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Abstract. Continuously monitoring through time the correlation/distance of
multiple data streams is of interest in a variety of applications, including finan-
cial analysis, video surveillance, and mining of biological data. However, dis-
tance measures commonly adopted for comparing time series, such as Euclidean
and Dynamic Time Warping (DTW ), either are known to be inaccurate or are
too time-consuming to be applied in a streaming environment. In this paper
we propose a novel DTW -like distance measure, called SDTW , which, unlike
DTW , can be efficiently updated at each time step and experimentally show
that it improves over DTW by orders of magnitude without sacrificing accu-
racy. For instance, with a sliding window of 512 samples, SDTW is 400 times
faster than DTW .

1. Introduction
Management of data streams has recently emerged as one of the most challenging ex-
tensions of database technology. The proliferation of sensor networks as well as the
availability of massive amounts of streaming data related to telecommunications traffic
monitoring, web-click logs, geophysical measurements and many others, has motivated
the investigation of new methods for their modelling, storage, and querying. In particu-
lar, continuously monitoring through time the correlation of multiple data streams is of
interest in order to detect similar behaviors of stock prices, for video surveillance appli-
cations, synchronization of biological signals and, more in general, mining of temporal
patterns [Lin et al. 2002, Roddick et al. 2000].

Previous works dealing with the problem of detecting when two or more streams
exhibit a high correlation in a certain time interval have tried to extend techniques de-
veloped for (static) time series to the streaming environment. In particular, Zhu and
Shasha [Zhu and Shasha 2002], by adopting a sliding window model and the Euclidean
distance as a measure of correlation (low distance = high correlation), have been able
to monitor in real-time up to 10,000 streams on a PC. However, it is known that for
time-varying data a much better accuracy can be obtained if one uses the Dynamic Time
Warping (DTW ) distance [Berndt and Clifford 1994]. Since the DTW can compensate
for stretches along the temporal axis, it provides a way to optimally align time series
that matches user’s intuition of similarity much better than Euclidean distance does, as
demonstrated several times (see, e.g., [Ratanamahatana and Keogh 2004] for some recent
DTW applications and [Bartolini et al. 2005] for a novel DTW -based approach to shape
matching). Further, although not a metric, DTW can be indexed [Keogh 2002], which
allows this distance to be applied also in the case of large time series archives.

Unfortunately, when considering streams the benefits of DTW seem to vanish
since, unlike Euclidean distance, it cannot be efficiently updated. The basic reason is that



the (optimal) alignment one has established at time t is not guaranteed to be still optimal
at time t + 1, thus forcing the DTW to be recomputed from scratch at each time step,
with a complexity that, for a sliding window of size n, varies between O(n) and O(n2),
depending on how specific global constraints on valid alignments are set (see Section 2.
for details).

Given this unpleasant state of things, in this paper we propose the novel SDTW
(Stream-DTW) distance measure to be used in place of DTW for the purpose of con-
tinuously monitoring the distance of two or more streams. SDTW preserves the ability
of DTW to compensate for stretches along the temporal axis, yet, unlike DTW , is effi-
ciently updatable. This precisely means that the work required at each time step can vary
from a minimum of O(1) to a maximum of O(n), depending on the global constraints on
alignments. In both cases this represents a remarkable O(n) speed-up over DTW com-
putation. Our experiments on five real-world datasets show that SDTW is indeed a very
good approximation of DTW , the error never exceeding 10%. We also demonstrate that
other approximations of DTW , proposed for the static case, incur much higher errors and
have a highly variable behavior over the datasets.

Besides being applicable as a valid alternative to DTW for monitoring purposes,
SDTW can also be used as an effective filtering tool to speed-up the computation of the
result of DTW -based queries in a streaming environment. This holds since we prove (see
Theorem 1) that SDTW always lower bounds the DTW . For this querying scenario we
provide some preliminary results showing that SDTW is particularly effective in limiting
the number of false alarms.

The rest of the paper is organized as follows. In Section 2. we provide the neces-
sary background on the DTW distance. Section 3. highlights the limits of applying the
DTW distance in a streaming environment and presents a simple extension of the well-
known LBKeogh lower-bounding DTW approximation. In section 4. we introduce the
novel SDTW distance measure and prove some of its basic properties. Section 5. pro-
vides experimental evidence of the efficiency and the accuracy of SDTW , and Section 6.
concludes and suggests directions for future research activity.

