
A Cost Model for Similarity Queries
in Metric Spaces ∗

Paolo Ciaccia
DEIS - CSITE-CNR

Bologna, Italy
pciaccia@deis.unibo.it

Marco Patella
DEIS - CSITE-CNR

Bologna, Italy
mpatella@deis.unibo.it

Pavel Zezula ∗∗
IEI-CNR
Pisa, Italy

zezula@iei.pi.cnr.it

Abstract

We consider the problem of estimating CPU (distance com-
putations) and I/O costs for processing range and k-nearest
neighbors queries over metric spaces. Unlike the specific case
of vector spaces, where information on data distribution has
been exploited to derive cost models for predicting the per-
formance of multi-dimensional access methods, in a generic
metric space there is no such a possibility, which makes the
problem quite different and requires a novel approach. We
insist that the distance distribution of objects can be prof-
itably used to solve the problem, and consequently develop
a concrete cost model for the M-tree access method [10].
Our results rely on the assumption that the indexed dataset
comes from a metric space which is “homogeneous” enough
(in a probabilistic sense) to allow reliable cost estimations
even if the distance distribution with respect to a specific
query object is unknown. We experimentally validate the
model over both real and synthetic datasets, and show how
the model can be used to tune the M-tree in order to min-
imize a combination of CPU and I/O costs. Finally, we
sketch how the same approach can be applied to derive a
cost model for the vp-tree index structure [8].

1 Introduction

In this work we consider the problem of estimating execution
costs for processing similarity (range and nearest neighbors)
queries over a set of points (objects) drawn from a metric
space M = (U , d), where U is a value domain and d is a met-
ric – a non-negative and symmetric function which satisfies
the triangular inequality (d(Oi, Oj) ≤ d(Oi, Ok)+d(Ok, Oj)
∀Oi, Oj , Ok ∈ U) – which measures the distance (dissimilar-
ity) of points of U .

∗This work has been funded by the EC ESPRIT project no. 9141
HERMES, and Italian C.N.R. MIDA. Pavel Zezula has also been sup-
ported by Grants GACR No. 102/96/0986 and KONTAKT No. PM96
S028.

∗∗On leave from the CVIS, Technical University, Údolni 19, Brno,
Czech Republic.

Metric spaces include multi-dimensional vector spaces,
where objects are compared using, say, Euclidean (L2) or
Manhattan (L1) distance, as well as non-vector spaces,
which are growingly encountered in advanced database ap-
plications, such as sequence comparison in molecular biology
[7], shape matching [15], fingerprint recognition [17], and
many other problems which typically occur in multimedia
environments. Common to all these cases is the fact that
comparing two objects (i.e. computing their distance) is a
non-trivial operation, which can take a time of the order of
milliseconds and even more.

In order to efficiently support similarity queries over met-
ric spaces, several index structures have been developed so
far, including the vp-tree [8], the GNAT [6], and the mvp-
tree [4]. Although different in their organizing principles,
these indexes share a common static nature, and only at-
tempt to reduce the number of distance computations (CPU
costs), paying no attention to I/O costs. In contrast, the
M-tree [10] nicely combines principles of metric trees with
basic features of database access methods, thus resulting in
a paged, dynamic, and balanced access structure which aims
to minimize both I/O and CPU costs. Although application
of metric trees to real world problems has been proved to be
effective [6, 5], even on “traditional” vector spaces, no theo-
retical analysis able to predict and justify their performance
results is available nowadays. In other terms, no cost model
for metric trees exists yet , which makes their applicability
to a specific dataset still a matter of chance. For instance,
given a large set of keywords extracted from a text, to be
compared using the edit (Levenshtein) distance – the mini-
mal number of changes (insertions, deletions, substitutions)
needed to transform a string into another one – and an in-
put (query) keyword Q, which is the expected (CPU and
I/O) cost to retrieve the, say, 20 nearest neighbors of Q,
that is, the 20 strings which are “closest” to Q? Being able
to answer questions like this is relevant for database design,
query processing, and optimization, since it would provide
us with the capability of understanding and tuning a metric
access method, and will make it possible to apply optimizers’
technology to metric query processing too.

In this paper we introduce the first cost model for metric
trees. We concentrate on the M-tree, whose basic principles
are reviewed in Section 1.1, since it is the only disk-based
metric index. The first problem we deal with concerns the
absence of a coordinate-based space, which consequently in-
hibits us to exploit, among other things, information on data
distribution, which has indeed been the key to develop ef-

