I ntegrating the Results of M ultimedia Sub-Queries
Using Qualitative Preferences

Ilaria Bartolini* Paolo Ciaccia
DEIS - IEIIT-BO/CNR
University of Bologna

Bologna, Italy

{ibartolini,pciaccia} @deis.unibo.it

Abstract

When similarity queries over multimedia databases are
processed by splitting the overall query condition into a set
of sub-queries, the problem of how to efficiently and effec-
tively integrate the sub-queries’ results arises. The com
mon approach isto use a (monotone) scoring function, like
min and average, to compute an overall similarity score
by aggregating the partial scores an object obtains on the
sub-queries. In order to minimize the number of database
accesses, a “ middleware” algorithm is applied to return
only the top & highest scored objects.

In this paper we consider a more general approach,
based on qualitative preferences, for the integration of par-
tial scores. With qualitative preferences one can define ar-
bitrary partial (rather than only linear) orders on database
objects, which gives a larger flexibility in shaping what the
user is looking for. For the purpose of efficient evalua-
tion, we propose two integration algorithms, both able to
work with any (monotone) partial order: MPO, which de-
livers objects one layer at a time, layers being defined by
the specific partial order at hand, and iMPO , which isan
incremental algorithm that delivers one object at a time,
thus suitable for top & queries. Our analysis demonstrates
that using qualitative preferences pays off. In particular,
using Skyline and the new Region-prioritized Skyline pref-
erences for queries on a real image database, we show
that iMPO vyields results whose quality is comparable to
that obtainable from algorithms using scoring functions.
However, iMPO performs faster, saving up to about 70%
database accesses.

1 Introduction

Specification and evaluation of multimedia (MM)
queries are both difficult problems to be addressed for the
development of effective MM tools and applications. In-

* Part of this work was performed while this author was visiting NJIT.

Vincent Oria

Dept. of Computer Science = School of Computer Science
NJ Inst. of Technology

Newark, NJ, USA
oria@cis.njit.edu

M. Tamer Ozsu

University of Waterloo
Waterloo, ON, Canada

tozsu@uwaterloo.ca

deed, the formulation of a query on a MM database has
to take into account both the intrinsic complexity to prop-
erly characterize the semantic content of multimedia ob-
jects and the difficulty that a user experiences when trying
to exactly formulate her needs. With a large MM database,
in which each object is characterized by means of a set of
relevant, automatically extracted, low-level features (e.g.,
color, texture, and shape in the case of still images), the
user provides the system with a “target” (query) object and
expects as result the “most similar” database objects. For
this retrieval model to effectively work, it is well recog-
nized that the similarity function used to compare objects
has to be properly adapted, possibly by means of some rel-
evance feedback [14], to fit the subjective user preferences.

When dealing with complex MM queries involving mul-
tiple features, the scenario is further complicated. Indeed,
since it is a common case that features are separately in-
dexed [13] or even managed by independent specialized
sub-systems [9], an integration of partial results is needed.
Relevant examples of “middleware” algorithms that ad-
dress this problem are Ay [9], TA [11], and MEDRANK
[10]. Their common rationale is to have an independent,
yet synchronized, evaluation of sub-queries, one for each
involved feature. Each object returned by a sub-query has
an associated partial score for the corresponding feature,
which are then aggregated by means of some (possibly
weighted) scoring function, like min, max, avg and me-
dian, into an overall score. Under this view one object is
better than (i.e., preferred to/ranked higher than) another
iff its overall score is higher. The choice of the scoring
function and of the weights can be both critical factors for
the determination of the final result, that usually consists
of the k highest scored (top k) objects. A further problem
is that it is a hard, if not impossible, task to derive a scoring
function that can suitably represent user preferences due to
their limited expressive power, since they can only capture
a limited type of preferences. These, also called quantita-
tive preferences, are exactly those that assign to each object
a numerical value (its score, or “utility”) regardless of the
other objectsin the database [12]. A third limit of scoring

functions is that they provide a poor “coverage” of the best
available alternatives. The “best” objects depend on the
adopted scoring function. This implies that, once a scoring
function has been chosen, only a (very) limited portion of
the potential best objects can be retrieved. Although rel-
evance feedback mechanisms [14] can alleviate this well-
known problem, by allowing the user to progressively shift
her focus towards interesting regions of the search space,
they usually require several iterations before leading to ac-
ceptable results, thus generating a not negligible overhead
on the system [1].

In this paper we propose a novel, more general, ap-
proach to sub-query integration, based on qualitative pref-
erences, able to overcome the above drawbacks. Qualita-
tive preferences, which have been recently used in the con-
text of relational databases [5], require only that, given a
pair of objects o; and o;, one has some (binary) preference
relation stating whether o; is preferred to o; (o; > o) or
not (o; # oj). This approach includes scoring functions
as a special case, since, given a scoring function that asso-
ciates the overall score s; to the object o;, one can always
define o; > o; iff s; > s;. Note that with qualitative
preferences it might be the case that neither o, > o; nor
o0; > o0; hold, in which case o; and o; are indifferent (writ-
ten o; ~ Oj).

Although qualitative preferences enjoy much more flex-
ibility than scoring functions, in this paper we focus on the
well-defined and intuitive case, which we call partial or-
der (PO) integration where the preference relation defines
a (strict) partial order on database objects, thus o; % o;
(irreflexivity) and o; = 05, 0; > o = o0; > oy (tran-
sitivity). The rationale for using PO stems from the basic
observation that all the problems that plague scoring func-
tions are no longer a concern. Indeed, expressiveness is not
a problem with PO, as argued above. PO is not forced to
use a scoring function in order to rank objects, rather it can
use other, more sophisticated and flexible, criteria that di-
rectly take into account all the partial scores. This has the
consequence that there is no risk of choosing “bad param-
eter values” for the scoring function. Finally, with PO it is
possible to get an “overall view” of the potential best ob-
jects for a given query, a fact that highly simplifies the task
of focusing on the right part of the search space. To this end
we will show that PO’s relevant results cover much better
than scoring functions the search space, as demonstrated
through experiments on a real-world image database.

