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Abstract

Region-based image retrieval systems aim to improve the
effectiveness of content-based search by decomposing each
image into a set of “homogeneous” regions. Thus, simi-
larity between images is assessed by computing similarity
between pairs of regions and then combining the results at
the image level. In this paper we propose the first prov-
ably sound algorithm for performing region-based similar-
ity search when regions are accessed through an index. Ex-
perimental results demonstrate the effectiveness of our ap-
proach, as also compared to alternative retrieval strategies.

1. Introduction

Many real world applications, in the field of medicine,
weather prediction, and communications, to name a few,
require efficient access to image databases based on con-
tent. To this end, the goal of content-based image retrieval
(CBIR) systems is to define a set of properties (features)
able to effectively characterize the content of images and
then to use such features during retrieval. Users accessing
a CBIR system often look for images containing particular
“objects”, possibly arranged in a specific spatial organiza-
tion. To this end, in recent times, a number of region-based
image retrieval systems has been presented [12, 4, 11, 1],
which “fragment” each image into regions, i.e. sets of pix-
els sharing common visual characteristics, like color and
texture. Conceptually, the process of similarity assessment
between images can then be split into two distinct phases:

Matching Regions of the database image are associated to
regions of the reference (query) image, by only con-
sidering “best” couplings (matches).

Combining The overall similarity between the query and a
DB image is computed by combining similarity scores
corresponding to matched regions (see Figure 1).

Region matching algorithms have only recently emerged as
a need for CBIR systems. Existing systems, however, ei-
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ther use naı̈ve heuristic matching algorithms when associ-
ating regions of the images being compared, thus obtaining
incorrect results,1 or consider a scenario, which is beyond
the scope of our work, where spatial constraints are taken
into account [3].
In this paper we will focus on k nearest neighbor queries,
where the user asks for the k images in the database which
are most similar to a query image. To speed-up query res-
olution, we present the first sound index-based algorithm
for region-based image retrieval, and implement it into the
WINDSURF system [1]. Our algorithm is independent of
the underlying CBIR system, and only requires that similar-
ity between images is computed from the similarity scores
of matched regions. We begin our discussion by outlining
limits in query processing of existing region-based image
retrieval systems (Section 2). In Section 3 we precisely for-
mulate the region matching problem, presenting an index-
based approach (AWS

0 ) for its correct resolution. Section 4
presents experimental results, by looking at both efficiency
and effectiveness issues, and Section 5 concludes.

2. Limits of Existing Systems

In order to give an adequate representation of obtained re-
gions, existing region-based systems have focused only on
the extraction of features, thus overlooking the important
phase of query processing. As an example, in VisualSEEk
[12] the similarity between two images is computed by tak-
ing into account color, location, dimension, and relative po-
sitioning of regions. Query processing, however, is carried
out using simple heuristics: The matching phase is per-
formed by issuing, for each region of the query image, a
range query on color, location, and dimension requesting
those regions whose similarity, with respect to the query re-
gion, is higher than a user-provided threshold; then, a can-
didate setof images is built, consisting in those images that
present regions in all the result sets for the previous queries;
finally, the optimum match is computed (combining phase)

1As an example, suppose that an user asks for an image containing
two tigers: If a database image contains a single tiger, it is not correct to
associate both query regions to the single “tiger” region of the DB image,
since, in this case, information on the number of query regions is lost.



Figure 1. In region-based systems, similarity between images is assessed by taking into account
similarity between matched regions.

on the set of candidate images. Thus, if a user would request
for, say, the 10 images most similar to a given one, he/she is
also forced to specify hard-to-guess similarity thresholds.
WALRUS (WAveLet-based Retrieval of User-specified
Scenes) [11] is a region-based similarity retrieval system
which fragments images using wavelets [7]. The matching
phase of WALRUS consists in retrieving all the DB regions
which are similar to at least one query region with a score
� �. To this end, descriptors of DB regions are indexed
using an R*-tree [2] and a range query, with a radius de-
termined by �, is issued for each query region. Then, in
the combining phase, which is applied only to those images
containing regions obtained in the matching phase, the rel-
ative sizes of matching regions are added up to obtain the
overall similarity score between images. Images for which
the similarity with the query image is higher than a user-
specified � threshold are returned as the query result.
The main limitation of both VisualSEEk and WALRUS re-
sides in the fact that they require the specification of simi-
larity thresholds. Indeed, range queries are not well suited
for the scenario we envision: Since the user has no a pri-
ori knowledge on the distribution of similarities between
images, he/she has no way to guess the “right” value for
a similarity threshold; a high value for it could lead to an
empty result, and slightly lowering this value could result
in an overwhelming number of returned images.
Blobworld [4] is a CBIR system which fragments an im-
age into regions (blobs), homogeneous with respect to color
and texture, by using an Expectation-Maximization cluster-
ing algorithm. The Blobworld index-based query resolution
algorithm uses an R-tree-like structure to index color de-
scriptors of blobs. The matching phase is performed by re-
questing, for each blob in the query image, a predetermined
number (in the order of the hundreds) of most similar DB
regions by issuing a nearest neighbors query on the index.
The combining phase only considers regions obtained in the
matching phase and computes the overall image similarity
using (weighted) fuzzy-logic operators to combine regions’
scores. This approach has two major limitations. First,
since best matches for query blobs are computed by ignor-
ing matches for other blobs, a single blob in the database

