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Abstract. Content-based image retrieval systems allow the user to interactively search im-

age databases looking for those images which are similar to a specified query image. To

this end, region-based systems decompose each database image into a set of “homogeneous”

regions. Similarity between images is then assessed by computing similarity between re-

gions and combining the results at image level. In this paper we propose a correct approach

to region matching maximizing the overall similarity score between images. The presented

approach only relies on the assumption that regions’ scores are to be combined using a mono-

tonic function. Experimental results obtained using an existing system show the effectiveness

of our approach with respect to existing region matching heuristics. Then, to reduce query

costs, we present an index-based algorithm that can make use of any distance-based access

structure, and demonstrate its efficiency on a medium-size image data-set.

1 Introduction

Many real world applications, in the field of medicine, weather prediction, criminal investigations,
and communications, to name a few, require efficient access to image databases based on content.
To this end, the goal of content-based image retrieval (CBIR) systems is to define a set of properties
(features) able to effectively characterize the content of images and then to use such features during
retrieval. In order to allow automatic storing and retrieval of images, the features should be simple
enough to allow their automatic extraction but meaningful enough to capture the image content.

The vast majority of CBIR systems uses global features to represent image semantics, by ex-
tracting information on color and texture on the whole image [FEF+94]. Other approaches divide
each image into a set of pre-defined regions in order to extract localized features [SO95]. The usual
approach of such systems is to represent each image as a feature vector and to assess similarity
between images by way of a distance function. Of course, each method is characterized by the
number and the type of such features and by the distance function used.

It is common, for a user accessing a CBIR system, to request for images containing particular
“objects”, possibly arranged in a specific spatial organization. The use of global features, therefore,
cannot effectively fulfill users needs, since no information about objects contained in the image
can be extracted from global descriptors. Only in recent times, a number of region-based image
retrieval systems have been presented [CTB+99,NRS99,ABP99], that fragment each image into
regions, i.e. sets of pixels sharing common visual characteristics, like color and texture. Similarity
assessment between images is then performed by associating regions in the query image with those
contained in database images and by taking into account similarity between associated regions. To
� This work has been partially supported by InterData and ex-60% grants from MURST



this end, features are extracted for each region and a metric function is used to compare region
descriptors. Existing systems, however, either consider a scenario, which is beyond the scope of our
work, where spatial constraints are taken into account [BDV99], or use näıve heuristic matching
algorithms when associating regions of the images being compared, thus obtaining incorrect results.
As an example, suppose that a user asks for an image containing two regions each representing a
tiger: If a database image contains a single “tiger” region, it is not correct to associate both query
regions to the single “tiger” region of the database image, since, in this case, information on the
number of query regions is lost.

In our discussion, we will focus on k nearest neighbor queries, where the user asks for the k im-
ages in the database which are most similar, according to the similarity measurement implemented
by the CBIR system, to a query image.

In this paper we present a correct approach to region matching and apply it to an existing
region-based image retrieval prototype, the Windsurf system [ABP99]. In [ABP99], the region
matching technique uses an heuristic algorithm (see Section 3.2) that is not sound. It has to be
noted that our approach is independent of the underlying CBIR system, and only requires that
similarity between images is computed by way of similarity scores between image regions. Moreover,
since the complexity of sequential evaluation of queries is linear in the database size, we propose
an index-based solution, showing its efficiency on a medium-size image database. We begin our
discussion by presenting existing region-based image retrieval systems, and outlining their limits in
query processing (Section 2). Section 3 introduces the Windsurf system, the region-based image
retrieval prototype on which we will concentrate throughout the rest of the paper. In Section 4
we precisely formalize the region matching problem, and present a sequential correct algorithm
(ERASE) for its resolution. We then present an index-based solution (AWS

0 ) for the problem, in
order to speed up query resolution when the image database is large (Section 5). Analysis of the
proposed solutions, with respect to existing heuristics used in the Windsurf system, follows in
Section 6, by looking at both efficiency and effectiveness issues. Finally, Section 7 concludes the
paper, drafting possible directions for future work.