The model of queries we consider includes the standard
one, where one is interested in obtaining the top & results,
the major difference being, of course, the criterion accord-
ing to which objects are ranked. To this end we rely on the
well-defined (equivalent) semantics of the Best [15] and
Winnow [5] operators, recently proposed in the context of
relational databases. The Best operator 5. (C') returns all
the objects o in a collection C' such that there is no object
in C better than o according to relation . Ranking can be
easily obtained by recursively applying the Best operator

to the remaining objects (i.e., those in C' — 3. (C'), and so
on). This leads to a layered view of the search space where
all the objects in one layer are indifferent. Thus, besides
top & queries, PO also naturally supports a “first £ layers”
query model, which adds further flexibility to the retrieval
phase.

For the purpose of efficient query evaluation, we pro-
pose two integration algorithms. Algorithm MPO applies
to any preference relation that defines a strictly mono-
tone PO (see Definition 3) and returns the first ¢ layers
of the partial order. In order to efficiently support top k
queries, we then modify MPO into an online algorithm,
iMPO, which delivers its results to the user in an incre-
mental way. We experiment with two specific preference
relations: 1) so-called (layered) Skyline (SL) preferences
[4], for which an object o belongs to g, ¢, (C) iff there is
no other object that dominates o on all sub-queries; and 2)
Region-prioritized Skyline (RS) preferences, which avoid
some drawback of Skyline preferences when used for mul-
timedia queries and give the user additional control over
the query results. We demonstrate, through experiments
on a real-world image database, that the quality of the re-
sults returned by iMPO and TA [11], as measured in terms
of classical precision, is comparable; however, iMPO re-
quires less database accesses than TA to get the same num-
ber of relevant objects.

The paper is organized as follows. In Section 2 we pro-
vide the basic definitions concerning the query scenario
and the integration problem; then we discuss scoring func-
tions and their intrinsic limits. Section 3 introduces qual-
itative preferences. In Section 4 we present the MPO and
iMPO algorithms, and in Section 5 we describe experimen-
tal results.

2 Thelntegration Problem

Consider a collection C' of objects and a complex MM
query of the form Q = (Q1,Q2, . .., Q) Where each @,
is a sub-query. With respect to the condition expressed
by Q4. we assume that each object o; € C can be eval-
uated and assigned a partial score, s;, € [0, 1], assess-
ing “how well” o, matches @, condition (higher values
are clearly better). Thus, the underlying collection C' can
be regarded as being composed of m lists, one for each
sub-query, where the list L, (¢ = 1, ..., m) contains pairs
of the form (o;, s;,4) and is linearly ordered according to
scores, with higher partial scores at the beginning of the
list.

Given m lists L, resulting from the evaluation of the m
sub-queries of the complex query @, the integration prob-
lem is to return as a result the “best” (in some sense to be
defined) objects from the m lists. We model access to the
database in the usual way [9, 11], assuming that objects
can be retrieved through one of the two distinct modalities:
The sorted access modality in which one retrieves from a
list L, the next unseen object on that list, say o;, together

with its partial score, s; 4; the random access modality in
which, given an object o; seen via sorted access on some
list L4, one can retrieve from the database the needed fea-
tures and, consequently, evaluate the missing partial scores
for o;.

2.1 Scoring Functions

The standard approach to define the semantics of a com-
plex MM query is based on so-called scoring functions.
Consider the m-dimensional space A = [0, 1], which we
can conveniently call the answer space. For a given query
Q, each object o; is univocally represented in A by a point
si = (Si1,---,8im), Whose coordinate values are its m
partial scores for the m sub-queries.

A scoring function on A is any function S : A — [0, 1]
that assigns to each points; € A avalue s; = S(s;), called
the overall score of o,. Intuitively, the scoring function S
is the “rule” that one wants to adopt to give proper credit to
the partial scores and, consequently, to the corresponding
sub-queries.

In recent years a large variety of algorithms have been
proposed to efficiently evaluate the result of top & com-
plex queries, i.e., when one is interested in obtaining the
k highest scored objects, with ties to be arbitrarily broken.
Approaches that make specific hypotheses on how the sub-
queries are evaluated, like [7] and [3], can yield superior
performance, yet they have limited applicability and imply
a modification of the access methods used for sub-query
evaluation. On the other hand, “middleware” algorithms,
like Ag [9] and TA [11], to name a few, just rely on the
sorted and random access modalities and on the hypothe-
sis of monotonicity of the scoring function.

Definition 1 (M onotonicity of scoring functions) An m-
ary scoring function S is monotone if s; , < s; 4 for all ¢

IerlleSsJ = S(qu,lw . ~7Sj,m) < S; = S(Si,la .. -asi,m)-

In practice, most commonly used scoring functions, like
min, max, avg, etc., as well as their “weighted” exten-
sions, are not only monotone, but also strictly monotone,
that is, s, 4 < s;,4 for all ¢ implies s; < s;.

Monotonicity and strict monotonicity can be given a
simple yet useful geometric interpretation. For this con-
sider the “target” point in A definedas 1 = (1,...,1),
which corresponds to the best possible evaluation for all
the sub-queries, and let R; be the hyper-rectangle having
points s; and 1 as opposite vertices. We call R; the hyper-
rectangle of o;. We observe that if .S is (strictly) monotone
and s; is a point of (resp., in the interior of) the hyper-
rectangle R, of o;, then S(s;) < S(sj) (S(si) < S(sj))-
As a simple corollary, if there are at least & points of C'in
the hyper-rectangle of o;, then there is no strictly mono-
tone scoring function that can make o, one of the & highest
scored objects in C. Further, since ties can be arbitrarily
broken, o; can also be safely neglected in case of mono-
tone scoring functions. This is precisely captured by the

concept of potential (k) best match: An object o; for which
there are k£ — 1 points of C in its hyper-rectangle is called a
potential £ best match. A potential 1 best match is simply
called a potential best match.