2. Dynamic Time Warping
We start with some basic definitions related to the static case, i.e., for real-valued time
series of finite length.

Let R ≡ Rn
1 and S ≡ Sn

1 be two time series of length n and let Ri (Si) be the
i-th sample of R (resp. S). A common way to compare two time series is by computing
their Euclidean distance (L2) [Yi and Faloutsos 2000]. For the purpose of this paper, and
without loss of generality, we drop the square root from the definition of L2, thus defining
the distance between R and S as:

L2(R
n
1 , Sn

1 ) =
n∑

i=1

(Ri − Si)
2 (1)

It is important to realize that L2 (and similar metrics as well, such as the Manhattan
(L1) and the “max” (L∞) distances) only compares corresponding samples, thus it does
not allow for local non-linear stretches along the temporal axis.1 As a consequence,

1Observe that the problem of global or uniform stretching is quite different, see [Keogh et al. 2004].



two time series might lead to a high L2 value even when they are very similar, which
can have negative effects on common mining tasks, such as classification and cluster-
ing [Chu et al. 2002]. This well-known problem is solved by the Dynamic Time Warping
(DTW ) distance [Berndt and Clifford 1994]. The key idea of DTW is that any point of
a series can be (forward and/or backward) aligned with multiple points of the other series
that lie in different temporal positions, so as to compensate for temporal shifts.

The definition of DTW is based on the notion of warping path. Let d be the n×n
matrix of pairwise squared distances between samples of R and S, d[i, j] = (Ri − Sj)

2.
A warping path W = 〈w1, w2, . . . , wK〉 is a sequence of K (n ≤ K ≤ 2n − 1) matrix
cells, wk = [ik, jk] (1 ≤ ik, jk ≤ n), such that:

boundary conditions: w1 = [1, 1] and wK = [n, n], i.e., W starts in the lower-left cell
and ends in the upper-right cell;

continuity: given wk−1 = [ik−1, jk−1] and wk = [ik, jk], then ik − ik−1 ≤ 1 and jk −
jk−1 ≤ 1. This ensures that the cells of the warping path are adjacent;

monotonicity: given wk−1 = [ik−1, jk−1] and wk = [ik, jk], then ik − ik−1 ≥ 0 and
jk − jk−1 ≥ 0, with at least one strict inequality. This forces W to progress over
time.

Any warping path W defines an alignment between R and S and, consequently, a cost
to align the two series. The (squared) DTW distance is defined as the minimum of such
costs, i.e., the cost of the optimal warping path, Wopt:

DTW (Rn
1 , Sn

1 ) = min
W
{

∑

[ik,jk]∈W

d[ik, jk]} =
∑

[ik,jk]∈Wopt

d[ik, jk] (2)

The DTW distance can be recursively computed using an O(n2) dynamic programming
approach that fills the cells of a cumulative distance D matrix using the following recur-
rence relation (see also Figure 1):

D[i, j] = d[i, j] + min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]} (1 ≤ i, j ≤ n) (3)

and then setting DTW (Rn
1 , Sn

1 ) = D[n, n]. Note that D[i, j] = DTW (Ri
1, S

j
1), ∀i, j,

since the DTW distance is also defined when the two series have different lengths
[Berndt and Clifford 1994].

In practical applications, warping paths are commonly subject to some global
constraints, in order to prevent pathological alignments. The most commonly used of
such constraints is the Sakoe-Chiba band [Sakoe and Chiba 1978] of width b, that forces
warping paths to deviate no more than b steps from the matrix diagonal (see Figure 1 (b)).
It is worth noting that, besides reducing the complexity of computing DTW to O(nb),
rather surprisingly a band of limited width b leads to better results in classification tasks,
even when b is a small fraction (say, 3÷ 4%) of n [Ratanamahatana and Keogh 2004].

