
A Framework for the Comparison of Complex Patterns*

Ilaria Bartolini, Paolo Ciaccia, and Marco Patella

DEIS – IEIIT/BO-CNR, University of Bologna, Italy
{ibartolini,pciaccia,mpatella}@deis.unibo.it

Abstract. Data mining and knowledge discovery techniques are commonly
used to extract condensed artifacts representing huge volumes of data. The
comparison of such compact and rich in semantics representations (which we
call patterns) can be useful to avoid the direct comparison of underlying raw
data. In this paper, we present a general framework for the assessment of simi-
larity between patterns, by identifying the common features that characterize
approaches proposed in the literature for particular applications. We also pr o-
pose an implementation of the framewor k using an UML formalism, and dis-
cuss efficiency issues that arise when similarity queries are considered, i.e.
when a similarity predicate is used to query a collection of pattern.

1 Introduction

The advent of the information age poses serious challenges to the database research
community. In particular, the overwhelming amount of data (over 1 exabyte per year,
according to a recent survey [14]) produced from a variety of sources as satellites,
sensors, etc. calls for an efficient and effective management of the information they
carry. Clearly, such volumes of data do not constitute information per se, and data
mining and/or knowledge discovery techniques are applied to extract useful knowl-
edge from raw data. We call the so-obtained compact representation of data patterns.
So far, patterns have not been treated as persistent objects that can be stored, retrieved
and queried by the user, whereas several modern day applications could benefit from
the management of patterns as first-class citizens [18].

Among the several interesting operations on patterns (modeling, storage, retrieval),
one of the most important is that of comparison, i.e. establishing whether two patterns
are similar or not [11]. Such operation could be of valuable use whenever we have to
measure differences of models describing evolving data or data extracted from differ-
ent sources, e.g. to monitor monthly sales of a supermarket or to analyze differences
of data characteristics across several sets of data (customers transactions, reactions to
chemical/biological substances). If the comparison between patterns does not show
substantial differences, there’s no need to perform a thorough (and costly) analysis on
actual data. A similarity operator between patterns could be used to express similarity
queries over pattern bases, i.e. finding the patterns, in a given collection, which are
most similar to a given (query) one [18].

Besides ad-hoc approaches for particular cases, to the best of our knowledge the
only attempt of defining a general framework for the comparison of patterns has been
proposed in [11], where the authors present FOCUS, a framework for the measure-
ment of deviations in patterns (these are called models in [11]) representing data char-
acteristics. The basic idea of FOCUS, which is also shared by our approach, is that

* This work was supported by the PANDA IST Thematic Network.

2

patterns have a two-component nature: the structure component represents each pat-
tern within the space of possible patterns, whereas the measure component quantifies
the quality of the source data representation achieved by each pattern. For instance, in
an association rule, the head and the body represent the structure, whereas measures
may include support and confidence. With respect to FOCUS, however, our approach
has the advantage of being applicable to a wider variety of interesting cases, since it
does not require that a greatest common refinement exists between the structures of
the patterns being compared (see Section 2). Our framework is also able to model pat-
terns whose structural part is composed of other patterns, thus the case of the com-
parison of complex patterns is also considered. Moreover, we also focus our attention
to avoid accessing the underlying raw data when comparing two patterns, whereas
this important efficiency issue is not considered in [11].

The rest of the paper is organized as follows: Section 2 introduces the basic defini-
tions of the problem, showing important examples where it arises in practice. Sec-
tion 3 formally presents our approach, whereas in Section 4 we present an implemen-
tation of the framework using an OO paradigm. In Section 5 we present some
examples of use of the framework. Section 6 discusses efficiency issues related to the
resolution of similarity queries over collections of patterns, and Section 7 presents a
brief comparison of our approach with the FOCUS framework. Finally, in Section 8
we conclude, drawing interesting directions for future work.