It is clear that any top k query based on a monotone
scoring function can only return points that are potential j
best matches, j < k. In practice, which of them are more
relevant to the user is difficult to assess a priori, and rel-
evance feedback mechanisms are usually used to this end
[14]. Under this view, the search process is better under-
stood as the search of a “good” scoring function within a
class of scoring functions with parameters (usually called
“weights”) [1]. As an example, one could use the class of
weighted averages and change the weight to be assigned
to each partial score (sub-query) depending on the correla-
tion between the sub-query scores and objects’ relevance,
as assessed by the user.

3 Qualitative Preferences

We ground our approach on the basic notion of qual-
itative preferences. Unlike quantitative ones, qualitative
preferences do not necessarily require the specification of
a scoring function, rather they are directly represented by
a preference relation.

Definition 2 Let X be a domain of values. A preference
relation over X is a binary relation - over X x X. If
x1,29 € X and (z1,22) € =, we also write 1 > 9
and say that x; is preferable to x5 or, equivalently, that x;
dominates x,. If neither 1 = x5 nor o = 21 hold, we
say that x; and x5 are indifferent, written 1 ~ .

In the context of sub-query integration, the X domain is the
answer space A = [0, 1™, whose values are the represen-
tative points of the objects. Let o; and o; be two objects in
the C collection and s; and s; be their corresponding points
in A. With a slight abuse of notation we write o; > o;,
and say that o; dominates (is preferable to) o;, whenever
Si > Sj.

In this paper we focus our attention on a specific case of
qualitative preferences, namely those for which the prefer-
ence relation is a partial order (PO). We remind that > is
a (strict) partial order if it is irreflexive (x x) and transi-
tive (x1 = xz9 and xzo > x3 imply x; > z3). Note that
asymmetry, that is x; > x5 implies zo # 1, directly
follows from the irreflexivity and transitivity properties.
Dealing with PO preference relations is strictly more gen-
eral than using scoring functions, since any scoring func-
tion S can be viewed as a PO preference relation >g by
defining o; >3 0; < S(si) > S(s;) [12].

What kind of PO preference relations are suitable for
sub-query integration? A reasonable requirement is that
>, although not necessarily based on the comparison of
overall scores, still enjoys some kind of “monotonicity”
property that establishes some positive correlation between
partial scores and the dominance relation.

Definition 3 (M onotonicity of preference relations) A
preference relation - over the answer space A = [0, 1]™
is monotone if 55, < s;, for all ¢ implies's; # s;. If
8j.q < 8iq for al ¢ impliess; > s; we say that > is
strictly monotone.

Strict monotonicity, as in the case with scoring functions,
excludes the presence of “indifference regions”. Indeed, if
> is monotone, but not strictly monotone, and s, , < s; 4
holds for all ¢, we might have s; * s; and s; * s;j, thus
Si ~~ §j.

In the following we will only consider strictly mono-
tone PO preference relations. This does not appear to be a
relevant restriction, and has the major advantage of allow-
ing us to derive efficient integration algorithms (see next
section). The first example of a strictly monotone PO pref-
erence relation are the so-called Skyline preferences [4].

Definition 4 (Skyline preferences) The Skyline prefer-
encerelation g, over A = [0, 1]™ is defined as follows:

0; =51 0j © (Vq: 85,4 < Sig) N(Fq: 854 <5iq) (1)

where s; 4 (s;,4) is the partial score that object o; (resp.,
0;) obtainsfor sub-query @,. Thus, o, is preferred to o; iff
it is at least as good as o; on all sub-queries and there is
at least one sub-query for which the partial score of o; is
strictly higher than that of o;. The set of points (objects) of
a collection C for which there is no object that dominates
them according to > s, is called the Skyline of C.

Figure 1 shows the results of a sample query over an
image database when Skyline preferences are used to inte-
grate the results of the sub-queries, over color and texture
features, respectively. The figure shows the target “eagle”
image Q and the potential best matches (i.e., Skyline) of
Q. Note that most of them belong to the same semantic
class, “Birds”, of Q (more details on this point are given
in Section 5) and that they are quite spread over the an-
swer space. Results of this kind are incomparable to those
obtainable from scoring functions, like min and avg.

1
09 -

- !
0 4
2
08 |
o7t
06 |
e
3 05+

so
204l
03|
02|

01 -
0

0 01 02 03 04 05 06 07 08 09 1
color

Figure 1. The Skyline of the “eagle” image

Skylines are not the whole story about strictly monotone
POs. To give a flavor of the power of PO-based integration,
we introduce a generalization of Skyline preferences that
we call Region-prioritized Skyline (RS) preferences. For
this we assume that the answer space A is partitioned into
a set of regions Ay, ..., Ap, and that a preference relation
is also expressed over such regions.

Definition 5 (RS preferences) Let Y = {A4;,...,Ap}
be any partition of A = [0,1]™, and let >g., be a PO
preference relation over Y. Let Reg() be a function that
maps each point of A into its (unique) region of Y. The
Region-prioritized Skyline (RS) preference relation =g
over A = [0,1]™ is defined as follows:

(Reg(si) = Rreg Reg(sy)) V)
((Reg(si) = Reg(s;)) A (si =sL sj))

0; RS 0 <

Thus, if two points belong to the same region the Sky-
line logic applies, whereas priority among regions prevails
when two points belong to different regions. As a sim-
ple example, let m = 2 and Y = {A;, Ao}, with 4; =
[0,1] x [0.7,1], Ay = [0,1] x [0,0.7), and A1 > pey Aa.
Any point in the “upper rectangle” A; will dominate points
in the “lower rectangle” A,. Intuitively, this will favor ob-
jects with a good partial score for sub-query Q2. Among
such objects (if any), the best matches will be determined
using Skyline preferences. If region A; is empty, then the
best matches will be found in region As.