2 Background

Region-based image retrieval systems divide images into a set of “homogeneous” regions, i.e. sets
of pixels having common visual characteristics. This is usually performed by applying a clustering
algorithm on pixels constituting the image. In order to obtain homogeneity within regions, it is
not correct to separately consider pixel features such as color, texture, and position, since image
semantics would be lost: If we say, for example, that a red and striped object is only red, or only
striped, we give a right information about the object, but not an effective description of it. Toward
this goal, we need to fragment an image into regions by defining a feature vector on the combined
space (e.g. on a color-texture space) for each of them. In this way, querying is based on a set of
regions of interest, rather than a description of the whole image, and this allows to support more
specific queries like: “find all those images containing a small red and striped region under a big
blue region”. It is obviously a need for CBIR systems to pass from an image-based approach to a
region-based one.

As an example of a region-based system, in [SC96] the VisualSEEk system is proposed, con-
sidering information on both the spatial and the frequency domain in order to decompose each



image into regions. The similarity between two images is computed by taking into account color,
location, dimension, and relative positioning of regions. Query processing, however, is carried out
using a simple heuristics: First, for each region of the query image, a range query on color, location,
and dimension is issued with similarity thresholds provided by the user; then, the candidate set
of images is built, by taking into account only those images that present regions in all the result
regions sets; finally, the optimum match is computed on the set of candidate images. Thus, if a
user would request for, say, the 10 images most similar to a given one, he/she is also asked for the
specification of similarity thresholds that have no physical counterparts in user’s mind.

WALRUS (WAveLet-based Retrieval of User-specified Scenes) [NRS99] is a region-based sim-
ilarity retrieval system which fragments images using wavelets [Dau92]. The matching phase of
WALRUS consists in retrieving all the DB regions which are similar to at least one query region
with a score ≥ ε. To this end, descriptors of DB regions are indexed using an R*-tree [BKSS90]
and a range query, with a radius determined by ε, is issued for each query region. Then, in the
combining phase, which is applied only to those images containing regions obtained in the matching
phase, the relative sizes of matching regions are added up to obtain the overall similarity score be-
tween images. Images for which the similarity with the query image is higher than a user-specified
ξ threshold are returned as the query result.

The main limitation of both VisualSEEk and WALRUS resides in the fact that they require
the specification of similarity thresholds. Indeed, range queries are not well suited for the scenario
we envision: Since the user has no a priori knowledge on the distribution of similarities between
images, he/she has no way to guess the “right” value for a similarity threshold; a high value for
it could lead to an empty result, and slightly lowering this value could result in an overwhelming
number of returned images.

Blobworld [CTB+99] is a CBIR system which fragments an image into regions (blobs), ho-
mogeneous with respect to color and texture, by using an Expectation-Maximization clustering
algorithm. The Blobworld index-based query resolution algorithm uses an R-tree-like structure to
index color descriptors of blobs. The matching phase is performed by requesting, for each blob
in the query image, a predetermined number (in the order of the hundreds) of most similar DB
regions by issuing a nearest neighbors query on the index. The combining phase only considers
regions obtained in the matching phase and computes the overall image similarity using (weighted)
fuzzy-logic operators to combine regions’ scores. This approach has two major limitations. First,
since best matches for query blobs are computed by ignoring matches for other blobs, a single blob
in the database image can be associated to two distinct query blobs (see the “two tigers” example
in Section 1). Second, the number of regions that are returned by the matching phase is a priori
determined, thus it is unrelated to the number k of images requested by the user and to the specific
query image. As we will show in Section 4, this can lead to miss the correct best images.

