-
uous” classification approach, where a fingerprint is assigned with some degree
to many (even all) classes, can perform better than an approach based on “ex-
clusive” classification. As to faces, we consider that the Chin and the Hair are
also preventively classified.

Our simplified biometric DB consists of the following relations, where the ‘*’
denotes fuzzy attributes and relations that can have fuzzy instances, and primary
keys are underlined. The Freq attribute is the relative frequency of a fingerprint
class.'? This can be computed by considering the scalar cardinality (also called
the sigma count [13]) of the fuzzy set corresponding to the fingerprint class. A
partial instance is shown in Fig. 1.

Persons(PId,Name)
Faces(PId,FaceFV,Chin*,Hair™)
FingerPrints(FPId,PId,FingerNo,FP FV)
FPClasses(Class,Freq)

FPType* (FPId,Class)

" For fingerprints these can be “directional vectors”, positions of “minutiae”, etc. For
faces, position of eyes, nose, etc., can be considered.

12 Class names are among those adopted by NIST (U.S. National Institute of Standards
and Technology).

10 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

Persons FPClasses Faces

|PId |Name | |Class | Freq| |PId |FaceFV |Chin |Hair
P00001|John Arch 3.7% P00001|FFV0001 [pointed:0.74 |black:0.87
P00002|Mary LeftLoop |33.8% P00002|FFV0002|rounded:0.65|brown:0.75
P00003|Bill RightLoop|31.7% P00003|FFV0003|pointed:0.93 |brown:0.84
FingerPrints FPType

[FPId [PTd [FingerNo|FP_FV | [FPId [Class o]
FP0001|P00001 |1 FPFV0001 FP0O001|Arch |0.65
FP0002|P00001 |2 FPEFV0002 FP0001 Right,Loop| 0.25
FP0011|{P00002|1 FPEFV0011 FP0003|LeftLoop |0.95
FP0O015|P00002 |5 FPFV0015 FP0O005|Arch 0.60
FP0017|P00002|7 FPFV0017 FP0005|Left Loop {|0.20

Fig. 1. An instance of the biometric database

The first query aims to retrieve those persons who have black hair, and whose
facial features match the ones (inFace) given in input:

O(Hair=‘black')A(FaceFV ~inFace) (Faces) .

The final score of a tuple ¢ is obtained by combining the scores of both Selection
predicates and the initial score of the tuple (this is 1, since Faces is a crisp

relation). For instance, if the F A semantics is used, it ist.pu = (s(p1,1)-s(p2,1))-1.
Assuming the following similarity table:

~ inFace

FFV0001|0.60
FFV0002|0.84
FFV0003|0.33

the result of the query is therefore (0.87-0.60 = 0.522):

[PId [FaceFV [Chin [Hair | v]
[P00001[FFV0001|pointed:0.74]black:0.87][0.522]

Trusting more hair classification than feature matching is achieved by giving
the first predicate a weight > 0.5, say 0.7:

O(Hair=‘black’)°-"A(FaceFV ~inFace)o-s (Faces) .

The score of the resulting tuple is now computed as (the score of the crisp relation
is omitted since it equals 1 and does not influence the computation):

(0.7—0.3)-s(p1,t)+2-0.3-sA(s(p1,), s(p2,t)) = 0.4:0.87+0.6-(0.87-0.60) = 0.6612 .

On the other hand, if the FS§ semantics is used, the final score would be:

0.4-0.87 4 0.6 - min(0.87,0.60) = 0.708 .

Imprecision and User Preferences in Multimedia Queries 11

If we want only the persons’ id’s and the scores of the 10 best matching
tuples, we can use the Top and Projection operators:

10
TPIdu(T (O-(Hair:‘black’)°~7A(FaceFV~inFace)°~3(Faces))) :

In order to see, for the only persons returned by above expression, call it
E, how well the fingerprint of the left thumb (FingerNo = 1) matches a given
fingerprint (inFP), we can write:

O'(FmgerNo=1)A(FP_FV~inFP)(Fing@rpri”ts) b mpra(F)

or, equivalently:

J(FingeTNozl)A(FP_FVNinFP)(Fingerprints) N[LO] E

since both expressions discard the scores computed by E. Indeed, the Projection
of £ on PId returns a crisp relation, thus the final scores of the resulting tuples
are, because of the boundary condition of t-norms, those of the component tuples
returned by the Selection expression, call it /. On the other hand, the weighted
Join in the second expression returns a set of tuples whose scores are given by
the following rule, where E’ still denotes the left operand of the Join:

(91—92)~t.uEl+2~62-8/\(t.uEl,t.uE) = (1—0)~t.uEl+2-0-8A(t.uEl,t.uE) =t.up .