fective cost models [16, 12, 20, 19, 3] for multi-dimensional
access methods, such as the R-tree [13, 1] (see Section 1.2).
To obviate this situation, we take the direction of building
our model around the distance distribution, F , of pairwise
distances between objects, which is the basic property of
a metric space for which we can get and maintain statis-
tics. A basic problem in using F (or some statistics of F)
concerns what we call the “homogeneity of viewpoints”, for-
mally defined in Section 2. Intuitively, F is a “summary” of
distance values, which mixes up together the distances each
object has with respect to others. In case of (highly) non-
homogeneous spaces, the (relative) distance distribution of
an object would be markedly different from that of other
objects, which could seriously limit predictive capabilities of
a cost model based on F . It is therefore a pleasant finding
to observe that real, as well as “realistic” synthetic, datasets
are highly homogeneous, a fact we exploit in our cost model.
Section 3 introduces the model, called N-MCM (Node-based
Metric Cost Model), which can accurately predict both I/O
and CPU expected costs for range and nearest neighbors
queries. The problem with N-MCM is the amount of in-
formation about the tree to be kept, which is proportional
to the number of index nodes. To obviate this, a simpli-
fied model, L-MCM (L for Level), is then introduced, which
only uses average statistical information on the tree struc-
ture, collected on a per-level basis. Experimental results in
Section 4 show that L-MCM still serves its purpose quite
well. We also show, in Section 4.1, how our cost model(s)
can be effectively used to tune the M-tree, namely how an
optimal node size, depending on the specific dataset, can be
chosen to minimize a combination of CPU and I/O costs.
In Section 5 we discuss how a cost model to predict vp-tree
query performance, based on the same assumptions of the
M-tree models, could be derived. Several problems raised by
our approach are finally discussed in Section 6.

1.1 The M-tree
The M-tree [10] can index objects from a generic metric
space M = (U , d), but, besides this peculiarity, it shares
many similarities with R-trees and other spatial access meth-
ods, since it adheres to the GiST framework [14], which spec-
ifies a common software kernel for developing database in-
dexes.

Given a set of objects O = {O1, . . . , On}, O ⊆ U , the
M-tree stores them into fixed-size leaf nodes, which corre-
spond to regions (balls) of the metric space. Each entry
in a leaf node has the format [Oi, oid(Oi)], where Oi ∈ O
and oid(Oi) is a pointer to the corresponding description
of Oi. Internal (non-leaf) nodes store entries with format
[Or, r(Nr), ptr(Nr)], where Or is a so-called routing point ,
r(Nr) > 0 is a covering radius, and ptr(Nr) is a pointer to
the child node Nr. The basic property of the covering radius
is that each object Oi in the sub-tree rooted at Nr satisfies
the constraint d(Or, Oi) ≤ r(Nr), that is, all the objects
Oi reachable from node Nr are in the ball of radius r(Nr)
centered in Or. Clearly, the actual “shape” of such balls de-
pends on the specific metric space (U , d). For instance, balls
are “diamonds” in (
2, L1), circles in (
2, L2), and squares
in (
2, L∞). From an overall point of view, it can be seen
that the M-tree organizes the database objects into a set of,
possibly overlapping, balls, to which the same principle is
recursively applied up to the root of the tree.

Similarity queries supported by the M-tree are of two ba-
sic types: range queries, denoted range(Q, rQ), where, given

a query (reference) object Q ∈ U , all the objects whose dis-
tance from Q does not exceed rQ are selected; k-nearest
neighbors queries, NN(Q, k), where the k (k ≥ 1) closest ob-
jects to Q have to be retrieved, with ties arbitrarily broken.
The NN search algorithm implemented in the M-tree is op-
timal , in the sense of [3], since it only accesses those nodes
whose region intersects the NN(Q, k) ball, that is, the ball
centered in Q with radius given by the distance between Q
and its k-th nearest neighbor.

1.2 Related Work
No specific work has addressed yet the problem of estimating
costs for queries over generic metric spaces. Nonetheless, it
is useful to review what has been done in recent years for
the case of vector (Cartesian) spaces, which are a subset
of metric spaces, with a major focus on the performance of
R-tree and its variants.

In [16] the authors present a model to estimate I/O costs
for range queries as a function of the geometric character-
istics of R-tree’s nodes, on the assumption that queries are
rectangles uniformly distributed in the space. Extension to
fractal datasets is presented in [12], assuming that nodes are
square-shaped, and showing that relative errors are rarely
above 12%. The estimation of the fractal dimension of a
dataset is based on a box-counting algorithm which subdi-
vides the indexed space into hyper-cubic grid cells. Exten-
sion of the model to predict selectivities of range queries and
spatial joins under the biased query model (queries are more
likely in high-density areas of the space) is presented in [2].
A model for predicting I/O costs of range queries, without
knowledge of R-tree characteristics, is introduced in [20].
The model exploits statistical information on data distribu-
tion, represented in the form of a density histogram, and ex-
hibits relative errors around 5%-15% for 2-dimensional range
queries.

Performance of nearest neighbors queries, for the case
k = 1, has been considered in [19] and [3]. In [19] the analysis
focuses on 2-dimensional Euclidean spaces and derives lower
and upper bounds for I/O costs by exploiting the notion of
fractal dimension and assuming that query points belong to
the dataset. Finally, [3] introduces a cost model for nearest
neighbor search in high-dimensional Euclidean spaces. The
model estimates the expected NN distance and the number
of accessed index pages under the assumption of a uniform
distribution of points.

Above models either strongly rely on the Cartesian na-
ture of the space and on knowledge of the data distribution
or exploit the concept of fractal dimension. Since this is in-
deed a metric concept [18, page 357], it would in principle
be possible to apply it to generic metric spaces too, and we
leave it as an interesting topic for future research.

2 The Distance Distribution

In this work we pursue an approach which does not rely on
data distribution, rather it takes a more general view, able to
deal whith generic metric spaces, which can be characterized
by the following positions:

1. The only information derivable from the analysis of a
metric dataset is (an estimate of) the distance distri-
bution of objects. No information on data distribution
is used.