image can be associated to two distinct query blobs (see the
“two tigers” example in Section 1). Second, the number of
regions that are returned by the matching phase is a priori
determined, thus it is unrelated to the number k of images
requested by the user and to the specific query image. As
we will show in Section 3, this can lead to miss the correct
best images.
WINDSURF [1] is a region-based CBIR system that uses
Discrete Wavelet Transform (DWT, [7]) and a fuzzy c-
means algorithm to divide each image into regions. In
WINDSURF, the similarity between two regions, Rqi of a
query image Iq and Rsj of a database image Is, is com-
puted as:

rsim(Rqi ; Rsj ) = h(d(Rqi ; Rsj )) (1)

where d() is a distance function, and h() is a so-called
correspondence function[6], mapping distance values to
similarity scores, which satisfies the following properties:
h(0) = 1 and d1 � d2 ) h(d1) � h(d2);8d1; d2 2 <

+

0 .
In all the experiments, we used h(d) = e�d=�d , where �2d
is the variance of the distances computed over a sample of
database regions. The overall distance between regions R qi

andRsj takes into account both differences in color and tex-
ture descriptors and in their relative size (see [1] for details).
The combining phase consists in computing the overall sim-
ilarity between images Iq and Is as the average similarity
between matched regions (with �s(Rqi) we denote the re-
gion Rsj of Is associated by the matching algorithm to the
query region Rqi ):

Isim(Iq ; Is) =
1

n

nX

i=1

rsim(Rqi ;�s(Rqi)) (2)

If the match for a certain region Rqi is undefined, i.e. the
query region Rqi is not associated to any region Rsj , then it
is rsim(Rqi ;�s(Rqi)) = 0.

3. Optimal Region Matching

In the following we consider that matching between regions
is carried out by ignoring spatial constraints, i.e. only local



information (e.g. color and texture) about regions is taken
into account when computing similarity between regions.
We also assume that the overall similarity between images
is computed by way of a monotonic function RM sim. This
is reasonable, since better matches between regions are ex-
pected to increase the overall similarity score. Note that
both Blobworld and WINDSURF satisfy this requirement,
since they use a combination of fuzzy-logic operations and
an averaging operator, respectively.
The optimal region matchingproblem can then be formu-
lated as a generalized assignment problem. Let s ij =
rsim(Rqi ; Rsj ) be the similarity score between region
Rqi of Iq = fRq1 ; : : : ; Rqng and region Rsj of Is =
fRs1 ; : : : ; Rsmg, and denote with H an index set of
matched regions, H =

�
(i; j)jRsj = �s(Rqi)

	
; of course,

it is jHj � minfm;ng. The goal is to maximize the
functionRMsim(si1j1 ; : : : ; sijHjjjHj), with (ihjh); (iljl) 2
H; (ihjh) 6= (iljl). To this end, we introduce the variables
xij , where xij = 1 if Rsj = �s(Rqi), xij = 0 otherwise.

Isim(Iq ; Is) = max RMsim(si1j1 ; : : : ; sijHjjjHj);

(ihjh); (iljl) 2 H; (ihjh) 6= (iljl) (3)

H = f(i; j)jxij = 1g (4)
mX

j=1

xij � 1 (i = 1; : : : ; n); (5)

nX

i=1

xij � 1 (j = 1; : : : ;m); (6)

xij 2 f0; 1g (i = 1; : : : ; n)(j = 1; : : : ;m) (7)

Eq. 3 means that to determine the overall score Isim(Iq ; Is)
we have to consider only the matches �s() inH (Eq. 4). Eq.
5 (Eq. 6) expresses the constraint that at most one region
Rsj of Is (resp. Rqi of Iq) can be assigned to a region Rqi

of Iq (resp. Rsj of Is).