3. Data Streams: What is the Problem?
Let us now turn to a streaming environment, in which R and S are possibly infinite se-
quences of samples. We assume that at each time step a new sample for both streams
becomes available (i.e., streams are synchronized). We consider the well-known sliding
window model, according to which, for a sliding window of size n, only the last n points



t

0

1

2

3

4

5

6

S

R

(a)

R

4 9 16

1 4 9 1

1 4 9 1

9 16 4

1

4 1

25 9

4

9 4 9

4 1 4 9

4 1 4 9

0 1 4

3 4 5 3 3 2 3 43 4 5 3 3 2 3 4

1

2

2

1

0

1

1

2

1

2

2

1

0

1

1

2

S
d

(b)

R

13 29

5 18

6 9 17

15 25 21 22

40 30

34

30 29

34 28 37

38 29 37

26

4

8 17

18 19

20

24

25

26

27 31

3 4 5 3 3 2 3 43 4 5 3 3 2 3 4

1

2

2

1

0

1

1

2

D
S

(c)

Figure 1. Computing the DTW distance with a Sakoe-Chiba band of width b = 2:
(a) Optimal alignments; (b) The d matrix of pairwise sample distances; (c) The D
cumulative distance matrix; highlighted cells constitute the optimal warping path
Wopt

of the streams are significative [Babcock et al. 2002, Babu and Widom 2001]. Thus, at
time t, the subsequence of stream R falling in the current (active) window is Rt

t−n+1. At
time t + 1, sample Rt+1 arrives and Rt−n+1 expires, thus the new active window consists
of Rt+1

t−n+2. The same is true for stream S.

If one wants to continuously monitor the distance of the streams a näive approach
would be to compute, at time t+1, the distance between Rt+1

t−n+2 and St+1
t−n+2 from scratch,

i.e., without considering the computation performed at previous time steps. This might
be a challenging task, especially with high sampling rates, large sliding windows, and
many (hundreds, thousands) streams to monitor [Zhu and Shasha 2002]. Indeed, these
scenarios call for a method that is not only accurate in comparing streams, yet it is also
efficient, that is, able to exploit previously performed computation.

As anticipated in the Introduction, the DTW distance is not efficiently updatable,
which is also to say that the work to be performed at each time step is O(nb). This can
be argued from the following observation. Let Wopt(t) be the optimal warping path for
subsequences Rt

t−n+1 and St
t−n+1 and Wopt(t + 1) be the one for Rt+1

t−n+2 and St+1
t−n+2.

Then, in the limit case it could well be the case that Wopt(t) and Wopt(t + 1) share no
common cell (alignment) at all, i.e., the optimal alignment established at time t is of no
help in finding the optimal alignment at time t + 1.

Given this unpleasant state of things, we are left with the problem of devising a
method for continuous data streams that satisfy both following requirements:

1. It should be a good approximation of DTW . This is because of the success that
DTW has already demonstrated for the static case (i.e., time series).

2. It should be fast to update, i.e., its complexity should be at most O(b). Note that
this is the best one can achieve with a DTW -like distance measure, since at each
new time step 2b + 1 distances between samples have to be necessarily computed.
In particular, if b does not vary with n, update complexity should be independent
of the sliding window size, n.

Note that the DTW distance trivially satisfies the 1st requirement but not the second,
whereas the opposite is true for the Euclidean distance and similar metrics.



3.1. Extending Approximation Techniques Proposed for the Static Case
One possible approach to satisfy both above-stated requirements is to extend to the
streaming environment (lower-bounding) approximations of the DTW distance that have
been developed for the static case, where they are used to speed-up DTW -based queries
over large time series databases [Yi et al. 1998, Kim et al. 2001, Keogh 2002]. In this
setting, we are given a (query) time series Q and a search threshold ε, and want to re-
trieve all the time series S in the database for which DTW (Q,S) ≤ ε holds. The idea
of such methods is to introduce a lower-bounding distance measure, dlb, and to use it to
discard all series S such that dlb(Q,S) > ε, thus without performing the (costly) compu-
tation of DTW (Q,S). This works since dlb(Q,S) > ε implies DTW (Q,S) > ε if dlb

lower bounds DTW . The DTW computation needs to be executed only for those series
that survive the filtering step. The effectiveness of this filter & refine approach critically
depends on two contrasting factors [Agrawal et al. 1993, Ciaccia and Patella 2002]: dlb

should be cheap to compute and, at the same time, it should have a good accuracy, so as
to limit the number of false alarms, i.e., the number of series for which both dlb(Q,S) ≤ ε
and DTW (Q,S) > ε hold.