2. A biased query model is considered, with query objects
which do not necessarily belong to the indexed dataset.

We claim that the distance distribution is the correct coun-
terpart of data distribution used for vector spaces, since it is
the “natural” way to characterize a metric dataset. As to the
biased query model, which apparently contradicts the posi-
tion that no knowledge of the data distribution is assumed,
we clarify this point by precisely defining our working sce-
nario.

We consider bounded random metric (brm) spaces, M =
(U , d, d+, S), where U and d are as usual, d+ is a finite upper
bound on distance values, and S is a measure of probability
over (a suitable Borel field defined on) U . To help intuition,
we slightly abuse terminology and call S the data distribu-
tion over U . Although S has no specific role in our cost
model (we do not need to know S and never use it), its ex-
istence is postulated both for formal reasons and to account
for the nature of the observed datasets (see Section 2.1).

For instance, ([0, 1]D, L2,
√

D,U([0, 1]D)) is the brm space
characterized by a uniform distribution of points over the
D-dimensional unit hypercube, and where distance between
points is measured by the Euclidean (L2) metric. As another
example, (Σm, Ledit,m, S) is the brm space whose domain is
the set of all the strings of length up to m over the Σ alpha-
bet, whose distance is measured by the edit (Levenshtein)
metric, and with data distribution S, here left unspecified.

The (overall) distribution of distances over U is defined
as:

F (x) = Pr{d(O1,O2) ≤ x} (1)

where O1 and O2 are two (independent) S-distributed ran-
dom points of U . For each Oi ∈ U , the relative distance dis-
tribution, rdd, of Oi is obtained by simply setting O1 = Oi

in above expression, i.e:

FOi(x) = Pr{d(Oi,O2) ≤ x} (2)

For what follows it is useful to regard FOi as the Oi’s “view-
point” of the U domain, as determined by d and S. The fact
that different objects can have different viewpoints is the
general rule. Even for a uniform distribution over a bounded
Cartesian domain, the center’s viewpoint is not the same as
the viewpoint an object close to the boundary has. In order
to measure how much two viewpoints are (dis-)similar, we
introduce the concept of discrepancy .

Definition 1 The discrepancy of the two rdds FOi and FOj

is defined as:

δ(FOi , FOj) =
1

d+

∫ d+

0

‖FOi(x)− FOj (x)‖ dx (3)

The discrepancy of any pair of rdds is a real number in the
unit interval [0, 1], and equals 0 iff FOi and FOj are the same
(which does not imply, however, that Oi ≡ Oj). Note that
δ is a metric on the functional space F = {FOi : Oi ∈ U},
as it can be easily verified.

Consider now the case where bothO1 andO2 are random

points. Under this view, ∆
def
= δ(FO1 , FO2) is a random

variable, and G∆(y) = Pr{∆ ≤ y} is the probability that
the discrepancy of two (random) rdds is not larger than
y. The higher, for a given y, G∆(y) is, the more likely is
that two rdds FOi and FOj “behave” the same, up to an
y level of discrepancy. Therefore, if G∆(y) ≈ 1 for a “low”

y value, we can say that the brm space M from which G
is derived is somewhat “homogeneous” as to the viewpoints
that objects in U , weighted according to the S distribution,
have. This observation is captured by introducing an index
of homogeneity for brm spaces.

Definition 2 The index of “Homogeneity of Viewpoints” of
a brm space M is defined as:

HV (M) =

∫ 1

0

G∆(y)dy = 1− E[∆] (4)

Example 1 Consider the brm space M = ({0, 1}D ∪
{(0.5, . . . , 0.5)}, L∞, 1, U), where the domain is the D-
dimensional binary hypercube extended with the “midpoint”
C = (0.5, . . . , 0.5), points are uniformly distributed, and
L∞(Oi, Oj) = maxk{‖Oi[k] − Oj [k]‖}. For all Oi, Oj ∈
{0, 1}D it is δ(FOi , FOj) = 0, whereas δ(FOi , FC) = 1/2 −
1/(2D + 1). It follows that G∆(y) = (22D + 1)/(2D + 1)2

for 0 ≤ y < 1/2 − 1/(2D + 1), and G∆(y) = 1 for
1/2− 1/(2D + 1) ≤ y ≤ 1. Therefore

HV (M) = 1− 22D − 2D(
2D + 1

)3

D→∞−→ 1

For instance, when D = 10, it is HV (M) ≈ 1−0.97×10−3 ≈
0.999. Since all points but C have the same view of M, even
for moderately large values of D the presence of C has a
negligible effect on HV (M). ✷

The relevance of HV lies in the fact that, with a single value,
we can characterize the whole brm space with respect to how
objects “see” such a space. The higher HV (M) is, the more
two random points are likely to have an almost common view
of M. Therefore, HV (M) ≈ 1 denotes high homogeneity
in the M space as to objects’ distance distributions (but
not necessarily with respect to data distribution!). As we
will show in the next section, HV can be high even for real
datasets.

2.1 Dealing with Database Instances
A database instance O = {O1, . . . , On} of U is, according
to our view, an n-sized sample of objects, selected according
to the (unknown) S data distribution over U . From this
sample, the basic information we can derive about the brm

space M is an estimate of F , denoted F̂n, represented by
the n×n matrix of pairwise distances between objects in O.