RS preferences can also be used to limit some patholog-
ical behavior of Skyline preferences. Indeed, let o; be an
object with s; = (0.8,0.1), and assume that 0.8 is the best
score for sub-query @;. If there is no other object with
equal score for)1, it is guaranteed that o, belongs to the
Skyline, which a user could find questionable if she also
sees (possibly many) other objects with somewhat “more
balanced” score values. The classical threshold-based so-
lution, besides suffering the problem of requiring detailed
knowledge of the objects’ distribution in order to set a suit-
able threshold value, ignores that the choice of whether or
not o; has to be discarded could depend on the presence
of “more preferred” objects. Region prioritization easily
solves the dilemma.

In order to guarantee strict monotonicity of =gg we
need to ensure that priority among regions does not con-
trast with Skyline preferences.

Lemmal The preference relation > g is strictly mono-
tone iff when Reg(s;) # Reg(sj) and s, 4 < s; 4 for all ¢
thenitis Reg(si) > reg Reg(s;j).

Sketch of proof.

(only if) Immediate from Definitions 3 and 5.

(if) We consider two cases: (a) if Reg(si) = Reg(s;) then
the result follows from the strict monotonicity of g y; (b)
if Reg(si) # Reg(s;)and s; 4 < s; 4 forall ¢, by hypothe-
sis Reg(si) > reg Reg(s;j), thus o; >~ rs 0;, as required. O

It should be clear that if in Definition 5 we replace >,
with any other strictly monotone PO preference relation
we still get a valid strictly monotone PO region-prioritized
preference relation. For instance, one could define four re-
gions, Y = {4, As, A3, A4}, and within each of them
use a, possibly different (1), preference relation, say >gy,
in Ay, >min in Ay (where we make use of the min scor-
ing function to compare objects), etc. Also, nothing would
prevent to recursively apply region-prioritization, that is,
by partitioning A; into sub-regions, and so on.

4 Query Evaluation

In this section we present two algorithms for efficiently
performing PO-based integration of sub-query results. The
first algorithm, called MPO, works for any strictly mono-
tone PO preference relation. Since MPO returns all the po-
tential best matches, it is unsuitable if one wants to explic-
itly control the cardinality of the result and the amount of
resources needed to solve the query. To this end we intro-
duce an incremental (i.e., online) algorithm, called iMPO,
which returns an object o to the user as soon as it can be
proven that, among the objects not yet returned, there is no
object that dominates o.

41 TheMPO Algorithm

The first algorithm we introduce is based on the (equiv-
alent) semantics of the Best [15] and the Winnow [5] oper-
ators. The Best operator is defined as:

B (C)={ocC | €C,o -0} (3)

In Figure 2 we present the MPO algorithm, whose logic
is as follows. At each step MPO retrieves via sorted ac-
cess (step 4) the best “unseen” object o; from one of the
m sorted lists, and then obtains missing partial scores for
such object via random access (step 5). The so-obtained
representative point s; is then compared with the current
objects in 3, (C) (steps 7 and 8). If no objects o; domi-
nates o;, o; is inserted in G (C) (possibly also removing
objects dominated by o; itself), otherwise o, is discarded.
At each point MPO maintains a “threshold point” s, whose
g-th component, s, is the lowest partial score seen so far
under sorted access on list L,. As soon as a point o; is
found such that s; dominates the threshold point s the main
loop of the algorithm ends (step 2). Before delivering the
result (step 16), the condition at step 14 is checked. If im-
plication is not guaranteed, then the main loop is executed
again (but without changing anymore the threshold point
s) so as to ensure that on each sorted list L, there is no
other object with a partial score equal to s,. We call this
the “final cycle” of MPO. -

Theorem 1 The MPO algorithm correctly computes
B (C).

Algorithm MPO (Input: query Q, collection C, strictly monotone preference
relation)

(1) Set Result = 0; Sets = (1,...,1);/* s is the threshold point */
(2) While (f(0s, 1) € Result such that s; > s):
(3) Foreach sub-query Q4 (¢ = 1,...,m)do:

4) Retrieve the next unseen object o; from L; /* sorted access */
(5) Retrieve missing scores for the other sub-queries and obtain s;;
[* random accesses */
(6) Set Dominated = false;
@) While (not(Dominated) A 3 (0;,s5) € Result unmatched with

Si).
s; > s; remove (oj,s;) from Result,
(8) Compare s; with s;: { s; ~ s; do nothing,
sj = si set Dominated = true;
9) End While;
(10) If not(Dominated) insert (o0;, s;) in Result;
(11) Let s, be the lowest score seen by sorted access on list L,; Sets =

(15> 5m);

(12) End For;

(13) End While;

(14) If (s; > s A's =g s;) doesnotimply s; > s; then
/* execute the “final cycle” */

(15) Repeat from step 3 to 10 until on each list L, is found an object o, with
partial score s;,,q < sq;

(16) Return Result.

Figure 2. The MPO algorithm

Proof. Clearly Result C . (C'). To show containment in
the other way, let o; be an object of C' that has not been
seen under sorted access by the algorithm, and let o; be
the object that is found at step 2 to dominate the threshold
point. Unless s; is coincident with the threshold point (i.e.,
s; = s), in which case we are obviously done, at least one
partial score of o; is strictly less than the corresponding
threshold value. Thus, Vg : s;, < sg and 3q : 55,4 < 54,
which coincides with the definition of Skyline dominance.
If, depending on the preference relation > at hand, s; > s
and s >gz, s; imply s; > s; (see step 14), we are guaran-
teed that o; ¢ (3. (C). On the other hand, when the im-
plication does not hold, the final cycle (step 15) guarantees
that, for each sub-query @, s;,4 < sq. Thus s > s; fol-
lows since - is strictly monotone. Since > isa PO, s; > s;
follows by transitivity. [J

The need for the “final cycle” in the MPO algorithm
may not be obvious. Indeed, MPO resembles middleware
algorithms that were developed for the case when the in-
tegration is based on a scoring function and only the &
highest scored objects are requested, with ties arbitrarily
broken. This is not the case with MPO, which returns all
the potential best matches, regardless of how many they
are. It is easy to show that, for a generic >, omitting the
final cycle could lead to missing some object in 8. (C).