The best-so-far known method to approximate from below the DTW is due to
Keogh [Keogh 2002], and consists in constructing an envelope, Env(Q), around Q, after
that an Euclidean-like distance between Env(Q) and S is computed. More in detail, let
Up(Q) and Low(Q) be two time series defined as follows (see Figure 2 (a)):

Upi(Q) = max{Qj|j ∈ [max{1, i− b}, min{n, i + b}]}
Lowi(Q) = min{Qj|j ∈ [max{1, i− b}, min{n, i + b}]}

Thus, Upi(Q) (Lowi(Q)) is simply the maximum (resp. the minimum) of Qj values in the
interval [i−b, i+b], centered in i and of width 2b+1. The definition is then completed so as
to properly take into account border effects. Consequently, Env(Q) = (Up(Q), Low(Q))
encloses all the allowed stretches of Q. Finally, the (squared) LBKeogh distance between

Figure 2. (a) The envelope of Q when b = 4; (b) Keogh’s lower-bounding distance.
In the example: LBKeogh(Env(Q), S) = 0.416

Env(Q) and S is defined as:

LBKeogh(Env(Q), S) =
n∑

i=1





(Si − Upi(Q))2 if Si > Upi(Q)

0 if Si ∈ [Lowi(Q), Upi(Q)]

(Lowi(Q)− Si)
2 if Lowi(Q) > Si

(4)

and corresponds to the shaded area in Figure 2 (b).



We can easily adapt Keogh’s method to deal with streams as follows. Let
LBKeogh(Env(Rt

t−n+1), S
t
t−n+1) be the lower-bounding distance between (the envelope

of) Rt
t−n+1 and St

t−n+1. Since in our scenario the two streams R and S play a symmetric
role, we can similarly compute LBKeogh(Env(St

t−n+1), R
t
t−n+1) and then, in order to im-

prove accuracy, define the symmetric LBKeogh lower-bounding distance measure as (see
Figure 3):

LBsymm
Keogh(R

t
t−n+1, S

t
t−n+1) = (5)

max{LBKeogh(Env(Rt
t−n+1), S

t
t−n+1), LBKeogh(Env(St

t−n+1), R
t
t−n+1)}

Note that when updating LBsymm
Keogh, only the first b and the last b values of the envelope

can possibly change upon arrival of the new stream samples.

Figure 3. The symmetric LBsymm
Keogh lower-bounding distance: (a) The envelope of

R; (b) The envelope of S. In the example: LBsymm
Keogh(R, S) = 1.032

Depending on the width b of the band and on the specific dataset, the quality
of approximation of LBKeogh with respect to DTW is known to wildly vary (see, e.g.,
[Keogh 2002, Ratanamahatana and Keogh 2004]). Thus, as also our experiments confirm
(see Section 5.), using LBKeogh (as well as its symmetric version) in place of DTW for
monitoring purposes is not advisable, since it only satisfies the 2nd of our requirements
(fast to update) but not the 1st one (good approximation of DTW). Thus, LBsymm

Keogh could
only be considered to be used as a filter for DTW -based queries, as done in the static
case.

4. The Stream-DTW Distance
The key to satisfy both requirements of accuracy and efficiency starts from a couple of
simple observations. First, in order to obtain a high accuracy, a DTW -like style of com-
putation should be preserved (note that this is not the case with LBsymm

Keogh). Second, in
order to save computational resources, one should realize that the major source of dif-
ficulty in updating the DTW distance lies in its boundary conditions. To see why this
is the case, consider again the optimal warping paths Wopt(t) and Wopt(t + 1). Since
Wopt(t + 1) has necessarily to start from cell [t − n + 2, t − n + 2], it is evident that, in
order to reuse at least part of the computation performed to determine Wopt(t), this path
has to pass through such cell. However, this is unlikely to be the case.