2 Problem Definition

A pattern is a compact and rich in semantics representation of raw data [18]. Patterns
that share common characteristics belong to the same pattern type. The comparison
between two patterns of the same type yields a score s, s ∈ [0,1], assessing their mu-
tual similarity. A similarity operator sim, thus, should be defined for each pattern
type, in order to allow the comparison of pairs of patterns of the same type.

In order to provide a general solution, we chose to identify the common character-
istics of different approaches proposed for the comparison of patterns. Our framework
follows the logical model proposed in [17], thus each pattern type includes a structure
schema ss, defining the pattern space, and a measure schema ms, describing the
measures that quantify the quality of the source data representation achieved by each
pattern.1 Each pattern p of a pattern type pt can be obtained by instantiating the struc-
ture schema and the measure schema, obtaining the structure p.s and the measure p.m
of pattern p. In the basic case, the similarity between patterns is computed by taking
into account the similarity between the patterns’ structures and measures.

Example 1 (Cluster): An Euclidean cluster in a D-dimensional space can be
modeled by specifying the cluster center (a D-dimensional vector) and a radius
(a real value): such components form the structure of each cluster pattern.
Measures for cluster patterns include, for example, the average intra-cluster dis-
tance or the cardinality of the data points represented by each cluster. The as-
sessment of similarity between clusters should take into account both the struc-
ture (center + radius) and the measure components of the patterns.

1 Other components are included in the logical model of [17]. Since they are not used for the

assessment of similarity between patterns, we will not detail them here for lack of space.

3

The case of complex patterns, i.e. patterns whose structure schema includes other
pattern types, is particularly challenging, because the similarity between structures of
complex patterns depends on the similarity between component patterns.

Example 2 (Clustering): A clustering pattern is obtained as the composition of
cluster patterns. In particular, the structure of the clustering pattern consists in a
set of clusters. The problem of computing the similarity between two sets of
clusters may arise, for example, in the comparison of different clustering algo-
rithms or criteria (in this case, the data source from which the patterns were ex-
tracted is the same), or in the comparison of clusters obtained from different
data sets (where the clustering algorithm is now kept constant). Examples of ap-
plications include the comparison of market or customer segmentations [12],
fraud detection, and Region-Based Image Retrieval systems [1],[7], to name a
few.

3 A Framework for Evaluation of Similarity between Patterns

In this Section we provide the formal framework for the evaluation of similarity be-
tween patterns. We will begin by taking into account simple patterns, then we will
step to complex patterns, obtained through composition of other base patterns.

3.1. Similarity between Simple Patterns

The similarity between two patterns of the same pattern type pt can be computed by
combining, by means of an aggregation function faggr, the similarity between both the
structure and the measure components:

sim(p1,p2) = faggr(simstruct(p1.s, p2.s), simmeas(p1.m, p2.m)) (1)

where with p.s and p.m we indicate the structure and the measure for pattern p, re-
spectively. If the two patterns have the same structural component, then
simstruct(p1.s,p2.s) = 1, and the measure of similarity naturally corresponds to a com-
parison of the patterns’ measures, e.g. by aggregating differences between each meas-
ure [11]. In the general case, however, the patterns to be compared have different
structural components, thus a preliminary step is needed to reconcile the two struc-
tures to make them comparable. The aggregation function faggr can be associated to
the pattern type pt of the two patterns to be compared or can be specified by the user
at query time, by choosing between a set of available functions (for the pattern type
pt).

The computation of similarity between simple patterns is summarized in Fig. 1,
where we show how the similarity is obtained by aggregating, by means of the faggr
function, the similarities between patterns’ structures and measures. It should be noted
that the simstruct block could encompass the use of an underlying knowledge, e.g. when
comparing spatial points over a connectivity network [16], or when matching key-
words according to a hierarchical ontology, such as WordNet [15] (see also Example
8). In such cases, the knowledge needed for comparison is included in the pattern
type, and is shared by all patterns of the same type.

4

Fig. 1. Assessment of similarity between patterns.