For a more complex query, assume we want to perform a combined match on
fingerprints and faces, giving as input an inFP and an inFace. We then join the
result, weighting more (0.6) the match on faces, combine the tuples of a same
person (since each person has more than one fingerprint in the DB), and discard
all the tuples whose overall score is less than 0.5:

0.6,0.4 . .
Vu>0.5(TPId,u(Cpacerv ~inFace (£ aces) pal?6,0:4] Trp_pv~inFp(Finger Prints))) .
Given the following similarity table:

~ inFP
FPFV0001{0.72
FPFV0002|0.48
FPFV0011|0.84
FPFV0015|0.38
FPFV0017|0.55

consider the case of person P00001 (‘John’), thus the join of the first tuple of
Faces with the first two tuples of FingerPrints. The scores computed by the
weighted Join (when the FS semantics is used) are, respectively:

(0.6 —0.4)-0.604 2 - 0.4 - min(0.60,0.72) = 0.2 - 0.60 + 0.8 - 0.60 = 0.60
(0.6—0.4) - 0.6042 0.4 - min(0.60,0.48) = 0.2 0.60 + 0.8 - 0.48 = 0.504 .

12 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

Then, the Projection combines the two tuples and returns (P00001,0.60), since
max(0.60,0.504) = 0.60. Since 0.60 > 0.5, the tuple is preserved by the Cut
operator.

As a final example query, we want to know who are those persons with an
‘Arch’ fingerprint and with a pointed chin, giving these conditions weights 0.6
and 0.4, respectively. This can be expressed by means of a weighted Join, where
a 0 weight is used for the Fingerprints relation on which no predicates are
specified:

ql0-6,0-4,0] (0ctass=arch (F PTYype), 0chin="pointed (Faces), Finger Prints) .

6 Reasoning in SAMEY

Equivalence and containment rules in SAMEW can only partially rely on results
from RA since, unless we consider the F§ semantics, rules based on idempotence
and/or distributivity of logical operators are no longer valid (e.g., FUE # F
in FA). Nonetheless, many opportunities for query rewriting are still left. For
lack of space, here we present only a selected sample of such rules, focusing on
Cut and Top operators and on the effect of weights. Complete proofs are given
only for some of the results. In order to simplify the notation, when no direct
manipulation of weights is involved, we understand the presence of weights, thus
writing, say, f in place of fe,. In general, £, and Er will be used to denote
the left hand side and the right hand side expression, respectively. As to proofs’
style, in order to demonstrate that Er, = Er (Er C ER) holds, we usually split
the proof in two parts:

1. We first show that, if t € Er[db] and t € Er[db] both hold for a generic tuple
t, then t.up, = t.upg.

2. Then we prove that Ey, is “Boolean equivalent” to (“Boolean contained” in,
respectively) Eg, written E, =, Er (EL Cp Eg, resp.), that is that the sets
of tuples computed by the two expressions are the same (the first is a subset
of the second, resp.), regardless of tuples’ scores.

We start with some basic rules that are also useful for proving more complex
results. The following containment relationships hold for any expression F:

(E)CE (15)
T (E)EE (16)

whereas o (F) [Z E, since ¢ modifies the tuples’ grades.
As to monotonicity of unary operators, assume that E' C F holds. Then:

Y1 (E') E v (E) (17)
or(E')Eof(E) . (18)

On the other hand, the Top operator is not monotone, that is, £/ C E does not
imply T;(El) C T;(E), as it can be easily proved.

Imprecision and User Preferences in Multimedia Queries 13

The weighted Join is monotone. For this, assume that E; C E; holds Vi €
[1..n]. Then:

® (Ef, ..., EL) Evd® (E1,..., Ey,) . (19)

Indeed, if a tuple ¢ belongs to Er[db], then it also belongs to Er[db]. Since the
joining sub-tuples leading to ¢ are necessarily the same in both cases, then also
the score of ¢t will be the same.

Moving Cut’s Around. Consider the “canonical” Cut condition, y,>«, ab-
breviated 7., applied to a weighted Join. Our first equivalence rule shows that a
Cut 74, can be applied to the i-th Join operand, where «; depends on the values
of weights. Assuming 61 > 03 > ... > 0,, we have:

Yool Pl (B E)) = e (6P (0 (B, e () (20)

where:

i—1
a-— Zj (0 = 0j41)
j=1

; =
t i—1

1= "7 (05— 041)
Jj=1

For instance, when n = 3, [f1, 02, 03] = [0.5,0.3,0.2], and a = 0.6, it is a3 = 0.6,
as = 0.5, and az = 1/3. Note that @y = o and that a; = @ when all the weights
are equal, i.e. Yo (< (F1, Fa, ..., En)) = Yo (04 (Ya(E1),Ya(E2), .. ., va(Fr))).
Proof. First observe that, since v does not change the tuples’ grades, t.up, =
t.ugy holds for all tuples ¢t which belong to both Fp[db] and Eg[db].