Definition 3.1 (Correct matching) A set ofxij values that
satisfies the constraints expressed by Eqs. 5, 6, and 7 is
called acorrect matching.

Definition 3.2 (Complete matching) A correct matching
for which it is

Pm
j=1 xij = 1; (i = 1; : : : ; n) (i.e. each

query region is associated to a region of the database im-
age) is called acomplete matching.

It should be noted that anycorrect matching for a database
image having a number of regions lower than that of the
query regions is obviously not complete.

Definition 3.3 (Optimal matching) The correct matching
that maximizes the function expressed by Eq. 3 is called the
optimal (or exact) matching, and will be denoted as�opt

s ().

3.1. Index Evaluation

In this Section we describe an index-based algorithm aim-
ing to speed-up the evaluation of k nearest neighbor queries.
This is carried out by reducing the number of candidate
images, i.e. images on which the optimal region matching
problem has to be solved.
Since similarity between images is computed by combin-
ing distances between regions’ features, our approach uses a
distance-based access method (DBAM), like R*-tree [2] or
M-tree [5], to index regions contained in database images.
Such index structures are able to efficiently answer k near-
est neighbor queries, as well as to perform a sorted access
to the data, i.e. to output regions one by one in increasing
order of distance with respect to a query region [9].
To retrieve best matches for query regions, we run a sorted
access to the indexed regions for each region in the query
image. The problem, here, is to specify a suitable condition
to stop such sorted accesses when we are guaranteed that the
best k images could be retrieved by only taking into account
regions returned by the index. Then, once the sorted access
phase has been stopped, the optimal region matching prob-
lem is solved for each candidate image, i.e. for each image
having at least one region which has been retrieved during
the sorted access phase, and the best k images are returned
as the result (Figure 2).

query regions
...

DBAM

regions

stop here!

regions result sets...

... ... ...

candidate images

Figure 2. Producing the candidate set of im-
ages from the sorted access phase.

To ensure that the best k results are included into the set
of candidate images, the sorted accesses can be stopped as
soon as it is guaranteed that each image outside of the can-
didate set leads to an overall similarity score lower than that
of the k-th best image. To this end, the stopping condi-
tion should take into account the correctness of regions’ as-
signments (see Definition 3.1), i.e. the sorted access phase
is halted when optimal matches for non-candidate images



could only lead to lower scores with respect to the k-th best
correct match for candidate images, computed by only tak-
ing into account regions retrieved by the index.
Consider, as an example, the case where n = 2 and
k = 1, with similarity scores obtained by sorted accesses
to a DBAM given in Table 1, and suppose that we com-
pute image to image similarity by taking the average of re-
gions’ similarity. After the first step, the candidate set of
images is fI1; I3g with overall scores 0:9+0

2
= 0:45 and

0+0:87
2

= 0:435, respectively. Since an image outside the
candidate set could potentially lead to an overall score of
0:9+0:87

2
= 0:885, we have to continue the sorted access

phase. After the second step, we add image I2 to the can-
didate set with an overall score of 0:85+0

2
= 0:425 (remem-

ber that region R21 can match at most one region of Iq);
therefore, the sorted accesses cannot yet be stopped. At the
third step, also image I4 is added to the candidate set, hav-
ing a score of 0:83+0

2
= 0:415. Finally, at fourth step, we

obtain a complete matching (see Definition 3.2) for image
I3 (�3(Rq1 ) = R33 and �3(Rq2) = R32) with a score of
0:71+0:87

2
= 0:79. In this case, the sorted access phase can

be stopped, since images outside of the candidate set can
only lead to lower scores (at most 0:71+0:72

2
= 0:715). The

monotonicity of the combining function RM sim is used
here to ensure algorithm correctness. Note, however, that
image I3 is not the best result for Iq , since image I1 leads
to the best overall score of 0.8. In order to solve the op-
timal region matching problem on the set of candidate im-
ages, we need to compute similarity scores between query
regions and all the regions of candidate images.

Rq1 Rq2
region image similarity region image similarity
R11

I1 0.90 R32
I3 0.87

R21
I2 0.85 R21

I2 0.79
R41

I4 0.83 R33
I3 0.75

R33
I3 0.71 R11

I1 0.72
R23

I2 0.69 R12
I1 0.70

...
...

...
...

...
...