3 The Windsurf system

The Windsurf system [ABP99] is a region-based image retrieval system that uses the Discrete
Wavelet Transform (DWT, [Dau92]) to divide each image into regions. The global architecture of
the system is sketched in Figure 1. Each image is processed through a number of steps described
as follows:



DWT The image is analyzed in the time-frequency domain using a 2-D DWT. In detail, the Haar
wavelet is used as a special case of the bihorthogonal wavelet of Cohen-Daubechies-Feauveau
(CDF), as provided by the WAILI software library [UVJ+97]. To this end, the image is divided
into the correspondent color channels and the DWT is applied to each channel. Since the
RGB color space is not suitable to reflect human perception of color [Smi97], we consider the
HSV color space, because, in this space, each color component is perceptually independent
and uniform. We refer to the j-th wavelet coefficient as wl;B

j = (wl;B
0j
, wl;B

1j
, wl;B

2j
), where B is

a sub-band of frequency (B ∈ B = {LL,LH,HL,HH}), l is the DWT level and c ∈ {0, 1, 2}
denotes a color channel.

Clustering The image is fragmented into a set of regions using the wavelet coefficients (clustering
features). In particular, we use a simple k-means algorithm whose goal is to minimize a function
depending on the distance between each pixel coefficient and the centroid of each cluster.
Obviously, the value of such function depends both on the number of clusters and on the
choice of the distance function. As for the distance between pixels descriptors, we adopted the
Mahalanobis distance applied on the 3-D wavelet coefficients of the LL sub-band of the 3-rd
level. This because, intuitively, regions should be built by taking into account low frequency
descriptors. To compute the “optimal” value for the number of clusters (m), we iterate the
computation of the above function between a minimum (mmin = 2) and a maximum (mmax =
10) value, choosing the best solution which minimizes the adopted validity function. Thus,
the k-means algorithm provides, as the output, the total set of image pixels divided in m
clusters. Details on the region fragmentation algorithm of the Windsurf system can be found
in [ABP99].

Feature Indexing Regions so obtained are described using a set of similarity features. When
comparing regions, we consider information on size and color-texture as provided by all the
frequency sub-bands. To this end, the similarity features for a region Rsi

of image Is are defined
as a 37-D vector:

Size The number of pixels in the region, size(Rsi
).

Centroid The centroid of Rsi
is defined through a 12-D vector VRsi

= (µLL
Rsi
, µLH

Rsi
, µHL

Rsi
, µHH

Rsi
),

where, for each sub-band B, µB
Rsi

is a 3-D point representing the average value for each
color channel. This represents the color information for the region.

Features These correspond to the coefficients of the 3 × 3 covariance matrices, C3;B
Rsi

, of the
points contained in Rsi

. Since the covariance matrices are symmetrical, we only store 6
values for each matrix C3;B

Rsi
, obtaining a 24-D vector CRsi

. Since coefficients of the covari-
ance matrix take into account variations in color for pixels in Rsi

, these represent texture
information of the region.

3.1 Region Similarity

In the Windsurf system, the similarity between two regions, Rqi
of a query image Iq and Rsj

of
a database image Is, is computed as follows:

rsim(Rqi
, Rsj

) = h(d(Rqi
, Rsj

)) (1)

where d() is a distance function, and h() is a so-called correspondence function [CPZ98] mapping
distance values to similarity scores. The function h : 	+

0 → [0, 1] has to satisfy the following



Fig. 1. Steps for image features indexing in the Windsurf system.

properties: h(0) = 1 and d1 ≤ d2 ⇒ h(d1) ≥ h(d2),∀d1, d2 ∈ 	+
0 . In all the experiments, we used

h(d) = e−d/σd , where σ2
d is the variance of the distances computed over a sample of database

regions. The overall distance between regions Rqi
and Rsj

takes into account both differences in
the color and textures descriptors and in their relative size (see [ABP99] for details).

3.2 Image Similarity

In the first version of our prototype, we used simple heuristics to compute the overall similarity
between two images. This will be used in Section 6 as a yardstick to compare effectiveness and
efficiency of our proposed approach.