Clearly, we cannot be confident in ensuring that an optimal warping path passes
through a single cell, yet we can guarantee that it passes through one of a (suitable chosen)
set of cells. This is formalized by the following preliminary definition (see also Figure 4).



Definition 1 (Frontier) A frontier F is any set of cells of the cumulative distance matrix
such that for any warping path W it is W ∩ F 6= ∅.
The x-frontier anchored in cell [i, i] is the set of 2b + 1 cells

x[i, i] = {[i, i], [i, i + 1], . . . , [i, i + b], [i + 1, i], . . . , [i + b, i]}.

The q-frontier anchored in cell [i, i] is the set of 2b + 1 cells

q[i, i] = {[i, i], [i, i− 1], . . . , [i, i− b], [i− 1, i], . . . , [i− b, i]}.

Note that any warping path (including Wopt) has to pass through a frontier.

Now we define two relaxed versions of DTW , which will be used in the definition
of our new distance measure.

Definition 2 (Boundary-relaxed DTW) Given streams R and S, let ts and te be two
generic time instants. We define:

• The start-relaxed DTW (DTW x) between subsequences Rte
ts and Ste

ts is the value
of Dx[te, te], where Dx is the start-relaxed cumulative distance matrix initialized
as follows:

Dx[ts, ts + j] = d[ts, ts + j]; Dx[ts + j, ts] = d[ts + j, ts] (0 ≤ j ≤ b) (6)

and then completed using the recurrence relation defined in Eq. 3.
• The start-end-relaxed DTW (DTW xq) between subsequences Rte

ts and Ste
ts is:

DTW xq(Rte
ts , S

te
ts ) = min{DTW x(Ri

ts , S
j
ts) | [i, j] ∈q[te, te]} (7)
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Figure 4. (a) Distance matrix; (b) Start-relaxed DTW ; (c) Start-end-relaxed DTW

Note that DTW x computation proceeds as with DTW , yet all the cells in the x-frontier
anchored in ts have as value the distance between the corresponding samples (see Figure 4
(b)). This is to say that warping paths can start from any cell in x[ts, ts]. When te < ts we
conventionally set DTW x(Rte

ts , S
te
ts ) = 0.

For computing DTW xq(Rte
ts , S

te
ts ) one also relaxes the end-boundary condition.

In practice one can still use the same start-relaxed Dx matrix used for computing



DTW x(Rte
ts , S

te
ts ), and then just look at the minimum value on the q[te, te] frontier (see

Figure 4 (c)).

The basic rationale underlying the computation of the Stream-DTW (SDTW )
distance is to split, using frontiers, the optimal warping path of the DTW into 2 distinct
pieces (one of them possibly null at some time instants): The 1st piece starts by spanning
the whole current window of size n, and then, at each time step, progressively reduces; the
2nd piece starts empty and then progressively grows. After exactly n time steps every-
thing starts again. For each of the 2 pieces of Wopt the SDTW provides an accurate
approximation.

We first present the formal definition of SDTW , a detailed explanation of how it
works is provided in the Proof of Theorem 1. To stay general, we consider that we want
to measure the distance between subsequences Rte

ts and Ste
ts , where te = kn + i for some

positive integer k, 0 ≤ i < n, and ts = te − n + 1 = kn + i− n + 1 = (k − 1)n + 1 + i.

Definition 3 The Stream-DTW (SDTW ) distance between subsequences Rte
ts and Ste

ts is
defined as:

SDTW (Rkn+i
(k−1)n+1+i, S

kn+i
(k−1)n+1+i) = DTW xq(Rkn

(k−1)n+1, S
kn
(k−1)n+1) (8)

− (DTW x(R(k−1)n+1+i
(k−1)n+1 , S

(k−1)n+1+i
(k−1)n+1 )− d(R(k−1)n+1+i, S(k−1)n+1+i))

+ DTW x(Rkn+i
kn+1, S

kn+i
kn+1)

Theorem 1 (Lower bound) The SDTW distance is a lower bound of DTW .

Proof. For the sake of conciseness, denote with α, β, γ and δ the 4 terms in the right-hand
side of Eq. 8, so that we have to show that α − (β − γ) + δ is a lower bound of DTW
(see also Figure 5).