Example 3 (Association rules): An association rule p can be modeled as a sim-
ple pattern whose structure consists in a couple (head→body) and whose meas-
ure conf represents the confidence of the rule. A possibility for computing simi-
larity between association rules is the following: the structure similarity can be
evaluated as the average of overlap similarities on heads and bodies,

simstruct(p1.s,p2.s) =

∪

∩
+

∪

∩

bodypbodyp

bodypbodyp

headpheadp

headpheadp

..

..

..

..

2
1

21

21

21

21 , whereas simi-

larity between measures is evaluated as the complement of the absolute differ-
ence between rules’ confidence, simmeas(p1.m,p2.m) = 1–| p1.conf–p2.conf |, and
faggr is the product. As an example, the similarity score s between rules
p1={(A→BC), 0.6} and p2={(A→C), 0.7} is obtained as s = 0.675 = 0.5 * (1 +
0.5) * (1 – 0.1).

3.2. Similarity between Complex Patterns

In our framework, the similarity between complex patterns is conceptually evaluated
in a bottom-up fashion using two main components, namely:

– The coupling type, that is used to establish how component patterns are matched to
produce the overall similarity score.

– The aggregation logic, which is used to combine the similarity scores obtained for
coupled component patterns into a single overall score representing the similarity
between complex patterns.

It should be noted that our presentation proceeds bottom-up in order to simplify the
exposition of our arguments, identifying the main components of our framework. This
does not require that the similarity is actually computed this way: we will discuss ef-
ficient evaluation of similarity between patterns in Section 6.

3.2.1 Coupling Type
Since every complex pattern is formed by (a number of) component patterns, in com-
paring two complex patterns cp1 and cp2, we need a way to associate component pat-
terns of cp1 to component patterns of cp2; of course, in computing the similarity be-
tween cp1 and cp2, only similarities between coupled component patterns will be
considered. The coupling type, thus, establishes the way component patterns can be
associated (matched) to produce the overall similarity score s between complex pat-
terns. The overall matching criterion is to couple together patterns that are similar to
each other (i.e. whose similarity score is as high as possible).

faggr sim(p1,p2)

simmeas

simstruct(p1.s,p2.s)

simmeas(p1.m,p2.m)

simstruct

p1.s

p1
p1.m

p2.s

p2
p2.m

5

Formally, assume, without loss of generality, that component patterns can be given
an ordinal number, thus each complex pattern cp.s can be represented as (p1, p2, …,
pN). Each coupling between cp1 and cp2 produces a matching set H = {(i,j): p1

i is
matched with p2

j}. The coupling can be represented by a matching matrix XN×M = (xij),
where each xij ∈ [0,1] (i = 1, …, N; j = 1, …, M) represents the matching between p1

i
and p2

j (xij = 1 if p1
i is matched with p2

j). Different coupling types introduce a number
of constraints on the xij coefficients, as the following examples demonstrate:

– N–M matching: Here, the coupling is the most general, thus we have no constraints
on the X matching matrix. In line of principle, every xij coefficient can assume
every value in the range [0,1]. We have to keep in mind, though, that the overall
similarity is obtained as the maximum similarity obtained over all possible cou-
plings, thus extreme cases, such as all xij = 0 or all xij = 1, are ruled out dependently
on the particular function gaggr used to aggregate basic component scores, provided
that gaggr is monotonically non-decreasing (see Section 3.2.2).

– 1–1 matching: In this case we have additional constraints on the xij coefficients,
since we accept at most one matching for each component pattern p1

i or p2
j. Again,

the extreme case were all xij = 0 is not possible, since we are taking the maximum
similarity obtained through the aggregation function gaggr. Partial matchings occur
whenever it is N≠M. This is the case considered in [2],[4].