For estimating the cost of a query (either range or nearest
neighbors), the best thing would be to know FQ, i.e. the
rdd of the query object itself. However, in the general case
this is a hopeless alternative, since Q is not restricted to

belong to O. What if we use F̂n in place of FQ? As long
as the two distributions behave almost the same, we do not
expect relevant estimate errors from any cost model we could

devise, provided the model correctly uses F̂n.
In order to verify the above possibility, we computed the

HV index for several synthetic and real datasets, summa-
rized in Table 1. The clustered datasets consist of D-
dimensional vectors normally-distributed (with σ=0.1) in 10
clusters over the unit hypercube. Text datasets in Table 1
are sets of keywords extracted from 5 masterpieces of Ital-
ian literature. For all these datasets we observed HV values
always above 0.98, which justifies the following assumption
we make for deriving our cost model:

Name Description Size Dim. (D) Metric

clustered clustered distr. points on [0, 1]D 104 − 105 5 − 50 L∞
uniform uniform distr. points on [0, 1]D 104 − 105 5 − 50 L∞
D Decamerone 17, 936 edit
DC Divina Commedia 12, 701 edit
GL Gerusalemme Liberata 11, 973 edit
OF Orlando Furioso 18, 719 edit
PS Promessi Sposi 19, 846 edit

Table 1: Datasets

Assumption 1 The homogeneity of viewpoints index, HV ,
is “high” (close to 1), and the relative distance distribution

of a query object Q is well approximated by the sampled F̂n

distance distribution.

The second part follows from the facts that: (a) if objects’
rdds almost behave the same, so will do their average, that

is F̂n, and (b) we assume a biased query model.

3 The Cost Models for M-tree

Symbol Description
n number of indexed objects
F (x) distance distribution
f(x) distance density function
Q query object
rQ query radius
k number of nearest neighbors
M number of nodes in the M-tree
Or routing object
r(Nr) covering radius of node Nr

e(Nr) number of entries in node Nr

L height of the M-tree
Ml number of nodes at level l of the M-tree
rl average covering radius of nodes at level l

Table 2: Summary of symbols and respective definitions

In this Section we present two different models: the Node-
based Metric Cost Model (N-MCM) makes use of statistics
for each node of the tree, while the simplified Level-based
model (L-MCM) exploits only statistics collected on a per-
level basis. Relevant symbols and their descriptions are given
in Table 2.

3.1 The Node-based Metric Cost Model
Consider a range query range(Q, rQ). A node Nr of the
M-tree has to be accessed iff the ball of radius rQ centered
in the query object Q and the region associated with Nr

intersect. This is the case iff d(Q,Or) ≤ r(Nr) + rQ, as it
can be derived by triangular inequality, which requires that
the distance between the two “centers” is not greater than
the sum of the two radii. The probability that Nr has to be
accessed can therefore be expressed as:1

Pr{node Nr is accessed} = (5)

= Pr{d(Q,O) ≤ r(Nr) + rQ} =
= FQ(r(Nr) + rQ) ≈ F (r(Nr) + rQ)

1The radius r(Nr) is not defined for the root node. To obviate this

we assume that the root has radius r(Nroot) = d+.

where the uncertainty is due to the position in the space
of the routing object of Nr, here considered to be a random
point, and the approximation exploits Assumption 1. To de-
termine the expected I/O cost for a range query is sufficient
to sum above probabilities over all the M nodes of the tree:

nodes(range(Q, rQ)) =

M∑
i=1

F (r(Nri) + rQ) (6)

The number of distance computations (CPU cost) is es-
timated by considering the probability that a page is ac-
cessed multiplied by the number of its entries, e(Nri), thus
obtaining:2

dists(range(Q, rQ)) =

M∑
i=1

e(Nri)F (r(Nri) + rQ) (7)

Finally, the expected number of retrieved objects is esti-
mated as:

objs(range(Q, rQ)) = n · F (rQ) (8)

Let us now consider the case of a nearest neighbors query,
NN(Q, k), on the assumption that k < n. As a first step we
determine the expected distance between the query object
and its k-th nearest neighbor, which depends on the distance
distribution F . Let nnQ,k be the RV standing for the dis-
tance of the k-th nearest neighbor of Q. The probability
that nnQ,k is at most r equals the probability that at least
k objects are inside the ball of radius r centered in Q, that
is:

PQ,k(r)
def
= Pr{nnQ,k ≤ r} =

=

n∑
i=k

(
n

i

)
Pr{d(Q,O) ≤ r}i Pr{d(Q,O) > r}n−i =

= 1−
k−1∑
i=0

(
n

i

)
F (r)i(1− F (r))n−i (9)

The density function pQ,k(r) is obtained by taking the deriva-
tive of PQ,k(r):

pQ,k(r) =
d

dr
PQ,k(r) = (10)

=

k−1∑
i=0

(
n

i

)
F (r)i−1f(r)(1− F (r))n−i−1(nF (r)− i)

2The optimization strategies described in [10] for reducing the
number of distance computations are not considered here, and their
inclusion in the cost model is left as a subject for future research.

and the expected k-th nearest neighbor distance is computed
by integrating pQ,k(r) over all r values:

E[nnQ,k] =

∫ d+

0

r · pQ,k(r) dr =

= |r PQ,k(r)|d
+

0 −
∫ d+

0

PQ,k(r) dr =

= d+ −
∫ d+

0

PQ,k(r) dr (11)

For k = 1, above results simplify as follows:

PQ,1(r) = 1− (1− F (r))n (12)

pQ,1(r) =
d

dr
PQ,1(r) = n f(r) (1− F (r))n−1 (13)

E[nnQ,1] =

∫ d+

0

r · pQ,1(r) dr =

=

∫ d+

0

(1− F (r))n dr (14)

and reduce to those derived in [3] for vector spaces and Eu-
clidean distance. We remark, however, that above formulas
are suitable for generic metric spaces, since they do not re-
quire the computation of any “Cartesian volume”, as done
in [3].