(C) Let t; € E;[db],and let #; = t;.up;. A tuplet =palf1,f2,-0n] (t1,ta, ... 1)
belongs to Fp[db] iff t.up, > «, where t.up, is computed according to (4),

ie[l.n] . (21)

with the t-norm s, which takes the place of s¢. In order to show that the
a; cut-off value computed by (21) is safe, first observe that, due to (2), z; >
sa(zq,...,x;) holds Vj € [i..n], whereas, when j < i, we can exploit the inequal-
ity 1 > sa(z1,...,2;). Then, we can majorize t.up, as follows:

(6] —62)-1+~ . +(Z—1)(61_1 —61)1+Z(6’Z _6i+])'$i+' tneb, o > tug, >a .

Considering that S";_, 6; = 1, above inequality can be rewritten as:

def

i—1 i—1
=5 (0= 041) o= G- (0 —041)
7j=1 _ 7j=1

x; > — e i1 = «; .
D05 =0i41)+n-00 1= (0, —0;41)
j=i j=1

It follows that if ¢ € Er[db], then the corresponding ¢; has a score t;.ug, > a;,
thus passing the ~,, filter.
(3) Trivial, since va, (E;) E Ej, Vi € [L..n]. O

14 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

A similar rule applies when the Cut has the form v,< and follows a weigthed
Union:

Yuca(UE I (B ER)) = uca (U P (o, (1), - Yucan (Fn)))

, (22)
where a; = a/(1 — 23;11] - (0; —6;41)), and a; = « if weights are not used.

Proof. (sketch) The proof almost follows the same steps used to demonstrate
(20). The only difference is that, if a tuple ¢ belongs to both Ep[db] and Er[db],
then, in order to have that ¢t.ur, = t.ur,, we have to prove that no occurrence
of t in the E;[db]’s is filtered out by the inner Cut’s appering in Eg. O

A simple yet useful rule to manipulate Cut expressions is:

Yau (7 (Yaz (79 (E)))) E Yau (019 (E)) (23)
Yo (7 (Yaa (79 (E)))) = 7o (079 (E)) ifar > as . (24)

Proof. (sketch) The validity of (23) directly follows from monotonicity of Cut and
Selection ((17) and (18), respectively), after observing that E can be rewritten
as Yo, (0f (04(F))) and that v,,(04(F)) C 04(F) holds due to (15). To prove (24)
we exploit the associativity of s4 and Cut’s definition to show that if ¢ € EFr[db]
then ¢ also necessarily belongs to v,,(04(F))[db], from which the result easily

follows. O

Let us now consider the case where we apply to a crisp relation FE[db] a
“cheap” predicate, p1, and a “costly” one, ps, after which we Cut the result. If
predicates are weighted, and 61 > 62, we can apply a Cut just after evaluating
p1, which can lead to considerable cost saving. This also shows how weights on
predicates can be transformed into weights on tuples’ scores:

Yo (000 5,02 (B)) = Ya(op 1 (val0p, (E)))) - (25)

P1

Proof. (sketch) Since the Cut does not modify tuples’ scores, if ¢ is in the result
of both expressions then t.up, = t.up, = 55?"92](5(p1,t), s(pa2, 1)) > a.

(E) It is sufficient to show that if ¢ € Er[db], then its score is high enough
to pass the inner Cut in Fgr. This is proved by showing that above inequality
implies s(p1,t) > a.

(3) Tt can be shown that Ej, can be rewritten as 7(1(0}[,922’91](0‘01(E))), after

which containment follows from (17), (18), and (15). O

Note that above equivalence does not hold if py is commuted with ps, when
61 > 65 holds. In this case, indeed, a tuple ¢ can satisfy T 01 ppa (E) but not
1 2

0'1[,611’02](0'1,2(1‘?)). In particular, this is the case when s(p2,t) = 0. The reason of

this asymmetry directly stems from the asymmetry of Expression (4).