– DTW matching: The Dynamic Time Warping (DTW) distance has been widely
used to compare time sequences [5],[19],[13], but recent applications also benefit
from its ability of accommodating elastic deformations of sequences being com-
pared. For example, in [3] the DTW distance has been used for the retrieval of
shapes using the Discrete Fourier Transform (DFT). It should be noted that, be-
cause of the possibility of stretching the sequences being compared, in the general
case the DTW distance is not a metric [13]. The matching requested by the DTW
distance is a particular case of an N–M matching, where additional constraints are
introduced to only allow continuous and ordered matching paths.

3.2.2 Aggregation
After the coupling between component patterns has been performed, the overall simi-
larity between complex patterns is computed by aggregating similarity scores ob-
tained for matched component patterns. Formally, each pairing (p1

i,p2
j) contributes to

the overall score with the similarity between its matched component patterns,
sim(p1

i,p2
j): simstruct(cp1.s,cp2.s) = maxH(gaggr((p1

1, p1
2, …, p1

N),(p2
1, p2

2, …, p2
M), H)),

where in the last formula we explicitly outlined the dependency on the (optimal)
matching set H (see Section 3.2.1).2

We require that the aggregation function gaggr is monotone: it is reasonable to only
consider functions that are non-decreasing in the similarity between matched patterns.
More precisely, if we consider two different matching sets H and H’, that only differ
in a matching pair (i,j) ≠ (i’,j’), (i,j) ∈ H, (i’,j’) ∈ H’, and sim(p1

i, p2
j) ≥ sim(p1

i’, p2
j’),

2 It should be noted that here, for ease of presentation, we suppose that the structure part of

complex patterns only consists of complex types including component patters. In the general
case, other base types can be part of the structure of the complex pattern, and simstruct should
also take into account the similarity between such components. Our framework can be easily
extended to deal with such cases, thus we will ignore them in the following.

6

then gaggr(cp1.s, cp2.s, H) ≥ gaggr(cp1.s, cp2.s, H’), i.e. best-matched pairings can only
increase the overall similarity score.

Example 4 (Aggregate Time Series): An aggregate time series is obtained by
combining together a number of (simple) time series. For example, the price of a
stock during an entire year can be obtained by aggregating the daily stock prices
grouped on a monthly basis: in this case, the aggregate time series is a list of
monthly sequences. If we want to compare the annual trends of two different
stocks, we have to aggregate the similarities between monthly sequences (note
that in this case an obvious 1–1 matching is performed). Usually, such aggrega-
tion is obtained by averaging the similarities between matched subsequences.

3.3. Overall View of the Framework

The process of computing the structure similarity between complex patterns in our
framework is summarized in Fig. 2, showing how the aggregation function is used to
assess the similarity between pattern structures (gray box in Fig. 1). In particular, the
“max” block should loop through all the possible couplings produced by the
“Matcher” block, i.e. those allowed by the available constraints; for all such cou-
plings, the “sim” block should provide the similarity scores between matched pat-
terns, that will be aggregated by the “gaggr” block. In case of multi-level aggregations,
the similarity block (gray box in Fig. 2) might encompass the recursive computation
of similarity between complex patterns.

Fig. 2. How the similarity between complex patterns’ structures is evaluated.

Example 5 (Sets of Association Rules): Consider the comparison of two sets
of association rules extracted from a data set, P1 = {p1

1={(A→BC), 0.6},
p1

2={(AC→B), 0.5}, p1
3={(AB→C), 0.4}}, and P2 = {p2

1={(A→B), 0.8},
p2

2={(A→C), 0.7}}. Since the complex patterns have no measure, their similar-
ity is assessed directly as in Fig. 2, e.g. using a simple average as gaggr. If the
similarity between rules is evaluated as in Example 3, the overall score s is
equal to 0.6 and corresponds to matching rule p1

1 with rule p2
2 (with score s =

0.675 = 0.75 * (1–0.1)) and rule p1
2 with rule p2

1 (s = 0.525 = 0.75 * (1–0.3)).