Table 1. A sorted access example for a query
image with two regions: Rq1 and Rq2 .

From above example, it is clear that the sorted access phase
can be stopped as soon as a complete assignment is found,
taking into account only regions returned by index scans. 2

This leads to the AWS
0 algorithm shown in Figure 3.

The random accessphase consists in computing those sim-
ilarity scores sij between query regions and regions of can-
didate images not returned in the X i regions result sets. Fi-

2By the way, this is the reason why Blobworld algorithm is not correct,
since its stopping condition cannot guarantee the existence of a complete
assignment.

AWS

0
(Iq: query image, k: integer, T : DBAM)

f 8 region Rqi of Iq, open a sorted access index scan
on T and insert result regions in the set Xi;

stop the sorted accesses when there are at least
k images for which a complete assignment exists,
considering only regions in [iX

i;
8 image Is having regions in [iX

i,
8 pair Rqi ; Rsj

if Rsj 62 Xi compute score sij; (random access)
compute the optimal assignment; (combining phase)

return the k images having the highest
overall similarity scores Isim(Iq; Is); g

Figure 3. The AWS
0 algorithm.

nally, to compute an optimal assignment for a candidate im-
age Is, in WINDSURF we can use the Hungarian algorithm
[10], since the generalized assignment problem reduces to
the linear Assignment Problem due to Eq. 2.
Correctness of AWS

0 (proof is omitted for lack of space) is
independent of the specific RMsim function used to com-
bine regions’ scores into similarity between images, since it
only relies on the monotonicity of RMsim.
It can be noted that sorted and random access phases of
AWS
0 somewhat resemble those of Fagin’s A0 algorithm

[8], the major difference being that A0 does not deal with
the issue of correct matching. As an example, in Table 1,
A0 would incorrectly stop sorted access after step 2.

4. Experimental results

Preliminary experimentation of proposed techniques has
been performed on the WINDSURF system, using a sam-
ple medium-size data-set consisting of about 2000 real-life
images from the IMSI-PHOTOSCD-ROM.3 The over 8000
obtained regions were indexed using an M-tree [5]. The
query workload consists in about one hundred randomly
chosen images not included in the data-set. All experiments
were performed on a Pentium II 450 MHz PC with 64MB
of main memory running Windows NT 4.0.
The first set of experiments we present concerns the effi-
ciency of the proposed approach. In order to test the per-
formance of the AWS

0 index-based algorithm, in Figure 4
(a) we compare the average number of candidate images,
i.e. the images on which the Hungarian algorithm has to be
applied, as a function of the number of query regions, for
different values of k. Of course, a sequential solution for
the query would lead to a number of candidate images equal
to the number of images in the data-set (the horizontal line
labeled ERASE, for Exact Region Assignment SEquential
algorithm), whereas for the index version this number de-
pends both on k and on of the number of query regions. As
the graph shows, the AWS

0 algorithm does well in reducing
the number of candidate images. Clearly, its performance
degrades as the number of query regions increases, since

3IMSI MasterPhotos 50,000: http://www.imsisoft.com.



the complexity of finding k objects in the intersection of n
sets augments with n. This is also confirmed by Figure 4
(b), where query response times are shown.
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Figure 4. Average number of candidate im-
ages vs. number of query regions (a), and re-
sponse time vs. k (n = 3) (b).

To show the effectiveness of our approach, we compare re-
sults obtained by the AWS

0 algorithm when only a fraction
of query regions is used to query the database which leads
to approximatequeries. In Figure 5 the tradeoff between
quality of the result and query evaluation cost is shown.
Quality is measured as the sum of similarity scores for the
k best images normalized with respect to the case where
all regions of the query are used. Cost is computed as the
elapsed time relative to the time needed for resolving the
“all regions” query. The graph clearly shows that quality
and cost are strictly correlated in that both decrease when
the number of query regions reduces. As a further observa-
tion, since the major part of the points falls below the “rel-
ative cost=quality” line, an effective way to reduce query
costs is to use only some of the regions in the query image.

5. Conclusions

In this work we have introduced an original approach to cor-
rect resolution of similarity queries for region-based image
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Figure 5. Tradeoff between quality and cost
for approximate queries (k = 15).

retrieval. In particular, an index-based algorithm (AWS
0 )

has been presented which computes the optimal match-
ing between regions of the query image and regions of a
database image, in order to maximize the overall similarity
score between images. Preliminary experiments conducted
over the WINDSURF system have shown that our approach
is indeed very effective with respect to alternative retrieval
strategies.
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