Imprecision and User Preferences in Multimedia Queries 15

Moving Top’s around. Turning to the Top operator, consider the case where
the ranking criterion, ge, (or simply g) does not refer to tuples’ scores. If no
ties, according to g, occur in E;[db] (i € [1..n]), then it is safe to apply a Top to
each operand of a weighted Union, that is:

U (B B)) = R (R (), R () (26)
Proof. First observe that if £/ and E are two expressions such that £/ C, F
(note that we do not require equality of scores), and ¢ belongs to E’[db] (thus to
E[db]) and to T;(E)[db], where g¢ is a ranking criterion which does not consider
tuples’ scores, then ¢ also belongs to T;(El)[db]. Since Top does not change
tuples’ scores, the score of ¢ will be the same in the two top-relations iff so
it is in E’[db] and E[db]. Now, let E = Ulv-fl(E .. E,) and let E' =
Ul fal (78 (), L TR (E)).

(C) Consider a tuple t € Ep[db] = TZ;(E_)[db]. Thus, t is among the k best
tuples in E[db] according to the ranking established by g. We have to prove that if
t € E;[db] then ¢ also belongs to 7'; (E;)[db]. Furthermore, we can limit to consider
those sub-expressions for which #; > 0 holds, the others being uninfluential at
all. Since E; Cp E (provided 6; > 0, as we are considering), from the above
observation we have that ¢ € T:(Ei)[db]. Therefore, whenever ¢ € F;[db] holds,
then t € T;“(E,-)[db] holds too. This proves that t.ug = t.ug. Since Top does
not change grades, and E’ T, E, we have that ¢t € Fr[db] = T;(EI)[db] and that
tpup, =t pipy.

(3) Straightforward. O

On the other hand, if the ranking criterion is based on tuples’ scores, the
above rule can be applied only if Union is unweighted and the FS (max) seman-
tics is used:

™ (U(EL, ..., En)) = 5 (U(TH(FY), ..., T8 (En))) - (27)

Proof. (C) Assume that t € 78(U(FE1, ..., E,))[db]. Since FS semantics applies,
this means that t.ug, = max(t.ug,,...,t.4g,) is among the k& highest scores
considering all the tuples in U(F1, . .., Fy,)[db]. Without loss of generality, assume
that t.ug, = t.ug,,i.e. tuplet achieves its best score in E1[db]. We can prove that
t € T8 (F4)[db] as follows. Reasoning by absurd, assume that ¢ ¢ 7% (E)[db], thus
in E1[db] there are at least other k tuples t* (h € [1..k]) such that t".up, > t.up,
holds. From this we can conclude that th.pEL > th.uE1 >t.pup, =t.up,, thust
would not belong to Er,[db], which is a contradiction.

(3) Straightforward. O

As a negative result, we state that in no case operands of a (weighted) Join
followed by a Top can be reduced by pushing down the Top (as done for Union).
Let g = p1 Apa A ... Apn, with p; over the schema of F;. If the FS semantics is
used and no score ties occur with respect to the p;’s and to g, it is:

ry (<t (2 (Bn), 1 (B))) Corg (ool (B) L (28)

16 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

Proof. Omitted. O

Considering the relationship between Top and Cut operators, in general we
have the following containment result:

71 (g (E)) E 74 (4 (E)) - (29)

Proof. Assume that ¢ € Er[db]. Then ¢ also belongs to 75 (E) (due to (15)) and
to y¢(F) (due to (16) and (17)). Since v¢(F) C E also holds due to (15), we can
conclude that ¢ € T;(“U(E))[db]. O

On the other hand, equivalence is obtained when f = g or when both oper-
ators have their “canonical” form, that is Tk(’)/a(E)) = 7Q(Tk(E)).

Moving Selection. Since the Selection operator changes tuples’ scores, par-
ticular care has to be paid when reasoning about it. For instance, the following
equivalence holds only for the F§ semantics (and unweighted Union):

o1 (U(Fr, .o, Bn)) = U(op(BL), ..., o0 (En)) - (30)

Proof. We first show that if ¢ satisfies both 'y and Fg, then t.ug, = t.ug,. As
to Fp, it is:
t',UEL = SA(S(f)t))SV(tJ‘LEU"'Jt',uEn)) (31)

whereas
tpue, = sv(sa(s(ft), tur), ..., sa(s(f 1), t.ng,)) - (32)
Equality of scores then follows from the distributivity of sp over sy, which indeed

holds only under FS semantics. It remains to show that F; =, Egr. This part
is straightforward and we omit the detailed steps here. O

Consider the case where f = p1 Apa A...Ap,, with p; over the schema of Fj,
and O = [61,0s,...,0,]. The following rule shows what happens if predicates
are pushed down a Join, provided Join operands are crisp relations:

><i%1 (0p, (E1), -, 0p, (En)) C 0ge, (04 (En, ..oy Bn)) (33)

Proof. Lett =p< (t1,...,1,) be a tuple which belongs to both Er,[db] and Egr[db],
with ¢; € F;[db]. Since all the E;’s are crisp, it is

®@
t'MEL = SAf (5(p1)t1); .. .,S(pn,tn))

and

L = 5(fo, 1) = 537 (s(p1,1), - 5(pas1)) -
Since s(p;,t) = s(pi,t;) holds Vi € [1..n], equality of scores is guaranteed. Finally,
showing that Fr Cp Eg is trivial. O

On the other hand, when no weights are used it is immediate to conclude, by
exploiting the definition of Join and Selection and the associativity of t-norms,
that:

Pd (0P1(E1)a R O-Pn(Eﬂ)) = 0'f(l><1 (Ela) Eﬂ)) : (34)

Imprecision and User Preferences in Multimedia Queries 17
7 Other Issues

7.1 Approximation vs Equality

Although SAMEW is a “similarity” algebra, it still preserves some aspects where
similarity is not considered at all. This has the advantage of allowing for a clean
definition of operators’ semantics, yet in some cases a more flexible view would
be desirable. In particular, we observe that equality of expressions’ results re-
quires equality of scores for corresponding tuples, a fact that in some scenarios
can be exceedingly restrictive. In particular, consider the case when alternative
similarity operators can be used for a same feature (e.g. ~1, ~2, etc.). As an ex-
ample, the similarity of two color histograms can be assessed by using a complex
quadratic-form distance which takes into account colors’ cross-correlations [19],
but even using the simpler Euclidean distance. In general, if ~q is a “cheap”
operator, what are the implications of using it in place of a (much) costly ~s
operator? In the following we provide some preliminary results on the problem
of “approximate answers” in SAMEY by relying only on rather generic assump-
tions, which therefore can be strenghtened on need. The starting point is the
definition of e-compatibility of scores.

Definition 7.1. A binary relation of e-compatibility over the elements of S,
~., where ¢ > 0, is a symmetric relation closed under interval containment, i.e.
a relation which for all zq,z2, 23 € S satisfies x7 >~ 29 <= x5 ~. 21 and
1 < 29 < T3,T1 Ne T3 = T1 N Ta,To N T3

Intuitively, € represents the “tolerance” we have on discrepancies of scores. For
instance, specific cases of e-compatibility relations are:

|21 —z3] <€ <= 21~ 2y and z3/(l4¢€) <2y <zy(l4e) < 1~ 25 .

The relationship between the different ~, relations arising from different values
of ¢ is established by two basic axioms:

1. 2y ~p 29 <= 21 = 29
2. €1 < €9,T1 Ne, To = T N, To

Above extends to relations and expressions as follows (both e; and e are over
set of attributes X):

€1 Ne €9 Wx(el) = 7Tx(62) A Vit € el,Eth eyt =12 N b1 p>cta.p
FEy =2, By < Vdb: El[db] ~ Eg[db] .

Turning to consider algebraic operators, a basic problem is to understand how
they influence errors on scores. The following holds for the FS8 semantics:

Lemma 7.1. Letx; ~., ¢}, 1 € [1..n]. Then, min(z1,...,x,) ~ min(z},...,z})
and max(z1,...,¢n) ~ max(z}, ..., z) both hold, where ¢ = max(e1,...,¢€n).

18 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

Proof. We prove the statement for the min scoring function, being the case for
max analogous. Since ¢; < ¢, it follows that z; ~., «! implies #; ~. z!. Assume
that min(z1,...,2n) = @i < z; and that min(z},...,2;) = 2} < 2}, otherwise
the result would trivially hold by hypothesis. Without loss of generality, let
:L';- < ;. Since :r; ~ zj, from a:; < z; and x; < xz; we derive that both :L';- ~.x;
and z; ~, z; hold, thus proving the result. O

We have the following result which shows that errors will stay limited to €
even for arbitrarily complex SPJU (Select, Project, Join, Union) queries.

Theorem 7.1. Let E be a SAMEY expression with no weights, no negated pred-
icates, and using operators in {o,m,<,U}, and let E' be an expression obtained
from E by changing a similarity operator from ~ to ~' so that (v ~ vs) =~
(v1 ~' v9) holds for any pair of values v1, vy in the domain of ~. Then E =, E'
holds under FS semantics.