When matching regions in Iq with regions in Is, we have to satisfy two basic constraints:

1. A region of Iq cannot match with two different regions in Is.

2. Two different regions of Iq cannot match with the same region of Is.

To this end, each region Rqi
of Iq is associated to its “best match” region Rsj

in Is by considering
rsim(Rqi

, Rsj
). If, however, two regions Rqi

and Rqi′ of Iq are associated to the same region Rsj

of Is, only the best match is kept, e.g. if rsim(Rqi
, Rsj

) > rsim(Rqi′ , Rsj
), then the match between

Rqi′ and Rsj
is removed and, following the Windsurf heuristics, Rqi′ is associated with no region

of Is, therefore contributing with a score rsim = 0 to the overall similarity score between images
Iq and Is. The region in Is associated with region Rqi

is indicated as Γs(Rqi
).

We are now ready to compute the overall similarity between two images Iq and Is as the average
similarity between matched regions:

Isim(Iq, Is) =
1
n

n∑
i=1

rsim(Rqi
, Γs(Rqi

)) =
1
n

n∑
i=1

h(d(Rqi
, Γs(Rqi

))) (2)

Note that the best match for a certain region Rqi
can be undefined. Of course, rsim(Rqi

, Γs(Rqi
)) =

0 if Γs(Rqi
) is undefined.

4 Optimal Region Matching

Given a reference (query) image Iq, divided into a set of regions {Rq1 , . . . , Rqn
}, and an archive

(data-set) image Is, also divided into a set of regions {Rs1 , . . . , Rsm
}, the problem of optimal re-

gion matching consists in associating (matching) each region Rqi
of Iq to a region Rsj

= Γs(Rqi
)



of Is (possibly, no region is associated to Rqi
, i.e. Γs(Rqi

) = ∅) such that the overall similar-
ity score between images Iq and Is, Isim(Iq, Is), is maximized. Similarity between regions is as-
sessed by way of the rsim(Rqi

, Rsj
) function. Every Γs matching of regions has to satisfy the

following constraint: two regions of Iq cannot be associated to the same region of Is, there-
fore if Rqi

�= Rqj
and Γ (Rqi

) = Γ (Rqj
), it is Γ (Rqi

) = Γ (Rqj
) = ∅. Similarity between im-

ages is computed by taking into account similarity between associated regions, i.e. Isim(Iq, Is) =
RMsim(rsim(Rq1 , Γs(Rq1)), . . . , rsim(Rqn

, Γs(Rqn
))). The only requirement for the function RMsim

is that it has to be a monotonic increasing function, that is if si ≤ s′i, i ∈ {1, n}, then it is
RMsim(s1, . . . , si, . . . , sn) ≤ RMsim(s1, . . . , s′i, . . . , sn). This is intuitive, since better matches be-
tween regions can only increase the overall similarity score between corresponding images. More-
over, for the sake of simplicity, in the following we will assume that RMsim is a commutative
function. The optimal matching between regions, i.e. that for which Isim(Iq, Is) is maximum, will
be denoted as Γ opt

s .
The above problem can be expressed as a generalized assignment problem: Let sij = rsim(Rqi

, Rsj
)

be the similarity score between region Rqi
of Iq and region Rsj

of Is, denote with H the index
set of matched regions H =

{
(i, j)|Rsj

= Γs(Rqi
)
}
; of course, it is |H| ≤ min{m,n}. The goal is

to maximize the function RMsim(si1j1 , . . . , si|H|j|H|), with (ihjh), (iljl) ∈ H, (ihjh) �= (iljl), i.e.
maximize Isim(Iq, Is). To this end, we introduce the variables xij = 1 iff Rsj

= Γs(Rqi
), xij = 0

otherwise.

z = max RMsim(si1j1 , . . . , si|H|j|H|), (ihjh), (iljl) ∈ H, (ihjh) �= (iljl) (3)

H = {(i, j)|xij = 1} (4)
m∑

j=1

xij ≤ 1 (i = 1, . . . , n), (5)

n∑
i=1

xij ≤ 1 (j = 1, . . . ,m), (6)

xij ∈ {0, 1} (i = 1, . . . , n)(j = 1, . . . ,m) (7)

Equation 3 means that to determine the overall score Isim(Iq, Is) we have to consider only the
matches Γs() in H (Equation 4). Equation 5 (Equation 6) expresses the constraint that at most
one region Rsj

of Is (resp. Rqi
of Iq) can be assigned to a region Rqi

of Iq (resp. Rsj
of Is).