The expected number of page reads can now be obtained
by integrating Eq. 6 over all radius values, each value weighted
by its probability to occur, as given by Eq. 10. For the case
k = 1 we obtain

nodes(NN(Q, 1)) =

∫ d+

0

nodes(range(Q, r)) pQ,1(r) dr =

=

∫ d+

0

M∑
i=1

F (r(Nri + r) n f(r) (1− F (r))n−1 dr

The same principle is applied to determine the expected
number of computed distances, for which the number of en-
tries in each node has to be considered:

dists(NN(Q, 1)) =

∫ d+

0

dists(range(Q, r)) pQ,1(r) dr =

=

∫ d+

0

M∑
i=1

e(Nri) F (r(Nri + r)) n f(r) (1− F (r))n−1 dr

3.2 The Level-based Metric Cost Model
The basic problem with N-MCM is that mantaining statis-
tics for every node of the tree requires O(M) = O(n) space
and the computation of expected values has the same com-
plexity, thus can be very time consuming when the index
is (very) large. To obviate this, we consider a simplified
model, called L-MCM, which uses only average information
collected for each level of the M-tree. This will intuitively
lead to a lower accuracy with respect to N-MCM, but, as
shown in Section 4, estimates are still accurate enough.

For each level l of the tree (l = 1, . . . , L, with the root
at level 1 and leaves at level L), L-MCM just uses two in-
formation: Ml (the number of nodes at level l), and rl (the

average value of the covering radius considering all the nodes
at level l). Given these statistics, and referring to Eq. 6, the
number of pages accessed by a range query can be estimated
as:

nodes(range(Q, rQ)) ≈
L∑

l=1

Ml F (rl + rQ) (15)

Similarly, we can estimate CPU costs as:

dists(range(Q, rQ)) ≈
L∑

l=1

Ml+1 F (rl + rQ) (16)

where ML+1
def
= n is the number of indexed objects. Com-

pared to Eq. 7, we have exploited the simple observation
that the number of nodes at a given level equals the number
of entries at the next upper level of the tree.

Correspondingly, I/O and CPU costs for a NN(Q, 1) query
are estimated as follows:

nodes(NN(Q, 1)) ≈ (17)

≈
∫ d+

0

L∑
l=1

Ml F (rl + r) n f(r) (1− F (r))n−1 dr

dists(NN(Q, 1)) ≈ (18)

≈
∫ d+

0

L∑
l=1

Ml+1 F (rl + r) n f(r) (1− F (r))n−1 dr

4 Experimental Evaluation

In order to evaluate the accuracy of our cost models, we ran
several experiments on both synthetic and real datasets, as
described in Table 1. Estimates were compared with actual
results obtained by the M-tree, which was built using the
BulkLoading algorithm described in [9] with a node size of
4 Kbytes and a minimum node utilization of 30%.

The first set of experiments concerns the clustered datasets,
and investigates accuracy of estimates as a function of the
dimensionality D of the space. The distance distribution is
approximated by an equi-width histogram with 100 bins, re-

spectively storing the values of F̂n(0.01), F̂n(0.02), and so
on.

Figures 1 (a) and 1 (b) show estimated and real (averaged
over 1000 queries) CPU and I/O costs, respectively, for range

queries with radius D
√
0.01/2. It can be seen that N-MCM is

very accurate, with a maximum relative error of 4%, while
the performance of L-MCM is worse yet still good (with error
below 10%). Figure 1 (c) shows that also query selectivity
is well estimated, with errors never exceeding 3%.

Analysis of nearest neighbors queries is presented in Fig-
ure 2 for the case k = 1. Actual costs (averaged over 1000
queries) are contrasted with those estimated by three differ-
ent models:

1. The L-MCM (Equations 18 and 19);

2. The costs of a range query, range(Q,E[nnQ,1]), with
radius equal to the expected NN distance (Eq. 14);

3. The costs of a range query with a radius such that the
expected number of retrieved objects is at least 1, that
is, range(Q, r(1)), r(1) = min{r : n · F (r) ≥ 1} (Eq.
8).

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

Dim

Experimental
N-MCM
L-MCM

(a)

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

I/O
 c

os
ts

Dim

Experimental
N-MCM
L-MCM

(b)

500

550

600

650

700

750

800

850

900

950

1000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 O

bj
ec

ts

Dim

Experimental
N-MCM

(c)

Figure 1: Estimated and real CPU (a) and I/O (b) costs for

range queries range(Q, D
√
0.01/2) as a function of the space

dimensionality D; (c): Estimated and real cardinality of the
result

Figures 2 (a) and 2 (b) demonstrate that cost estimates
are highly reliable, even if errors are higher with respect to
the range queries case. Figure 2 (c), showing actual and esti-
mated NN distances, points out how the model based on r(1)
can lead to high errors for high D values, which is mainly
due to the approximation introduced by the histogram rep-
resentation.