α

β

γ

δ

Wopt

Dk

Dk+1

kn(k-1)n+1 (k-1)n+1+i kn+i

Figure 5. How SDTW works (SDTW = α− (β − γ) + δ)

Let Wopt be the optimal warping path for aligning Rkn+i
(k−1)n+1+i and Skn+i

(k−1)n+1+i,
and consider the frontiers q[kn, kn] and x[kn + 1, kn + 1]. Consider the 1st part of Wopt,
call it Wopt,k, that ends in a cell of q[kn, kn], and the 2nd part of Wopt, call it Wopt,k+1,



that starts from a cell in x[kn + 1, kn + 1]. We claim that α − (β − γ) lower bounds
the DTW contribution, call it DTWk, corresponding to Wopt,k and that δ lower bounds
the component, call it DTWk+1, corresponding to Wopt,k+1. Since the DTW distance
between the two subsequences is ≥ DTWk + DTWk+1 this will prove the result.
[α − (β − γ) ≤ DTWk]. Consider the start-relaxed path, call it Wβ , corresponding to β
and ending in cell [ts, ts], and the path Wopt,k, which shares cell [ts, ts] with Wβ . Counting
just once the contribution of cell [ts, ts], i.e., γ, we end up with a total cost given by
β − γ + DTWk for going from x[(k − 1)n + 1, (k − 1)n + 1] to q[kn, kn]. From the
definition of DTW xq, this cannot be less than α, which proves the assert.
[δ ≤ DTWk+1]. Immediate from the definition of start-relaxed DTW . ¤

Above proof shows how we can approximate from below the DTW by splitting
the optimal warping path into 2 pieces. The two frontiers we use to this purpose are by
no means the only possible ones; in particular, as Figure 5 shows, a part of Wopt could
traverse some cells, after leaving q[kn, kn] and before entering x[kn + 1, kn + 1], that
SDTW does not consider at all. We can prove that our arguments are still applicable
should we replace x[kn + 1, kn + 1] with the q[kn + 1, kn + 1] frontier. We do not enter
into further details here.

It is evident that, unlike simpler approximations such as LBKeogh, the computation
of SDTW shares with DTW the need of computing an optimal warping path, even if on
a start-relaxed cumulative distance matrix. This alone suggests that the very first instant
we compute the SDTW we have to pay a cost of O(nb). However, as the following
theorem shows, SDTW is amenable to be efficiently updatable.

Theorem 2 (Update Complexity) The SDTW distance can be updated in time O(b) at
any time step.

Proof. Denote with α′, β′, γ′ and δ′ the new values, at time step te′ = te +1 = kn+ i+1,
of the 4 terms in Eq. 8. Let Dx

k be the start-relaxed cumulative distance matrix for time
interval [(k− 1)n + 1 : kn], and Dx

k+1 be the one for the interval [kn + 1 : (k + 1)n]. Let
dk and dk+1 be the corresponding matrices storing distances between samples of R and S.

The steps needed to update the value of SDTW include the computation of dis-
tance values for the two new samples of R and S, and the extension of matrix Dx

k+1 up to
frontier q[te′ , te′ ] =q[te + 1, te + 1]. Both steps require O(b) time.

Consider now the case when te′ = kn + i + 1, with 0 ≤ i < n− 1. We have:

• α′ = α, since this term does not depend on i.
• By definition of start-relaxed DTW and of Dx

k, it is β′ = Dx
k[(k−1)n+1+ i+1 :

(k − 1)n + 1 + i + 1], i.e., computing β′ costs O(1). The same is clearly true for
γ′ = d(R(k−1)n+1+i+1, S(k−1)n+1+i+1).

• Finally, δ′ = Dx
k+1[kn + i + 1 : kn + i + 1], again with cost O(1).

When i = n − 1, it is te′ = kn + (n − 1) + 1 = (k + 1)n and we have β′ = γ′

and δ′ = 0 (by definition of start-relaxed DTW ). The new SDTW value reduces
to α′ = DTW xq(R(k+1)n

kn+1 , S
(k+1)n
kn+1 ), which, given matrix Dx

k+1, can be computed in
O(2b + 1) = O(b) time. ¤



Finally, the following result shows that the memory required by SDTW is of the
same order of that needed to continuously update the Euclidean distance.