4 Implementation of the Proposed Framework

Here we provide a possible implementation of the framework using an UML formal-
ism. We present an overview of the foundation of classes, demonstrating the general-
ity of the proposed framework in accommodating different aggregation logics and
similarity measurements for specific pattern types.

gaggr

Matcher

simstruct(cp1.s,cp2.s) sim
cp1.s

max cp2.s

7

The core of the framework is, obviously, the abstract Pattern class (Fig. 3). Each
pattern has an identifier id and refers to a type through the getType() method (which
uses reflection to return the name of the class of each pattern instance). The
getSimilarity() method computes the overall similarity score by aggregating scores
obtained through the abstract methods getSimilarityMeasure() and
getSimilarityStructure() (these are defined in each concrete extension of the Pattern
class). Such scores are combined by the getSimilarity() method into the overall score
s through an object of the abstract class SimAggregator representing the aggregation
function faggr (we have implemented several simple aggregation functions that are not
detailed in Fig. 3). The different aggregation functions available for each pattern type
(see Section 3.1) are stored in the static member PossibleSimAggregators (static
members are underlined in the following figures), containing references to
SimAggregator objects.

Fig. 3. The Pattern class.

The abstract class pattern has two different subclasses (Fig. 4): ComplexPattern
and SimplePattern. The abstract ComplexPattern class contains, through aggrega-
tion, other instances of Pattern, that can be themselves simple or complex patterns,
thus achieving a multi-level aggregation hierarchy. The static members
PossibleAggregators and PossibleMatchers are used to hold references to aggrega-
tion functions (gaggr) and matchers that can be possibly used for a given pattern type
and/or chosen at query time.

Fig. 4. The Pattern class hierarchy.

<<abstract>> Pattern

<<abstract>> ComplexPattern

PossibleAggregators : List

PossibleMatchers : List

<<abstract>> getMatcher() : Matcher

<<abstract>> getAggregator() : Aggregator

<<abstract>>
SimplePattern

+contains 0..1

1..n

<<abstract>> SimAggregator

<<abstract>> aggregate()

 <<uses>>

<<abstract>> Pattern

id : String

PossibleSimAggregators : List

getId() : String

<<abstract>> getType() : String

getSimilarity(other : Pattern) : double

<<abstract>> getSimilarityMeasure(other : Pattern) : double

<<abstract>> getSimilarityStructure(other : Pattern) : double

8

The relations existing among complex patterns, matchers and aggregation func-
tions are depicted in Fig. 5, where we highlight the fact that each pattern type uses its
own Matcher and Aggregator objects, chosen from the PossibleMatchers and
PossibleAggregators lists. Each Matcher, in computing the similarity score between
two complex objects, uses their relative aggregation function, obtained through the
getAggregator() method, to compute the overall score for each match (see Sec-
tion 3.2.2).

Fig. 5. Complex patterns, matchers and aggregation functions.

5 Examples of Use of the Framework

In this Section, we will present some relevant cases where the problem of comparison
between complex patterns arises in practice. For each case, we also provide hints
about the implementation of the abstract classes presented in Section 4.

Example 6 (Region-Based Image Retrieval Systems): The goal of content-
based image retrieval (CBIR) systems is to define a set of properties (features)
able to effectively characterize the content of images and then to use such fea-
tures during retrieval in order to provide effective and efficient access to image
databases based on content. To increase the effectiveness of image retrieval, in
recent times a number of region-based image retrieval systems has been pre-
sented [7],[1], which “fragment” each image into regions, i.e. sets of pixels shar-
ing common visual characteristics, like color and texture. Similarity between
images is then assessed by computing similarity between pairs of regions and
combining the results at the image level.