Experiments on the real datasets of text keywords (see
Table 1) were based on 25-bins histograms, since 25 was
the maximum observed edit distance. Figures 3 (a) and 3
(b) compare the analitically predicted CPU and I/O costs,
respectively, with those experimentally obtained for 1000
range queries with radius 3. Relative errors are usually be-
low 10% and rarely reach 15%.

Finally, Figures 4 (a) and 4 (b) compare estimated and
real costs for range queries over the clustered dataset with
D = 20 and a variable query radius.

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 c
om

pu
ta

tio
ns

Dim

Experimental
L-MCM

range(Q,E[nn_{Q,1}])
range(Q,r(1))

(a)

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50

I/O
 c

os
ts

Dim

Experimental
L-MCM

range(Q,E[nn_{Q,1}])
range(Q,r(1))

(b)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 5 10 15 20 25 30 35 40 45 50

N
N

 d
is

ta
nc

e

Dim

Experimental
L-MCM

range(Q,r(1))

(c)

Figure 2: Estimated and real CPU (a) and I/O (b) costs for
nearest neighbors queries NN(Q, 1) as a function of the space
dimensionality D; (c): Estimated and real distance of the
nearest neighbor

4.1 Tuning the M-Tree
The cost model(s) can be exploited to tune the M-tree de-
sign, by helping to choose a “right” node size which min-
imizes a combination of I/O and CPU costs. Unlike the
case where I/O costs are the dominant factor, and for which
the best choice would be to have a node size equal to the
maximum size of a block readable from disk, in our scenario
distance computations can have a not negligible weight in
determining the overall costs. This suggests that increasing
the node size can have a negative effect on CPU costs. Fig-
ure 5 (a) shows the number of node accesses and of distance
computations predicted by the N-MCM for range queries of
radius 5

√
0.01/2 in the 5-dimensional hypercube, where the

M-tree indexes 106 clustered objects, with increasing node
sizes in the range [0.5, 64] Kbytes. As predicted, I/O costs
are decreasing for increasing node sizes, whereas CPU costs
present a marked minimum. Suppose that the cost for a
distance computation is cCPU and the cost for a disk access

0

2000

4000

6000

8000

10000

12000

14000

D DC GL OF PS

di
st

an
ce

 c
om

pu
ta

tio
ns

dataset

Experimental
N-MCM
L-MCM

(a)

0

500

1000

1500

2000

D DC GL OF PS

I/O
 c

os
ts

dataset

Experimental
N-MCM
L-MCM

(b)

Figure 3: Estimated and real CPU (a) and I/O (b) costs for
range queries for each text dataset

is cI/O = tpos + NS · ttrans, where tpos is the disk posi-
tioning time and ttrans is the transfer time for 1 KB: the
optimal choice is then to have a node size NS for which
cCPU · dists(Q;NS) + cI/O · nodes(Q;NS) is minimum. In
Figure 5 (b) we show estimated and real costs for the case
where cI/O = (10 + NS · 1) msecs and cCPU = 5 msecs,
which leads to an optimal node size of 8 KB.

5 The Case of vp-trees

In order to show how our approach could be extended to
other metric trees, in this Section we discuss how a cost
model for range queries over vp-trees [8] could be derived.
To this end, we consider the same basic principles used for
M-tree, that is:

• The distance distribution is known.

• The biased query model is used.

• The homogeneity of viewpoints is high.

The vp-tree partitions the data space using spherical cuts
around so-called vantage points. In a binary vp-tree, each
internal node has the format [Ov, µ, ptrl, ptrr], where Ov

is the vantage point (i.e. an object of the dataset promoted
using a specific algorithm), µ is (an estimate of) the median
of the distances between Ov and all the objects reachable
from the node, and ptrl and ptrr are pointers to the left and
right child, respectively. The left child of the node indexes
the objects whose distance from Ov is less than or equal to
µ, while the right child indexes the objects whose distance
from Ov is greater than µ. The same principle is recursively
applied to the lower levels of the tree, leading to an almost
balanced index.

2000

2500

3000

3500

4000

4500

5000

1e-05 0.0001 0.001 0.01 0.1

di
st

an
ce

 c
om

pu
ta

tio
ns

Query volume

Experimental
N-MCM
L-MCM

(a)

200

250

300

350

400

450

500

1e-05 0.0001 0.001 0.01 0.1

I/O
 c

os
ts

Query volume

Experimental
N-MCM
L-MCM

(b)

Figure 4: Estimated and real CPU (a) and I/O (b) costs for
range queries as a function of the query volume

The binary vp-tree can be easily generalized into a multi-
way vp-tree, having nodes with a higher fanout, by partition-
ing the distance values between the vantage point and the
data objects into m groups of equal cardinality. Then, the
distance values µ1, . . . , µm−1 used to partition the set are
stored in each node, replacing the median value µ. Such val-
ues are referred to as cutoff values. Figure 6 shows a node
of a 5-way vp-tree.