Definition 1 (Correct matching). A set of xij values that satisfies the constraints expressed by
Equations 5, 6, and 7 is called a correct matching.

Definition 2 (Complete matching). A correct matching for which it is
∑m

j=1 xij = 1, (i =
1, . . . , n) (i.e. each query region is associated to a region of the database image) is called a complete
matching. It should be noted that any correct matching for a database image having a number of
regions lower than that of the query regions is obviously not complete.

Definition 3 (Optimal matching). The correct matching that maximizes the function expressed
by Equation 3 is called the optimal (or exact) matching.

A typical form of the scoring function RMsim is that of a sum (this is indeed the case, save for
a constant scale factor, for two of the image retrieval systems introduced in previous Sections, i.e.



WALRUS and Windsurf, whereas Blobworld uses fuzzy functions for computing image similarity),
leading to a re-formulation of Equation 3 as follows:

z = max
n∑

i=1

m∑
j=1

sij · xij (8)

The generalized assignment problem, in this case, takes the form of the well known Assignment
Problem (AP), one of the most popular topics in combinatorial optimization. To resolve it, we
apply the Hungarian Algorithm [Kuh55] HUNG to the matrix {sij} of similarity scores between
regions. More precisely, sequential evaluation of a k nearest neighbor query is performed by way
of the ERASE (Exact Region Assignment SEquential) algorithm shown in Figure 2.

ERASE(Iq: query image, k: integer, C: data-set)

{ ∀ image Is in the data-set C
{ ∀ region Rsj of Is

∀ region Rqi of Iq compute sij = s(Rqi , Rsj );

invoke HUNG({sij}) obtaining, as the result, the value Isim(Iq, Is); }
return the k images having the highest overall similarity scores Isim(Iq, Is); }

Fig. 2. The Exact Region Assignment SEquential algorithm.

Correct resolution of k nearest neighbor queries by way of the ERASE algorithm, therefore,
requires the computation of similarity scores between regions in the query image and all the
regions contained in the database images. Algorithm complexity is, hence, linear in the database
size.

5 Index Evaluation

In order to obtain a complexity sub-linear in the data-set size, in this Section we present an
index-based algorithm for the resolution of the optimal region matching problem.

Since similarity between images is computed by combining distances between regions’ features,
we need to use a distance-based access method (DBAM), like the R*-tree [BKSS90] or the M-tree
[CPZ97], to index regions contained in database images. Such index structures are able to efficiently
answer to range- and k nearest neighbor queries, as well as to perform a sorted access to the data,
i.e. to output regions one by one in increasing order of distance with respect to a query region
[HS95]. In order to deal with “compound” queries where multiple query regions are specified, we
need to extend query capabilities of DBAMs. In our experimentation, we used the M-tree index
[CPZ97].

A first näıve approach to resolve compound queries with DBAMs is the following: For each
region Rqi

of the query image Iq, we execute a k nearest neighbor query, thus returning the k
regions in the data-set most similar to Rq. Then, we compute the exact region assignment for
the images that contained the regions obtained in the previous step (this is, indeed, the query
processing strategy used in the Blobworld system). This set of images is called the candidate set.



This algorithm guarantees that the number of candidate images is not higher than n · k. Such a
solution is indeed very efficient, but does not guarantee that the correct result is returned. As an
example, consider the case where n = 2, k = 1, and consider the similarity scores obtained by a
sorted access to a DBAM and given in Table 1. It is plain to see that the image most similar to the
query image Iq is the image I2 (the overall similarity score, computed as the average sum of regions
similarities, for image I1 is 0.9+0.7

2 = 0.80, for I2 is 0.85+0.79
2 = 0.82, for I3 is 0.71+0.87

2 = 0.79, and
other images lead to lower scores), whereas the candidate set is only composed by images I1 and
I3.