Conceptually, each image is represented as a set of component regions. Thus,
we can represent each region as a simple pattern and the overall image as a set
of region patterns. This way, the problem of finding the k images that most re-
semble a given query one (Top-k query) can be modeled as a best-matches
query over the space of image patterns. In particular, following the model pre-
sented in Section 3, we have:

– The criterion used to assess the similarity between two regions varies from
system to system. For example, the WINDSURF system [1] segments images
into sets of pixels that are homogeneous for color and texture by using the
Discrete Wavelet Transform (DWT) and a fuzzy c-means algorithm. Each re-
gion is then represented as an elliptical cluster in the HSV space and the simi-

<<abstract>> Matcher

Score : double

Matcher(p1 : Pattern, p2 : Pattern)

getScore() : double

<<abstract>> ComplexPattern

PossibleAggregators : List

PossibleMatchers : List

<<abstract>> getMatcher() : Matcher

<<abstract>> getAggregator() : Aggregator

<<abstract>> Aggregator

<<abstract>> aggregate()

<<uses>>

<<uses>>

<<uses>>

9

larity between regions is computed by taking into account both differences in
the color and texture descriptors (the pattern structure) by way of the Bhat-
tacharyya distance and in their relative size (the pattern measure). For more
details, see [1].

– Each image region could be matched to at most one region of the image be-
ing compared, thus an 1–1 matching is required with possible partial matches
(see Section 3.2.1).

– The most used aggregation function gaggr is the average (e.g. this is the case
for Blobworld [7] and Windsurf [1] systems).

The Hungarian algorithm [2] is used to solve the optimal matching problem
at the image level, thus we provide an implementation of such algorithm in the
HungarianMatcher sub-class of the Matcher class.

Example 7 (Dynamic Time Warping): In its essence, the DTW is used to
compare sequences, performing an N–M matching that defines a connected
warping path over the space of possible couplings (see Section 3.2.1). The opti-
mal warping path can be computed in quadratic time by dynamic program-
ming [5]. The TimeWarpingMatcher class we implemented can also take into
account other types of constraints on the warping path, e.g. to limit its deviation
from the diagonal [13].

Example 8 (Web sites): We finish with a complex example, including a two-
levels hierarchy of pattern composition, in order to demonstrate the expressive
power of our framework. Suppose we want to compare two web sites, repre-
sented as graphs of HTML pages connected by hyper-links. The pages are com-
plex patterns whose structure is represented by a set of keywords (simple pat-
terns). The similarity between keywords can be assessed using a similarity
function that exploits a hierarchical structure, like WordNet [15] (see Section
3.1); for example, it is common to take into account the difference in height be-
tween the keywords and their lowest common ancestor in the hy-
pernymy/hyponymy tree [10]. Similarity between pages is then computed using
an 1–1 matching between keywords (see Section 3.2.1), maximizing the aggre-
gation function gaggr (e.g. the average similarity between matched keywords).
Finally, the overall similarity between web sites (graphs of pages) can be com-
puted by way of a measure of similarity between graphs [6], where the score be-
tween matched nodes is obtained as indicated before.

6 Efficient Evaluation of Similarity Queries

Besides the problem of the efficient comparison between two complex patterns, that,
as shown in Section 5, requires the matcher to be aware of the available constraints
and of the gaggr function used to aggregate scores in order to implement the appropri-
ate algorithm to solve the assignment problem at hand, performance issues arise when
considering similarity queries, i.e. queries whose predicates are based on a similarity
operator. In particular, we are interested in the following query types, which can be
applied to a pattern collection (class) C:

10

Top-k queries: Here the user requests for the best k matching patterns with re-
spect to a given (query) pattern qp.

Threshold queries: Given a query pattern qp and a similarity threshold ϑ, a thresh-
old query requests for patterns having a similarity score s with
respect to qp not lower than the threshold, s ≥ ϑ.

The naïve (sequential) evaluation of both kind of queries entails comparing the
query pattern qp to all the patterns in C, thus its complexity is linear in the cardinality
of C. When the number of patterns in C is significant, however, sequential evaluation
becomes impractical, and we have to recur to index structures to prune out from the
search a (large) subset of C.