Now, consider a range query range(Q, rQ) on an m-way
vp-tree.3 Starting from the root, the system computes the
distance between the query object Q and the vantage point
Ov, then descends only those branches whose region inter-
sects the query region. Thus, the i-th child of the root,
Nri , has to be accessed, and the distance between the cor-
responding vantage point and Q computed,4 iff µi−1 − rQ <
d(Q,Ov) ≤ µi + rQ, (i = 1, . . . ,m, where µ0 = 0 and µm =
d+). Thus, the probability that Nri has to be accessed is:

Pr{Nri accessed} = (19)

= Pr{µi−1 − rQ < d(Q,Ov) ≤ µi + rQ} =
= FQ(µi + rQ)− FQ(µi−1 − rQ) ≈
≈ F (µi + rQ)− F (µi−1 − rQ)

where, as in Eq. 5, the uncertainty is due to the position of
the vantage point and the approximation relies on Assump-
tion 1. Figure 7 shows the probability to access the second
child of the root in a 3-way vp-tree.

The homogeneity assumption also allows us to estimate
the cutoff values without actually building the tree. In fact,

3The extension to nearest neighbors queries follows the same prin-
ciples and is not presented here for the sake of brevity.

4Since the vp-tree is not paged, in the following we will assume
that the index is stored in main memory, thus ignoring I/O costs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.5 1 2 4 8 16 32 64

C
os

ts

Node size (Kbytes)

CPU
I/O

(a)

60000

70000

80000

90000

100000

110000

120000

130000

140000

0.5 1 2 4 8 16 32 64

m
se

cs

Node size (Kbytes)

L-MCM
Experimental

(b)

Figure 5: (a) Predicted I/O and CPU costs for variable node
size. (b) Overall estimated and real costs (in msecs)

µ3µ2µ1 µ4 d+

Ov

Figure 6: A node of a 5-way vp-tree

each µi can be estimated as the i/m quantile of F (), that is
F−1(i/m).5 It follows that Eq. 19 can be rewritten as:

Pr{Nri accessed} ≈ (20)

≈ F (F−1(i/m) + rQ)− F (F−1((i − 1)/m)− rQ)

Therefore, among the m children of the root,

m∑
i=1

F (F−1(i/m) + rQ)− F (F−1((i − 1)/m)− rQ) (21)

nodes have to be accessed, on the average.
Above arguments are not directly applicable to the lower

levels of the tree, because of constraints on the distance dis-
tribution. In fact, suppose the i-th child of the root, Nri ,
is accessed. The distance between the objects in the corre-
sponding sub-tree is bounded by the triangle inequality to
be lower than or equal to 2µi, as Figure 8 shows.

Since the probability of accessing the j-th child of Nri ,
denoted Nri,j , can be computed as:

Pr{Nri,jaccessed} =
= Pr{Nri,jaccessed|Nriaccessed} · Pr{Nriaccessed}

5For simplicity of notation, here we assume that F () is invertible.

µ 1 µ 2

rQ rQ

d+

1

2/3

1/3

P

F

d

Figure 7: P is the probability to access the second child of
the root in a 3-way vp-tree

µ i-1

µ i

2µ i

Ov

vO
i

Figure 8: The distance between the objects in the sub-tree
rooted at Nri cannot exceed 2µi

the problem is to determine Pr{Nri,jaccessed|Nriaccessed}.
For this Eq. 20 cannot be directly applied, since the maxi-
mum distance is now bounded by 2µi. Therefore, the dis-
tance distribution has to be “normalized” to the new bound,
thus obtaining the distance distribution:

Fi(x) =

{
F (x)

min{1, F (2µi)} if x ≤ 2µi

1 if x > 2µi

(22)

Thus, the probability of accessing Nri,j is obtained by sub-
stituting Fi(), as given by Eq. 22, for F () in Eq. 20:

Pr{Nri,jaccessed|Nriaccessed} ≈ (23)

≈ Fi(F
−1
i (j/m) + rQ)− Fi(F

−1
i ((j − 1)/m)− rQ)

Following this approach it is possible to compute the
probability of accessing every node of the vp-tree, thus ob-
taining a cost formula similar to Eq. 7, with e(Nri) = 1.
The intuitive complexity of such a formula would suggest,
as done for M-tree, to derive a level-based cost model. How-
ever, due to the “asymmetry” of the vp-tree – the probability
of accessing a node depends on the specific path to the node
itself – this appears to be a difficult problem.

6 Conclusions

In this work we have presented a cost model, N-MCM, for es-
timating CPU and I/O costs for processing range and nearest
neighbors queries over generic metric spaces, when objects

are indexed using an M-tree. A simplified version of the
model, L-MCM, has also been introduced, with the major
aim of minimizing the amount of statistics of the tree to be
kept. N-MCM is the first model for queries on metric spaces,
and is based on the idea of using the distance distribution of
objects and on the assumption of a probabilistically “homo-
geneous” metric space. This concept has been formalized,
by introducing the HV index, and shown to be valuable to
characterize both real and synthetic datasets. Experimental
results show that both N-MCM and L-MCM accurately es-
timates costs, with errors rarely exceeding 10%. Finally, we
also applied the same principles to show how a cost model
for vp-trees could be derived.

From a both theoretical and practical point of view, our
work raises some questions, to which we will try to answer
in the prosecution of the research:

• A cost model which does not use tree statistics at
all, but only relies on information derivable from the
dataset, is the major challenge we are dealing with.
The key problem appears to be formalizing the corre-
lation between covering radii and the distance distri-
bution.