From a more pragmatical point of view, it has to be re-
marked that preference relations requiring the final cycle
are more an exception than the rule.> Indeed, the follow-
ing result shows that “natural” preference relations do not
require the execution of the final cycle.

LFor lack of space we omit here the description of one such preference
relation.

Lemma?2 Let - be either =55, =grs, OF =g, Where S
is any monotone scoring function. In all such cases MPO
correctly computes 3. (C) even if thefinal cycleisomitted.

Sketch of proof. The proof amounts to showing that for
each of the considered preference relations s; > s and
s =g, s; imply s; > s;. We omit the proof’s details. [

4.2 Thelncremental MPO Algorithm

If one wants to exert explicit control on the cardinality
of the result, MPO is not the best alternative. Indeed, it is
known that the size of the Skyline can become quite large,
and grows fast with the number of dimensions when partial
scores have a negative correlation [4]. On the other hand,
when the size of 3. (C) becomes too small it would be
advisable to allow the user to retrieve also further “good”
objects, even if they are not in 5. (C).

To achieve both of the above goals we start by intro-
ducing a new operator, called BesTop, that combines the
semantics of Best and Top-k operators. For its definition it
is first useful to remind the “layered” version of the Best
operator [15]:?

BLO) = B(C) | @
HC) = B(C-ULBLO))
Thus, B2 (C) retrieves the ¢-th “layer” of (the partial or-

der induced by > on) C. We are now ready to define the
BesTop operator.

Definition 6 (BesTop operator) Let {¢(k) > 1 be the
smallest integer that satisfies the inequality
S 1 BL(C) |2 k.
The BesTop operator, (5
jects from C such that:
o 8¥(C) includes aJI the objects in the first ¢(k) —
layers of C (thus U~ 81 (C) € gM(0));

o it further includes other k — S>¢%) =1 | i (C) | ob-
jectsfromthe ¢(k)-th layer of C.

M (C) (k > 1), retrieves k ob-

A naive approach to compute B[f]((}’) would be to iterate
algorithm MPO up to layer ¢(k), and then to select all the
objects in the first £(k) — 1 layers plus others from layer
¢(k), so as to reach the desired result cardinality k.2 The
major drawback of this approach is made evident through a
simple example. Let & = 1, thus (1) = 1 (the first layer is
obviously enough). If we run MPO and wait until its com-
pletion we would miss the opportunity to stop as soon as
we can conclude that a single object belongs to 5L (C). In
general, we see that no object of a layer ¢ can be returned
by MPO before it is discovered that no further object be-
longs to layer ¢, which might severely affect performance.

2An analogous extension has been proposed for the Winnow opera-
tor [5].

3Note that at layer £(k) ties are arbitrarily broken, as it is customary
for top k queries.

Algorithm iMPO (Input: query Q, collection C, strictly monotone preference
relation >, integer k)

1

-

Set NoO f Results = 0; Set ThisLayer = NextLayer = (); Set

s=(1,...,1);

(2) While (NoOfResults < k):

(3) While (#(0i,si) € ThisLayer such that s; > s A
NoO fResults < k):

4) For each sub-query Q4 (¢ = 1, ..., m)do:

(5) Retrieve the next unseen object o; from L;
[* sorted access */

(6) Retrieve missing scores for the other sub-queries and obtain s;; /*
random accesses */

(@) Set Dominated = false;

8) While (not(Dominated) A 3 (oj,s;) € ThisLayer un-

matched with s;):
s; > s; move (o;,s;) from ThisLayer
to NextLayer,

(9) Compare s; with s;: ¢ s; ~ s; do nothing,
s; > s; set Dominated = true and
insert (0,, si) in NextLayer;
(10) End While;
(11) If not(Dominated) insert (0;, s;) in ThisLayer;
(12) Let Sq be the lowest score seen by sorted access on list L,; Set
s=(51,--, ySm);
(13) Output all objects (0;,s;) € ThisLayer st. s ¥ s; and update
NoO f Results;

(14) End For;
(15) End While;
(16) If (NoO f Results < k) then:

a7 Set ThisLayer = NextLayer; Set NextLayer = (;
/* starts to process the next layer */

(18) For all 0;,0; € ThisLayer st s; > s;j move (o;,s;) from
ThisLayerto NextLayer;

(19) Output all objects (0;,s8i) € ThisLayer st. s % s; and update
NoO f Results;

(20) EndIf;

(21) End While.

Figure 3. The incremental MPO algorithm

Algorithm iMPO (incremental MPO), summarized in
Figure 3, elegantly solves the above problem. To under-
stand the logic of iIMPO the following observation is use-
ful.

Observation 1 Let >~ be a strictly monotone PO prefer-
encerelation. If s i/ s; and Vg : s, < s4 (thus, s > s;)
then Sj ¥ Sj. -

Indeed, if s; > s; then by transitivity it would follow that
s > sj, thus contradicting the hypothesis.

iMPO exploits the above observation as follows. Each
time the threshold point s changes, iMPO checks if some
object o; that has already been retrieved is not dominated
by s, i.e, s ¥ s; (step 13). If this is the case, as soon as
we see on all the m lists L, partial scores that are strictly
lower than s,, we can conclude that no unseen object o,
can dominate o;. This is sufficient to assert that o; can be
immediately delivered to the user. For this reason we call
s # s; the delivery condition of iMPO for object o;.