Proof. (sketch) The complete proof considers each operator in {o, 7,1, U}. Here
we limit the analysis to the Selection operator. Consider the two expressions
FE = op(F1), where p: A ~ v,and E' obtained from E by replacing ~ with ~'. By
definition of Selection under FS semantics, the scores of tuples satisfying F and
E' are respectively given by min(s(A ~ v,t),t.ug,) and min(s(A ~' v,t),t.ug,).
By hypothesis, it is s(4 ~ v,t) ~ s(A ~' v,1). From Lemma 7.1 it follows
that min(s(A ~ v,t),t.4p,) =~ min(s(A ~' v,t),t.pup,). This is to say that
O-A~’U(E1) =, UA~’v(E1)~ O

Extending the Theorem to the general case of weighted SPJU expressions is
indeed possible (we omit the proof here). For this, however, we need the following
additional assumption of linearity on the behavior of e-compatibility relations:

v~ w2y, = B+ (1-0)za~ fai+(1-0)-24 (B€][0,1]) .

Intuitively, linearity means that if discrepancies of scores stay limited at the
extremes of an interval, then they are also limited in the whole interval, which
seems quite reasonable to demand. Note that both sample e-compatibility rela-
tions we have considered are linear, as it can be easily proved.

The Theorem does not apply to expressions with negated predicates and/or
Difference. For instance, consider the second sample e-compatibility relation
(z1 € [22/(1 4 €),22(1 + €)]), and take z; = 0.8, 25 = 0.9, and ¢ = 0.2. Clearly
0.8 ~0n.2 09, but (1 — 08) ?90_2 (1 — 09)

Finally, the reason why the Theorem does not extend to expressions using Cut
and Top is that such operators explicitly consider tuples’ scores for determining
which tuples are to be part of the result. For the Cut, however, the relationship
between different similarity operators can be exploited as follows.'® Assume that
~"is weaker than ~. This means that, for any pair of values v, v5 in the domain

'3 This is tightly related to “filter-and-refine” strategies used to speed-up the processing
of range queries over complex (multi-dimensional) domains, where one adopts a
“simplified” distance function which lower bounds the original one [2].

Imprecision and User Preferences in Multimedia Queries 19

of ~, (v1 ~ v3) > (v1 ~ v2) holds. Then the following applies, where 7x is just
used to get rid of scores, p: A ~ v, and p’' : A ~' v:

Yo (0p (7x (E))) = Ya(op(7x (Ya(op (7x (£)))))) - (35)

If ~' is cheaper to evaluate than ~, one can use the expression on the right to
first filter out all those tuples that do not satisfy the condition p’ at least with
score > a. Since ~' is weaker than ~, the result of this first filter is guaranteed
to contain all the tuples returned by the expression on the left.

7.2 Adapting Weights to User Evaluation

As a final issue, we consider the case where the result of an expression F is
“evaluated” by the user, who assigns to each tuple #; € e = E[db] a “goodness”
value g;. Basically, g; represents how much the user considers ¢; “relevant” for his
information needs. The fact that the result of a query does not exactly match user
expectation is common in MM systems, and leads to a “closed-loop” interactive
process, where user evaluation is fed back to the query engine and then taken
into account to compute a (possibly) “better” result, and so on.

For our purpose, relevance feedback algorithms that have been proposed in
the Information Retrieval (IR) field are not appropriate for two reasons. First,
they do not apply to complex algebraic expressions [11]. More precisely, such
algorithms work only for keyword-based similarity search, when queries and
documents are interpreted as vectors and weights as coordinate values. Second,
they do not explicitly consider weights at predicate and expression levels. Re-
cently, Ishikawa et al. [12] have proposed a method (“MindReader”) to compute
an optimal set of weights (according to a specific objective function), given user
goodness values and assuming a “range query” whose shape indeed depends on
weights. In our context, this amounts to “guess” the best similarity operator
to be used for a certain feature, a problem somewhat orthogonal to the one we
consider here.

The generic framework we propose to deal with user judgments is as follows.
Let E{g,3 be an expression using a set {@;} of weightings, and let e = E{g,}[db].
For each tuple t; € e, let p; = ,uE{QJ_}(t,-) = t,-.,uE{@j}, and let g; = G(¢;) be the
“goodness” that the user assigns to ¢; (G is called a goodness function). Then,
consider an objective function O, O(G, NE{@J-}QG) € R, that measures the overall

goodness of e. A set of weightings {@;pt} is called optimal with respect to O if:

O(G;,UE{ };6) 2 O(G,/JE{@J_};G) V{@J} :

eoPt
7
As an example, assume that O is a function which is maximum when p; = g;
Vi (thus the g;’s are values in §), say, O(G,pE{@j};e) = —>".(pi — g:)?%, and
consider the expression oy, (Ry) U192 ¢, (Ry), where we take the weighted
Union of two (crisp) relations, to which the (unweighted) formulas fi and fs are
applied. One can think of this as a weighted integration of results from different