• For non-homogeneous spaces (HV � 1) our model is
not guaranteed to perform well. This suggests an ap-
proach which keeps several “viewpoints”, and properly
combines them to predict query costs. This would al-
low a cost model based on query “position” (relative
to the viewpoints) to be derived, thus being able to
change estimates depending on the specific query ob-
ject.

• We plan to extend our cost model to deal with “com-
plex” similarity queries [11] - queries consisting of more
than one similarity predicate.

• We also intend to develop a complete model for vp-
trees, following the arguments presented in Section 5,
and to validate it through an experimental evaluation
as done with M-tree.

• Finally, we plan to exploit concepts of fractal theory,
which, we remind, is in principle applicable to generic
metric spaces.

Acknowledgements
The authors would like to thank the PODS ’98 Program
Committee members for their helpful comments about the
original version of the paper.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger. The R∗-tree: An efficient and robust access
method for points and rectangles. In Proceedings of the
1990 ACM SIGMOD International Conference on Man-
agement of Data, pages 322–331, Atlantic City, NJ, May
1990.

[2] A. Belussi and C. Faloutsos. Estimating the selectiv-
ity of spatial queries using the ‘correlation’ fractal di-
mension. In Proceedings of the 21st International Con-
ference on Very Large Data Bases (VLDB’95), pages
299–310, Zurich, Switzerland, September 1995.

[3] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel.
A cost model for nearest neighbor search in high-
dimensional data space. In Proceedings of the 16th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’97), pages 78–86, Tucson,
AZ, May 1997.

[4] T. Bozkaya and M. Özsoyoglu. Distance-based indexing
for high-dimensional metric spaces. In Proceedings of
the 1997 ACM SIGMOD International Conference on
Management of Data, pages 357–368, Tucson, AZ, May
1997.

[5] T. Bozkaya, N. Yazdani, and M. Özsoyoglu. Matching
and indexing sequences of different lengths. In Pro-
ceedings of the 6th International Conference on Infor-
mation and Knowledge Management (CIKM’97), pages
128–135, Las Vegas, NE, November 1997.

[6] S. Brin. Near neighbor search in large metric spaces.
In Proceedings of the 21st International Conference on
Very Large Data Bases (VLDB’95), pages 574–584,
Zurich, Switzerland, September 1995.

[7] W. Chen and K. Aberer. Efficient querying on genomic
databases by using metric space indexing techniques.
In 1st International Workshop on Query Processing and
Multimedia Issues in Distributed Systems (PMIDS’97),
Toulouse, France, September 1997.

[8] T. Chiueh. Content-based image indexing. In Pro-
ceedings of the 20th International Conference on Very
Large Data Bases (VLDB’94), pages 582–593, Santiago,
Chile, September 1994.

[9] P. Ciaccia and M. Patella. Bulk loading the M-tree. In
Proceedings of the 9th Australasian Database Confer-
ence (ADC’98), pages 15–26, Perth, Australia, Febru-
ary 1998.

[10] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In Proceedings of the 23rd International Con-
ference on Very Large Data Bases (VLDB’97), pages
426–435, Athens, Greece, August 1997.

[11] P. Ciaccia, M. Patella, and P. Zezula. Processing com-
plex similarity queries with distance-based access meth-
ods. In Proceedings of the 6th International Conference
on Extending Database Technology (EDBT’98), pages
9–23, Valencia, Spain, March 1998.

[12] C. Faloutsos and I. Kamel. Beyond uniformity and
independence: Analysis of R-trees using the concept
of fractal dimension. In Proceedings of the 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’94), pages 4–13, Min-
neapolis, MN, May 1994.

[13] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, pages 47–57, Boston, MA, June 1984.

[14] J. M. Hellerstein, J. F. Naughton, and A. Pfef-
fer. Generalized search trees for database sys-
tems. In Proceedings of the 21st International
Conference on Very Large Data Bases (VLDB’95),

pages 562–573, Zurich, Switzerland, September 1995.
http://gist.cs.berkeley.edu:8000/gist/.

[15] D. P. Huttenlocher, G.A. Klanderman, and W. J. Ruck-
lidge. Comparing images using the Hausdorff distance.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):850–863, September 1993.

[16] I. Kamel and C. Faloutsos. On packing R-trees. In Pro-
ceedings of the 2nd International Conference on Infor-
mation and Knowledge Management (CIKM’93), pages
490–499, Washington, DC, November 1993.

[17] D. Maio and D. Maltoni. A structural approach to fin-
gerprint classification. In Proceedings of the 13th Inter-
national Conference on Pattern Recognition, volume C,
pages 578–585, Wien, Austria, August 1996.

[18] B. Mandelbrot. The Fractal Geometry of Nature.
W.H.Freeman, New York, 1977.

[19] A. Papadopoulos and Y. Manolopoulos. Performance
of nearest-neighbor queries in R-trees. In Proceedings
of the 6th International Conference on Database The-
ory (ICDT’97), pages 394–408, Delphi, Greece, January
1997.

[20] Y. Theodoridis and T. Sellis. A model for the prediction
of R-tree performance. In Proceedings of the 15th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’96), pages 161–171, Mon-
treal, Canada, June 1996.