Rq1 Rq2

region image similarity region image similarity

R11 I1 0.90 R32 I3 0.87

R22 I2 0.85 R21 I2 0.79

R41 I4 0.83 R33 I3 0.75

R33 I3 0.71 R11 I1 0.72

R21 I2 0.69 R12 I1 0.70
...

...
...

...
...

...

Table 1. A sorted access example for a query image with two regions: Rq1 and Rq2 .

In order to guarantee that the correct result for the query is included in the candidate set, i.e.
in the images retrieved by the sorted access phase, we have to find a suitable condition to stop
the sorted accesses. The reference solution is the Fagin’s A0 algorithm [Fag96]. The A0 algorithm
stops the sorted accesses when at least k objects are included in all the index scans results (this is
called the stop condition for the algorithm). The only requirement for the A0 algorithm is that the
function applied to combine objects’ scores (in our case, the RMsim function) has to be monotonic.
Applying the A0 algorithm to the optimal region matching problem would be as in Figure 3.

A0(Iq: query image, k: integer, T : DBAM)

{ ∀ region Rqi of Iq, open a sorted access index scan on T and insert images

containing result regions in the set Xi;

stop the sorted accesses when there are at least k images in the intersection L = ∩iX
i;

for each image Is in the candidate set ∪iX
i, compute the optimal assignment;

(random access )

return the k images having the highest overall similarity scores Isim(Is, Iq); }

Fig. 3. The A0 algorithm for the optimal region matching problem.

This algorithm, however, does not guarantee yet that the best k images are included in the
candidate set, since its stopping condition does not take into account correct assignment of regions.
Just consider, as an example, the case depicted in Table 2, where n = 2 and k = 1. Here, as opposed
to the case of Table 1, it is not correct to stop the sorted access phase at the second step, since



image I2 has been found for both query regions with the same region R21 ; therefore, we cannot
find a correct assignment for image I2 using only regions that have been seen during the sorted
access phase.

Rq1 Rq2

region image similarity region image similarity

R11 I1 0.90 R32 I3 0.87

R21 I2 0.85 R21 I2 0.79

R41 I4 0.83 R33 I3 0.75

R33 I3 0.71 R11 I1 0.72

R23 I2 0.69 R12 I1 0.70
...

...
...

...
...

...

Table 2. Another sorted access example for a query image with two regions: Rq1 and Rq2 .

To ensure that the best k results are included into the set of candidate images, the stopping
condition of A0 algorithm has to be modified to test correctness of regions’ assignments (see
Definition 1). The sorted access phase can be stopped as soon as a complete assignment (Definition
2) is found, taking into account only regions returned by index scans.1 In the example of Table 2,
hence, we stop the sorted accesses after the fourth step, since image I3 has a complete assignment
(Γ3(Rq1) = R33 and Γ3(Rq2) = R32). It should be noted, however, that this is not the best result
for Iq (image I1 leads to the best overall score of 0.8). This leads to the modified A0 algorithm
shown in Figure 4.

AWS
0 (Iq: query image, k: integer, T : DBAM)

{ ∀ region Rqi of Iq, open a sorted access index scan on T and insert result regions

in the set Xi;

stop the sorted accesses when there are at least k images for which

a complete assignment exists, considering only regions in ∪iX
i;

for each image Is having regions in ∪iX
i, compute the optimal assignment;

(random access )

return the k images having the highest overall similarity scores Isim(Is, Iq); }

Fig. 4. The AWS
0 algorithm.

The random access phase consists in computing the optimal assignment Γ opt
s (Rqi

) for each
image Is in the candidate set. To this end, a number of similarity scores have to be computed,
since the sorted access phase only produces similarity scores between each query region Rqi

and
database regions included in Xi, i.e. the result set of i-th scan.

1 By the way, this is the reason why Blobworld algorithm is not correct, since its stopping condition cannot

guarantee the existence of a complete assignment.