20 P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

search engines, where fi and f2 are tailored to the engine at hand, and [61, 6]
are the initial weights we assign to the two engines, reflecting how much we
“trust” them. The objective is therefore to minimize:

Z (s[vgl’%](sz-,h i) — gi)2

(3

where s;1 = s(fi,%;) and s;2 = s(f2,t;). Since numerical methods exist to
minimize above expression, we can consequently determine optimal values for
f1 and fs, that is, the relative importance to be assigned to the two engines in
order to make the overall scores as close as possible to their goodness values.

Although we have not explored yet all the (numerical) intricacies of adjusting
weights to maximize O, we claim that ¢t is indeed possible to compute {@;pt}
for any SAMEY expression. Clearly, the real challenge here appears to be the
determination of a good tradeoff between the “soundness” of the objective func-
tion and the corresponding cost of computing (at query time) an optimal set of
weightings.

8 Related Work

In the last two decades, many works have focused on problems related to ex-
tending data models so as to allow representation of “imprecision” in databases.
These works are only marginally relevant here, since they mostly concentrate on
modeling aspects (see e.g. [18]) and typically ignore issues related to advanced
processing of similarity queries, which are a major concern in multimedia envi-
ronments. Indeed, it is a fact that similarity queries arise even if the database
does not store imprecise information at all, provided “similarity operators” are
defined. This is also the scenario considered by the VAGUE system [16], where,
however, important features are missing, such as weights, the Top operator, and
fuzzy attributes. Further, problems related to query optimization are not con-
sidered in [16]. Recent work by Adali et al. [1] addresses issues similar to ours,
but important differences exist. First, they do not consider weights, that we have
shown to introduce new interesting problems in the query optimization scenario.
Second, they are mainly concentrated on problems related to the integration of
heterogeneous “similarity measures” | coming from different sources, into a com-
mon framework. This results in a quite complex “multi-level” algebraic scenario,
on which reasoning becomes difficult and tricky. In this light, we believe that
SAMEWis much “cleaner”, and that it highly simplifies the (inherently difficult)
task of reasoning about similarity queries.

Finally, several works are related to ours from the point of view of query
processing and execution. Besides Fagin’s works, here we mention our previous
work in the area and recent activity related to “Top queries”. In [7] we have
considered problems related to the efficient index-based execution of similarity
queries, where all the predicates refer to a single feature (e.g. find objects which

Imprecision and User Preferences in Multimedia Queries 21

are similar to this shape, but not to that one). Results in [7] show how impor-
tant performance improvements are obtainable by using access methods able to
process the “query as a whole”, rather than one predicate at a time.

Recent research on so-called Top queries [3] addresses issues arising in a
DBMS when the cardinality of the result is limited by the user. In this case, it is
assumed that the result set is sorted (using the ORDER BY SQL clause), and that
the result stream is stopped after k tuples have been produced. There is a tight
connection here with our Top (7) operator, with our “ranking criterion” playing
the role of the ORDER BY clause. Optimization techniques considered in [3] to
“push-down” the Top basically exploit primary key-foreign key joins (as well as
analysis of residual predicates) — a thing which we could embed into SAMEW by

means of functional dependencies.

9 Conclusion

In this paper we have introduced a “similarity algebra with weights”, called
SAMEW | that generalizes relational algebra to allow the formulation of complex
similarity queries over multimedia databases. SAMEW combines within a single
framework several aspects relevant to multimedia queries, such as new operators
(Cut and Top) useful for “range” and “best-matches” queries, weights to express
user preferences, and “scores” to rank tuples. These aspects, together with other
issues which we have only partially addressed here, such as “approximate results”
(see Sect. 7.1) and user evaluation (Sect. 7.2), pose new challenges to a query
engine, which have not been considered yet in their full generality. For instance,
if the user evaluates the result of a query, thus the system should adapt to this
by adjusting weights, how does this affect execution costs? Indeed, as shown in
Sect. 6, changing the weights will modify the numerical values, thus the process-
ing costs, used by some operators (like the Cut) to limit the cardinality of the
arguments of n-ary operators, such as Join and Union.

A point which would also deserve a much more careful investigation concerns
the definition of “notions of approximation” which are both practical and useful.
This is an issue whose importance is likely to considerably grow in the near
future, and that have only partially been addressed in recent years [20, 5].