The use of index structures for efficient processing of similarity queries requires
the use of upper bounds on the similarity between complex patterns. In fact, if we are
able to quickly compute an upper bound simUB(qp, pi) on the similarity between qp
and a pattern pi, then it is possible to avoid computing sim(qp, pi) if simUB(qp, pi) < ϑ,
in the case of a threshold query, or if simUB(qp, pi) is not higher than the similarity be-
tween qp and its worst (k-th) matching computed so far, for Top-k queries.

The bound simUB(qp, pi) can be computed in two different ways, depending on the
particular matching criterion:

1. Using constraints and monotonicity of gaggr: In this case, we use upper bounds on
the similarity between component patterns to derive, using matching constraints
and the monotonicity of gaggr, the upper bound simUB(qp, pi). A typical case is when
component patterns are accessed through an index that returns matches in decreas-
ing order of similarity with respect to component patterns of qp [2],[4].

2. Using triangle inequality: When the similarity criterion is based on a distance
function δ, sim(qp, pi) = f(δ(qp, pi)), lower bounds on δ can be obtained by way of
the triangle inequality, in cases where δ is a metric. This is, indeed, the basic ra-
tionale used by metric access methods (see Section 6.1) to prune away from the
search subsets of the data space.

It is clear that, in the first case, the index structure should be tightly coupled with
the matching block of Fig. 2, in that the matching block should be able to compute the
upper bound simUB(qp, pi) using only the knowledge obtained so far by the index
structure. In the other case, the index structure can simply use the similarity block of
Fig. 1 as a black box, thus completely ignoring its internal logics.

6.1. Index Structures

Efficient resolution of similarity queries on patterns requires the use of appropriate
index structures. As pointed out before, optimization of queries requires computing
upper bounds on the similarity between complex and/or component patterns. Access
methods for query processors, therefore, should provide facilities for accessing pat-
terns in decreasing order of similarity with respect to a query pattern qp, and/or for
computing upper bounds on the similarity between complex patterns by means of an
efficient access to component patterns.

The efficient processing of similarity queries through indexing is usually based on
an indirect evaluation of similarity scores: in this case, what is actually measured is
the distance between patterns, being understood that high scores correspond to low

11

distances and low scores to high distances. If the distance δ used to compute the simi-
larity satisfies the metric postulates, then metric access methods, like the M-tree [9],
provide the basic functionalities needed by the query processor. In particular, metric
access methods are able to:

– Efficiently solve range queries, returning all the patterns whose distance δ with re-
spect to the query pattern qp is lower than a user-specified threshold value.

– Efficiently solve k-NN queries, where the user requests for the k patterns which are
closest, according to δ, to the query pattern qp.

– Perform a sorted access, returning all the indexed patterns in increasing order of δ
with respect to the query pattern qp.

Such properties allow us to use metric access methods to index complex and/or
component patterns, depending on the functions used to compute similarity at each
level. In the case where δ is not a metric function, it is often possible to find a metric
function δLB which is a lower bound on δ, δLB ≤ δ, and to use δLB in place of δ to prune
the pattern space [8].

7 Comparison with the FOCUS framework

The first attempt to present a general approach for the comparison of compact in-
formation mined from raw data was proposed in [11], where the FOCUS framework
for measuring changes in data characteristics is presented. In FOCUS, patterns are de-
scribed through structure and measure components.

The main limit of FOCUS is the fact that, in order to compare two patterns, it is
supposed that a greatest common refinement (GCR), i.e. a common structure that is a
refinement of structures of both patterns, can be found. Even if this is the case for all
patterns considered in [11], this is not true in the general case (e.g. consider the case
of patterns extracted from different data sets). Moreover, recurring to a GCR does not
allow matchings that take into account the patterns’ measures, like the DTW matching
of Example 7, since matching components are selected only by considering the struc-
ture of the GCR. Our framework, on the other hand, does not rely on such restrictive
requirements, but only needs that a similarity operator can be applied to component
patterns, thus it is applicable to a much broader variety of cases.