Theorem 3 (Space Complexity) The SDTW distance can be computed using
O(n + b) = O(n) space.

Sketch of proof. Refer to Figure 5 and observe that, starting from time te = kn + 1, all
information in matrices dz and Dx

z , with 1 ≤ z < k, is not needed anymore to determine
future SDTW values. This immediately bounds the space required to O(nb). In other
terms, as Figure 5 suggests, at each time step at most 2 distance matrices and 2 cumulative
distance matrices are needed.

Consider now the proof of Theorem 2. To reduce the space to O(n + b) it is
sufficient to observe that, when te ∈ [kn + 1 : (k + 1)n], all one needs to know about
the dk and Dx

k matrices is just the difference of corresponding diagonal elements (i.e., the
(β−γ) terms) and the (single) α value. This accounts for the n term in O(n+ b). Finally,
the b term is due to the need of storing the last q-frontier of matrix Dx

k+1, which is used to
update the δ term. ¤

5. Experimental Results
In this section we present experimental results aiming to evaluate the actual performance
of SDTW , both in terms of efficiency and of quality of approximation. For reference pur-
pose, we contrast SDTW to the LBsymm

Keogh method presented in Section 3.1.. Our experi-
ments are performed on a 1.60GHz Intel Pentium 4 CPU with 512 MB of main memory
and running Windows 2000 OS. We use five different real-world datasets, obtained from
the UCR archive [Keogh and Folias 2002] (see Figure 6 for samples from such datasets):

• Random walk: classical random walk data, generated according to the equation
Si = Si−1 + rand(−0.5, 0.5);

• Burstin: this dataset includes 12 hours of data from a small region of the sky,
where Gamma Ray bursts were reported during that period;

• Fluid dynamics: this stream represents one of the signals collected at a frequency
of 500Hz from boundary layer experiments in the fluid dynamics research domain;

• Network: this dataset describe the Round Trip Time (RTT) delay of a sequence
of packets sent from University of California at Riverside to Carnegie Mellon
University;

• EEG: 128Hz-electroencephalographic data acquired at the Department of Physi-
ology (University of Bologna).

For each of the above datasets we simulate acquisition of new samples by reading from
memory a new data sample at fixed time intervals (sampling rate). In order to generate
multiple streams of a same kind, we partition each dataset into non-overlapping parts, and
then take each of such parts as a different stream.

Our first experiment aims to show the actual speed-up obtainable from SDTW
with respect to DTW . In Figure 7 we show how many streams we can monitor in real
time for the methods under analysis when the sliding window includes n = 128 samples.
More precisely, for a given number of pairs of streams to be compared to each other, we
vary the sampling rate and plot the value beyond which we cannot report results before
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Figure 6. Samples from the five datasets used in the experiments

the next stream samples have to be read. Thus, working, say, at 1000 Hertz means that all
the distance values between the pairs of streams are reported no later than 1 millisecond.

It is evident that SDTW outperforms DTW by up to two orders of magnitude.
For instance, at 100 Hertz SDTW can monitor up to about 100 pairs of streams, whereas
DTW can only handle 1 pair. The LBsymm

Keogh method has an intermediate behavior, since
it pays the overhead of updating the envelopes of all streams to be compared.
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Figure 7. Maximum number of pairs of streams that can be monitored with DTW ,
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Results are averaged over the 5 datasets in Figure 6

Figure 8 (a) shows that the gain of SDTW with respect to DTW actually im-
proves with the sliding window size, and Figure 8 (b) clearly makes evidence that the



ratio CPU(DTW )/CPU(SDTW ), where CPU() measures the CPU cost of a method,
indeed grows as O(n), as expected.
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Figure 8. (a) Maximum sampling rate vs. length of sliding window, n; (b) Ratio of
average CPU costs, CPU(DTW )/CPU(SDTW ). 6 pairs of streams. Sakoe-Chiba
band size b = n ∗ 6.25%. Results are averaged over the 5 datasets in Figure 6