References

1. S. Adali, P. Bonatti, M.L.. Sapino, and V.S. Subrahmanian. A Multi-Similarity
Algebra. In Proc. of the 1998 ACM-SIGMOD Int. Conf. on Management of Data,
pages 402-413, Seattle, WA, June 1998.

2. R. Agrawal, C. Faloutsos, and A. Swami. Efficient Similarity Search in Sequence
Databases. In Proc. of the 4th Int. Conf. on Foundations of Data Organizations
and Algorithms (FODO’93), pages 69-84, Chicago, 1L, October 1993.

3. M.J. Carey and D. Kossmann. On Saying “Enough Already!” in SQL. In Proc.
of the 1997 ACM SIGMOD Int. Conf. on Management of Data, pages 219-230,
Tucson, AZ, May 1997.

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Ciaccia, D. Montesi, W. Penzo, A. Trombetta

P. Ciaccia, D. Montesi, W. Penzo, and A. Trombetta. SAME"™: A
Fuzzy Similarity Algebra for Web and Multimedia Databases. Tech-
nical Report 1T2-R26, InterData project, 1999. Available at URL
ftp://ftp-db.deis.unibo. it/pub/interdata/tema2/T2-R26.ps.

P. Ciaccia and M. Patella. PAC Nearest Neighbor Queries: Approximate and
Controlled Search in High-Dimensional and Metric Spaces. In Proc. of the 16th
Int. Conf. on Data Engineering (ICDE 2000), San Diego, CA, March 2000.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An KEfficient Access Method for
Similarity Search in Metric Spaces. In Proc. of the 23rd VLDB Int. Conf., pages
426-435, Athens, Greece, August 1997.

P. Ciaccia, M. Patella, and P. Zezula. Processing Complex Similarity Queries
with Distance-based Access Methods. In Proc. of the 6th Int. Conf. on Extending
Database Technology (EDBT’98), pages 9-23, Valencia, Spain, March 1998.

R. Fagin. Combining Fuzzy Information from Multiple Systems. In Proc. of the
15th ACM Symposium on Principles of Database Systems (PODS’96), pages 216—
226, Montreal, Canada, June 1996.

. R. Fagin and E.L.. Wimmers. Incorporating User Preferences in Multimedia

Queries. In Proc. of the 6th ICDT Int. Conf., pages 247-261, Delphi, Greece,
January 1997.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by Image and Video
Content: The QBIC System. IEEE Computer, 28(9):23-32, September 1995.

D. Harman. Relevance Feedback and Other Query Modification Techniques. In
W.B. Frakes and R. Baeza-Yates, editors, Information Retricval: Data Structures
and Algorithms, chapter 11, pages 241-263. Prentice Hall PTR, 1992.

Y. [shikawa, R. Subramanya, and C. Faloutsos. MindReader: Querying Databases
through Multiple Examples. In Proc. of the 24th VLDB Int. Conf., pages 218-227,
New York, NY, August 1998.

G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall PTR, 1995.

A. Lumini, D. Maio, and D. Maltoni. Continuous versus Exclusive Classification
for Fingerprint Retrieval. Pattern Recognition Letters, 18:1027-1034, 1997.

D. Montesi and A. Trombetta. Similarity Search through Fuzzy Relational Algebra.
In Proc. of the 1st Int. Workshop on Similarity Search (IW055799), Florence, Italy,
September 1999.

A. Motro. VAGUE: A User Interface to Relational Databases that Permits Vague
Queries. ACM Trans. on Office Information Systems, 6(3):187-214, July 1988.

S. Nepal, M.V. Ramakrishna, and J.A. Thom. A Fuzzy Object Language (FOQL)
for Image Databases. In Proc. of the 6th Int. Conf. on Database Systems for
Advanced Applications (DASFAA’99), pages 117-124, Hsinchu, Taiwan, April 1999.
K. Raju and A. Majumdar. Fuzzy Functional Dependencies and lLossless Join
Decomposition of Fuzzy Relational Database Systems. ACM Trans. on Database
Systems, 13(32):129-166, June 1988.

T. Seidl and H.-P. Kriegel. Efficient User-Adaptable Similarity Search in Large
Multimedia Databases. In Proc. of the 23rd VLDB Int. Conf., pages 506-515,
Athens, Greece, August 1997.

N. Shivakumar, H. Garcia-Molina, and C.S. Chekuri. Filtering with Approximate
Predicates. In Proc. of the 24th VLDB Int. Conf., pages 263-274, New York, NY,
August 1998.

A. Soffer and H. Samet. Integrating Symbolic Images into a Multimedia Database
System using Classification and Abstraction Approaches. The VLDB Journal,
7(4):253-274, 1998.