Again, it has to be remarked that the need to wait for
seeing partial scores strictly less than the threshold values
is not necessary for relevant preference relations. In or-
der to avoid unnecessary complications to the algorithm
description, in Figure 3 we omit to detail this “final cycle”.

The second major feature that distinguishes iMPO from
MPO is the management of multiple layers of the partially

ordered collection C'. Rather than simply removing objects
that are found to be dominated by some other object (as
MPO does), iMPO keeps them in a NextLayer structure.
Obijects in such a structure are processed again upon com-
pletion of a layer, and before restarting to retrieve other
objects via sorted access (steps 17 and 18).

5 Experimental Analysis

For reference purpose, we contrast MPO and iMPO al-
gorithms to the TA algorithm [11], a well-known algorithm
that works for any monotone scoring function .S. The logic
of TA is somewhat similar to that of MPO. Both algo-
rithms, after performing a sorted access that retrieves an
object o;, get, through random access, the missing partial
scores, so as to obtain s;. At this point TA computes S(s;),
the overall score of o;, and the threshold value, S(s). If
at least & points have been found such that S(s;) > S(s),
TA stops and returns the & objects with the highest scores.
Although TA delivers objects only at its termination, it is
not difficult to turn it into an incremental algorithm.* For
this it is sufficient to check, whenever the threshold value
changes, if S(si) > S(s) and then immediately return o; to
the user. We call this the delivery condition of TA.

We evaluated the performance of the above algorithms
using a real-world image collection consisting of about
10,000 color images. Although this data set is not par-
ticularly large, we chose it for two reasons: Since each
image comes with a manually assigned semantic classifi-
cation into one of 7 classes, this allows us to evaluate ef-
fectiveness (quality) of results, which would not be possi-
ble without an objective “ground truth”. To this end, given
a query image, any image in the same class of the query is
considered relevant, whereas all other images are consid-
ered not relevant, regardless of their actual low-level fea-
ture contents. Note that classes are just used for evaluation
purposes and not during the retrieval phase (i.e., algorithms
know nothing about the class of an image). This leads to
hard-to-solve conceptual queries, since within a same class
feature values may wildly vary. Further, since in this paper
we are not dealing with issues related to the evaluation of
sub-queries, the actual size of the data set is not particu-
larly relevant in assessing performance. Indeed, although
our system uses indexes to efficiently evaluate sub-queries,
relative figures are not shown here (any method able to re-
turn ranked lists would serve the purpose).

Each image, using wavelet transform, was automati-
cally segmented into a set of homogeneous regions, based
on the proximity of wavelet coefficients, which convey
information about color and texture features. Each re-
gion corresponds to a cluster of pixels and is represented
through a 37-dimensional feature vector.® On average, 4

4To the best of our knowledge this is new, in that no incremental ver-
sion of TA and related algorithms has ever been proposed before.

5In detail: 12 dimensions are used for cluster’s centroids (3 color
channels x 4 frequency sub-bands), 24 coefficients store the 3 x 3 (sym-

regions were obtained from each image. The same proce-
dure is adopted when an image query @ is submitted. If
m is the number of regions extracted from (), each of the
m regions becomes a sub-query. Partial scores for a given
query region (), are obtained by using a distance function
based on the Bhattacharyya metric [2], which is commonly
used to compare ellipsoids.

We implemented MPO (extended so as to answer “first
£ layers” queries), iMPO, and TA algorithms in C++ and
run all the experiments on a 1.6 GHz Pentium machine.
All the results we present are averaged over a sample of
100 randomly-chosen query images. Our major interest
is to understand how our algorithms (iMPO in particular)
perform in terms of efficiency and effectiveness:

Efficiency. The metrics we use are the number of
sorted accesses, #S5A, and the number of random ac-
cesses, #RA, executed by the algorithms. This ensures a
fair, system-independent, comparison. Note that actual ex-
ecution times are indeed expected to vary in a significant
way depending on the relative cost of sorted and random
accesses, the nature of the underlying system(s) evaluating
sub-queries (e.g., Web-based or not), the available access
methods, etc. To avoid distracting the reader with too many
parameters and variables which would consequently come
into play we opted for clean, easy to understand, metrics.

Effectiveness. As possible measures of how good the
results of an algorithm (when equipped with a specific
preference relation or scoring function) are, we consider
the classical precision (P) metric (i.e., the percentage of
relevant images found by a query) and the extent to which
relevant images are representative of the query class, that
is, how well they fit the actual distribution of all images
in the query class. This allows a finer assessment of the
quality of results that P alone cannot provide.

For MPO and iMPO algorithms we consider both Sky-
line (SL) and Region-prioritized Skyline (RS) preferences,
whereas for the TA algorithm we consider min and avg
scoring functions. We use the notation MPO(SL) to mean
algorithm MPO using SL preferences, and so on. In or-
der to generate RS preferences we proceed as follows (see
also Definition 5 in Section 3). On each of the m coordi-
nates of the answer space A, we set a “soft threshold” 6,
(0 < 6, < 1) and assign a 0 bit to the “below-threshold”
interval [0, 6,) and a 1 bit to the “above-threshold” interval
[64,1]. This leads to 2™ regions, each univocally repre-
sented by an m-bit binary code. Given regions A; and A,
the preference relation for such regions is

A; = Reg Aj < code(A;) A code(Aj) = code(A;)

where bitwise AND is used and code(A;) is the binary
code of region A;. For instance, when m = 4, this says
that the region with code 1011 dominates the region with
code 1000, whereas it is indifferent to region 0100. Since

metric) covariance matrices of the 4 sub-bands, and 1 coefficient repre-
sents the cluster size.