Figure 9 analyzes the accuracy (or tightness) of SDTW and LBsymm
Keogh with

respect to DTW . The tightness is measured as the average of SDTW/DTW and
LBsymm

Keogh/DTW ratios over 496 pairs of streams. As it can be seen, the tightness of
SDTW is very stable over the different datasets, and is always at least 90%. This is not
the case with LBsymm

Keogh, whose tightness never exceeds about 61%, and is as low as less
than 8% for the Burstin dataset.
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Figure 9. The tightness of SDTW and LBsymm
Keogh with respect to DTW ; Sliding

window size n = 128. Sakoe-Chiba band size b = 8

Our last experiment aims to shed more light on the effects of the tightness in the
case one is interested in performing DTW -based queries on streams. More precisely, we
consider the number of false alarms yielded by SDTW and LBsymm

Keogh when the task is to
determine whether the DTW distance falls below a given threshold value ε. Remind that,
according to Theorem 1, SDTW can be safely used to this purpose since it is a lower
bound of DTW .



Clearly, as explained in Section 3.1., a high number of false alarms leads to too
many unnecessary DTW computations, thus slowing-down the overall querying process.
Figure 10 reports the percentage of false alarms for the different datasets, computed as the
ratio of the number of times the filtering distance (either SDTW or LBsymm

Keogh) falls under
ε to the total number of comparison between stream subsequences. The experimental
setting is the same as in Figure 9 (496 pairs of streams, n = 128 and b = 8) and ε is
chosen so as to have a 1% selectivity, that is, only in 1% of cases the DTW distance is
under the threshold.

It is evident that the good tightness of SDTW pays off, in that false alarms are
never more than 1.5% (0.85% averaged over all datasets). For the Fluid dynamics dataset
no false alarm at all occurs. This and Random walk are the only datasets for which
LBsymm

Keogh yields a limited number of false alarms (4.5% and 6%, respectively), whereas in
the other cases the effectiveness of the filter step is seriously compromised. Overall, the
false alarms percentage of LBsymm

Keogh is 41.13%, peaking to 99% for the Burstin dataset.
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Figure 10. Percentage of false alarms

6. Conclusions

In this paper we have proposed a novel method, called SDTW (Stream-DTW) to compare
data streams that, unlike the well-known Dynamic Time Warping (DTW ) distance, can
be efficiently updated when a window slides over the streams. Our experimental results
confirm the theoretical analysis and show that the improvement in efficiency of SDTW
over DTW linearly grows with the size of the sliding window, thus making it possible to
compute a DTW -like distance measure even on (very) large sliding windows. We have
also shown that extensions of methods developed for the static case, i.e., when time series
are known in advance, and there used to speed-up the evaluation of DTW -based queries
cannot cope with SDTW in terms of accuracy.

Our results open a series of interesting research directions and possibilities. An
efficiently updatable DTW -like distance measure makes it possible to perform on streams
several analysis developed only for the static case, such as those related to mining tasks.
For instance, SDTW could be compared to the Euclidean distance in clustering and
classification tasks, as already done with static time series. The extension of SDTW



to non-synchronized data streams, where the arrival frequency of new data varies for each
stream as well as within a single stream is also an interesting research issue.

In this paper we have mainly focused on the problem of monitoring the distance
of streams and proposed SDTW as an alternative to DTW . We have also suggested
that, due to its lower-bounding property, SDTW can also be used as a filtering step if one
wants to perform DTW -based queries on streams. Although for this scenario we have
shown that SDTW will lead to very few false alarms, one should be aware that bursts
of stream subsequences for which the DTW distance needs to be computed are always
possible. Therefore, since this will necessarily introduce some delay in the evaluation
process, it is an interesting problem to precisely understand how the distribution of such
delays will vary with the number and the characteristics of the streams.

Finally, a major issue that remains to be addressed concerns the definition of a
method able to compute a DTW -like distance on streams that need to be normalized
on-line. Indeed, working with unnormalized data may have negative effects on the signif-
icance of any similarity measure (including DTW ), as demonstrated for static time series
[Keogh and Kasetty 2003]. Extending our method to normalized data does not seem to
be a trivial task. Intuitively, the problem with normalization is that now a data sample no
longer has a fixed value, since at each time step the normalization constants (mean and
standard deviation) may change. Reusing computations performed at previous time steps
then becomes a major challenge.
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