As to efficiency issues, the FOCUS framework requires the computation of the
GCR of patterns being compared. This entails accessing raw data to compute meas-
ures of patterns in the GCR (even if, for some pattern types, upper bounds can be
computed without scanning the data). The goal of our framework, on the other hand,
is to avoid at all accessing the underlying raw data when comparing two patterns, thus
it only exploits information already present in the patterns.

8 Conclusions

In this paper we have presented a framework for the comparison of patterns that can
be used to quickly compare characteristics of large data sets without accessing raw
data. Assessing the similarity between patterns entails the comparison of structures
and measures, and our framework is also able to capture the case of complex patterns,

12

i.e. patterns whose structure consists of other patterns, obtaining a part-of hierarchy.
Our work extends the FOCUS framework presented in [11], enlarging its generality
and taking into account the important subject of efficient computation of similarity, an
issue raised by the resolution of similarity queries over collections of patterns.

A series of interesting working issues are still left open, which we plan to tackle in
the future. In our opinion, the most important ones concern the efficient processing of
similarity queries over collection (classes) of patterns. Even if the solution of the gen-
eral problem appears as a formidable task, some solutions that have been proposed for
particular cases [2],[13] seem to be applicable to a much broader class of problems.

9 References
[1] S. Ardizzoni, I. Bartolini, and M. Patella. Windsurf: Region-based image retrieval using

wavelets. IWOSS’99, pp. 167-173, 1999.
[2] I. Bartolini, P. Ciaccia, and M. Patella. A sound algorithm for region-based image retrieval

using an index. QPMIDS 2000, pp. 930-934, 2000.
[3] I. Bartolini, P. Ciaccia, and M. Patella. Using the time warping distance for Fourier-based

shape retrieval. IEIIT-BO-03-02 Technical Report, 2002.
[4] I. Bartolini, P. Ciaccia, and M. Patella. Correct algorithms for the comparison of complex

patterns. PANDA Workshop on Pattern-Base Management Systems, pp. 55-62, 2003.
[5] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series.

AAAI Workshop on Advances in Knowledge Discovery in Databases, pp. 359-370, 1994.
[6] H. Bunke: Recent developments in graph matching. ICPR 2000, pp. 2117-2124, 2000.
[7] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik. Blobworld: A system

for region-based image indexing and retrieval. VISUAL’99, pp. 509-516, 1999.
[8] P. Ciaccia and M. Patella. Searching in metric spaces with user-defined and approximate

distances. ACM Transactions on Database Systems, 27(4), pp. 398-437, 2002.
[9] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for simila rity

search in metric spaces. VLDB ’97, pp. 426-435, 1997.
[10] P. Ganesan, H. Garcia -Molina, J. Widom: Exploiting hie rarchical domain structure to

compute similarity. ACM Transaction on Information Systems, 21(1), pp. 64-93, 2003.
[11] V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y. Loh. A framework for measuring

changes in data characteristics. PODS’99, pp. 126-137, 1999.
[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing

Surveys, 31 (3), pp. 264-323, 1999.
[13] E. J. Keogh. Exact indexing of dynamic time warping. VLDB 2002, pp. 406-417, 2002.
[14] P. Lyman and H. R. Varian. How much information. Available at URL (valid as in

February 2004) http://www.sims.berkeley.edu/how-much-info.
[15] G. A. Miller: WordNet: A lexical database for English. Communications of the ACM,

38(11), pp. 39-41, 1995.
[16] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao. Query processing in spatial network data-

bases. VLDB 2003, pp. 802-813, 2003.
[17] S. Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis, P. Vassiliadis,

M. Vazirgiannis, and E. Vrachnos. Towards a logical model for patterns. ER 2003, pp. 77-
90, 2003.

[18] Y. Theodoridis, M. Vazirgiannis, P. Vassiliadis, B. Catania, and S. Rizzi. A manifesto for
pattern bases. PANDA Technical Report TR-2003-03, 2003.

[19] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences
under time warping. ICDE 1998, pp. 201-208, 1998.