2500

100%

4000

——iMPO(SL)
—*—MPOQ(SL)

3500 -
2000 -
3000 -

1500 4 2500

#SA

2000 -

#SA

10004 1500 1

1000 4
500 -

500 -

——iMPO(RS)
—*%—MPO(RS)

s

‘ 80% 7 |

| \
40%1 | \

%ogain of iMPO

20%

0 50 100 150

(@)

50

(b)

0%
200 0

100 150 50 100 150 200

(©)

Figure 4. Sorted accesses of MPO and iMPO algorithms for a specific query: (a) Skyline (SL)
preferences; (b) Region-prioritized Skyline (RS) preferences. In (c) the percentage gain of iMPO
over MPO is shown. The abscissa reports the no. of retrieved objects k

> Rreg defines a Boolean lattice over regions (with region
11...1 being the best region and 00 .. . 0 the worst one) it
is easy to show that Lemma 1 is satisfied, thus >gg is a
strictly monotone PO.

Although we experimented with several combinations
of soft threshold values, for lack of space we just report
results for the case 6, = 0.4 Vq.

51 Experimental Results

Experiment 1. The aim of our first experiment is
to measure the relative efficiency of iMPO versus MPO.
Quality of results is not a concern here, since both MPO
and iMPO return the same objects, although at different
times.

Our results confirm that iMPO consistently outperforms
MPO. In Figure 4 we show efficiency results for a specific
query (using either SL or RS preferences), results for other
queries being similar. For lack of space we just show the
number of sorted accesses. MPO, by its nature, delivers
objects in bursts, each burst corresponding to the termina-
tion of one layer. For instance, in Figure 4 (a) MPO needs
628 sorted accesses to return all the 27 images in the 1st
layer of the Skyline, 956 to complete the 2nd layer, and
so on. A somewhat bursty behavior is also observed with
iIMPO, starting from the 2nd layer. To explain this, con-
sider that even if all objects in the current layer have been
output, iIMPO still needs to wait that the test s; > s suc-
ceeds before moving to the next layer. This “waiting time”
leads to accumulate objects in the NextLayer, most of
which are subsequently delivered as soon as the test suc-
ceeds. Nonetheless, Figure 4 (c) shows that the gain in
efficiency of iMPO over MPO is remarkable; therefore in
the sequel we do not consider MPO anymore.

Experiment 2: In this second series of experiments our
goal is to compare iMPO and TA in terms of quality of
results.

Figure 5 (a) shows precision values versus k,..;, the

number of relevant objects retrieved. It can be seen that
SL, and RS in particular, preferences attain precision lev-
els comparable to that of avg, whereas min has a definitely
poor behavior.

Clearly, similar precision values do not imply similar
results. Indeed, we experimentally found that, on the aver-
age and for any value of k&, iMPO and TA share less than
50% of the relevant objects retrieved. Motivated by this
observation, we were led to investigate how to precisely
characterize such difference of results. To this end, we con-
sidered the distribution of relevant objects over the answer
space. By comparing the distributions of the relevant ob-
jects returned by iMPO (considering both SL and RS) and
TA (using avg and min), it is possible to establish which
one better fits the distribution of all relevant images in the
query class (thus, which one better represents the actual
class contents).

To properly compare the distributions of relevant re-
sults, we use an information-theoretic measure, related
to the cross-entropy of two distributions, known as the
Kullback-Leibler (/K L) divergence [8]. Given a reference
distribution f and a test one g, the KL divergence of g with
respect to f is defined as

KL(g; f) = /mf(rf)ln (%) dz.

KL(g; f) > 0, with 0 attained only if ¢ = f. Thus,
KL(g1; f) < KL(g2; f) denotes that ¢, fits f better than
g2-

In our case, we take f to be the distance distribution of
all the relevant objects for a query @, and the g;’s be the
(approximate) distance distributions of the relevant objects
returned in the first & = 100 results by TA and iMPO algo-
rithms. All distances are measured over the answer space,
by computing the Euclidean distance between the repre-
sentative points of relevant images.

Figure 5 (b) shows the (averaged over all query images)
actual distribution of the whole data set (label dataset in

0.50
—e—iMPO(SL)
i 0.35
0.45 —=—iMPO(RS)
——TA(avg) z 0.30 4
—s—TA(min) H
0.40 3
c T 0.25
o 2
[}
2035 % 0.20
£ 8
& T 0.15
0.30 g
s
8 0.10
0.25
0.05
0.20 0.00 ‘
0 20 40 60 80 100 o 0.2
k_rel
()

0.4

normalized distance

(b)

0.40
——iMPO(SL) —e—iMPO(SL)
—=—iMPO(RS) 0.351 —=—iMPO(RS)
—a—TA(avg) z 0.30 | ——TA(avg)
—»—TA(min) S —»—TA(min)
—o— dataset &0.25 1 —o—dataset

&

© 0.20

[

N

® 0.15

£

£

S 0.10

0.05

. —e—g 0.00
0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

normalized distance

(©)

Figure 5. Effectiveness comparison between iMPO and TA: (a) Precision vs no. of relevant retrieved
objects; global (b) and relative to the “TreeLeaves" class (c) distance distributions of relevant

objects

the figure) and those of TA and iMPO. Figure 5 (c) does the
same but just for queries of a specific class (“TreeLeaves”).
Table 1 synthesizes everything using K L divergence val-
ues.

iMPO(SL) | iMPO(RS) | TA(avg) | TA(min)
Global 0.032 0.006 0.297 0.550
TreeL. 0.050 0.031 0.312 0.680

Table 1. Kullback-Leibler (K'L) divergence
values for the distributions in Figure 5 (b)
and (c)

It is evident that iMPO with RS preferences, besides
leading to precision values comparable to those of avg, has
a remarkably better capability to reflect the actual distribu-
tion of relevant objects. Skyline preferences are, to this
end, slightly worse, even if divergence values are still one
order of magnitude better than those of avg and min.

Even if this is outside the scope of the paper, we re-
mark that an important advantage derived from having a
small value of KL is related to the implementation of ef-
fective relevance feedback mechanisms [14]. Common to
all these methods is the idea to exploit the user feedback
(given on the query outcome) in order to refine the initial
query. Thus, giving to the user a more accurate “overall
view” of the content of the query class, it is possible to
cut down the number of user-system interactions needed to
lead to acceptable results.

Experiment 3: In the third experiment our objective is
to analyze the efficiency of iMPO and TA in answering top
k queries.

Figure 6 shows how many sorted accesses and random
accesses are needed by the analyzed algorithms to deliver
k objects. In this case iMPO(SL) is undoubtedly the win-
ner, saving up to about 70% and 80% database accesses
against TA(avg) and TA(min), respectively. Efficiency of

iIMPO(RS) is slightly poorer, however reaching a perfor-
mance level that is always better than that of both TA(avg)
and TA(min) (35% and 60% speed-up, respectively).

3000
——IMPO(SL)

—=—iMPO(RS)
—s—TA(avg)
—»— TA(min)

2500 -

2000 -
% 1500 q
#*

1000 q

@

3000

—e—iMPO(SL)
—=—iMPO(RS)
—a—TA(avg)
—>—TA(min)

2500

2000 4

& 1500 -
1000 -

500 1

100

(b)

Figure 6. Sorted accesses (a) and random
accesses (b) vs no. of retrieved objects (k)

The reason iMPO(SL) outperforms iMPO(RS) is in the
two different delivery conditions used by the two methods.
Indeed, considering how RS preferences are defined, it can
be shown that (s ¥ rs si) = (s ¥ s si), thus the deliv-
ery condition of iIMPO(RS) is always stronger than that of
iMPO(SL). In particular, for iMPO(RS) it is likely the case

that the threshold point s belongs to a region that domi-
nates the region of s;, which is sufficient to have s > g s;.

Finally we present graphs where efficiency and quality
of results can be observed together. Figure 7 shows how
much we have to pay (in terms of sorted and random ac-
cesses, respectively) for each relevant object we retrieve.
The graphs confirm previous results, in particular the supe-
rior performance of qualitative preferences, and also show
that, starting with k.., > 50, the reduced efficiency of
iIMPO(RS) with respect to iMPO(SL) is compensated by
its superior effectiveness, which leads to a “per relevant ob-
ject” cost of IMPO(RS) almost equal to that of iMPO(SL).

——iMPO(SL)
—=—iMPO(RS)
—~—TA(avg)

——TA(min)

#SA/k_rel
& 2

0 20 40 60 80 100
no. of relevant objects (k_rel)
(@)

—e—iMPO(SL)
—=— iMPO(RS)
—a—TA(avg)

—»— TA(min)

0 20 40 60 80 100
no. of relevant objects (k_rel)

(b)

Figure 7. Sorted accesses (a) and random
accesses (b) vs no. of relevant retrieved ob-
jeCtS (krel)

6 Conclusions

In this paper, we have analyzed the impact of qualita-
tive preferences on multimedia query processing. We have
introduced two algorithms for efficiently performing in-
tegration of sub-queries and demonstrated their efficiency
on a real-world image database. We have also introduced
the class of Region-prioritized Skyline (RS) preferences,
which provide the best quality of results and enjoy a cost
per relevant object comparable to that of Skyline prefer-
ences.

Our work opens new interesting lines of research. First,
it would be interesting to apply qualitative preferences to
other challenging tasks, such as classification of multime-
dia objects, for which scoring functions have been consid-
ered the only viable alternative. Second, qualitative pref-
erences could also be profitably used for the evaluation of
sub-queries, thus generalizing the common approach re-
quiring a distance metrics to compare objects’ features.

References

[1] 1. Bartolini, P. Ciaccia, and F. Waas. FeedbackBypass: A
New Approach to Interactive Similarity Query Processing.
VLDB 2001, pages 201-210, 2001.

[2] M. Basseville. Distance Measures for Signal Processing and
Pattern Recognition. European Journal of Sgnal Process-
ing, 18(4):349-369, Dec. 1989.

[3] K. B8hm, M. Mlivoncic, H.-J. Schek, and R. Weber. Fast
Evaluation Techniques for Complex Similarity Queries.
VLDB 2001, pages 211-220, 2001.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline
Operator. |ICDE 2001, pages 421-430, 2001.

[5] J. Chomicki. Querying with Intrinsic Preferences. EDBT
2002, pages 34-51, 2002.

[6] J. Chomicki. Preference Formulas in Relational Queries.
ACM TODS 28(4):1-39, 2003.

[7] P. Ciaccia, M. Patella, and P. Zezula. Processing Complex
Similarity Queries with Distance-based Access Methods.
EDBT 1998, pages 9-23, 1998.

[8] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley, 1991.

[9] R.Fagin. Combining Fuzzy Information from Multiple Sys-
tems. PODS 1996, pages 216-226, 1996.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Efficient Similarity
Search and Classification via Rank Aggregation. SGMOD
2003, pages 301-312, 2003.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. PODS 2001, pages 216—226,
2001.

[12] P. C. Fishburn. Preference Structures and Their Nu-
merical Representations. Theoretical Computer Science,
217(2):359-383, 1999.

[13] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehro-
tra, and T. S. Huang. Supporting Ranked Boolean Similarity
Queries in MARS. |EEE TKDE, 10(6):905-925, 1998.

[14] S. M. Kaushik Chakrabarti, Michael Ortega and
K. Porkaew. Evaluating Refined Queries in Top-k
Retrieval Systems. |EEE TKDE, 16(2):256-270, 2004.

[15] R. Torlone and P. Ciaccia. Which Are My Preferred Items?
In AH2002 Wobrkshop on Recommendation and Personal-
ization in eCommerce (RPeC 2002), pages 1-9, 2002.