As for algorithm correctness, we give here only an intuitive explanation. Exact proof follows
the same steps of that of A0 algorithm [Fag96] and is omitted for the sake of brevity. Suppose
k = 1, we have to prove that the best image is included in the candidate set. Consider, again, the
example of Table 2: We stop the index scans after the fourth step, thus the candidate set consists
of images I1, I2, I3, and I4. For each i, by definition of sorted access, images not included in the
candidate set can only have regions with similarity scores lower than those included in Xi. Since
the RMsim function is monotonic increasing, such images will have an overall score lower than that
of candidate images having a complete assignment. Therefore, the correct result cannot include
images outside of the candidate set.

The index evaluation of compound queries, thus, will have a twofold impact on query evaluation:
First, the use of an index can reduce the number of distance computations needed for assessing
image similarity; second, the number of images on which the Hungarian algorithm has to be run
is reduced by considering only the candidate images.

6 Experimental results

Preliminary experimentation on proposed techniques has been performed on a sample medium-
size data-set consisting of ca. 2000 real-life images, producing over 8000 regions, extracted from a
CD-ROM of IMSI-PHOTOS.2 The query workload consists in about a hundred randomly chosen
images not included in the data-set. All experiments were performed on a Pentium II 450 MHz
workstation equipped with 64MB of main memory running Windows NT 4.0.

6.1 Efficiency

The first set of experiments we present concerns the efficiency of the proposed approach. In order
to test the performance of the AWS

0 index-based algorithm, in Figure 5 we compare the number of
candidate images, i.e. the images on which the Hungarian algorithm has to be applied, as a function
of the number of query regions.3 Of course, for the ERASE algorithm the number of candidate images
equals the number of images in the data-set, whereas for the index version this number depends
both on values of k and of the number of query regions. As the graph shows, the AWS

0 algorithm is
indeed very efficient in reducing the number of candidate images, even if its performance degrades
as the number of query regions increases. This is intuitive, since the complexity of finding k objects
in the intersection of n sets augments with n.

Another element affecting algorithm performance is the number of computed distances between
regions. In Figure 6 (a) we show the number of computed distances for the ERASE and the AWS

0

algorithms, as a function of k, with a number of query regions n = 3 (this is the average number
of regions for the data-set images). In order to reduce the number of distances to be computed
for the index-based algorithm, we also considered an approximate version of the AWS

0 algorithm:
AWSapp

0 . In this case, the random access phase computes the optimal assignment for each candidate
image by taking into account only regions returned by the sorted access phase, i.e. no new distance
is computed. Average number of distance computations for the AWSapp

0 algorithm is also shown
2 IMSI MasterPhotos 50,000: http://www.imsisoft.com.
3 Unless otherwise specified, all the graphs presented here show numbers averaged over all the images

contained in the query workload.
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Fig. 5. Average number of candidate images as a function of the number of query regions.

in Figure 6 (a). The graph shows that the index-based approach is not very efficient in reducing
the number of computed distances. We believe that this is due to the reduced cardinality of
the considered data-set: Increasing the number of images in the data-set would have a beneficial
effect on performance of index-based algorithms (whose search costs grow logarithmically with the
number of indexed objects) with respect to that of sequential ones.

Finally, in Figure 6 (b) we compare query response times as a function of k (with a constant value
of n = 3). The graph shows average query evaluation times (in seconds) for the ERASE algorithm, the
original Windsurf algorithm and the two index-based algorithms, AWS

0 and AWSapp

0 , respectively.
From the graph it can be deduced that: (i) The lower complexity of region matching for the
original Windsurf algorithm with respect to the ERASE algorithm does not pay off in reducing
query evaluation times; this is due to the fact that, if n is low (as it is in our case), finding the
optimal matching is very easy. (ii) The index-based algorithms really succeed in cutting down
query resolution times, even if difference in performance reduces with increasing values of k. (iii)
The approximate AWSapp

0 algorithm has performance similar to that of the exact AWS
0 algorithm;

this demonstrates that the increase in performance with respect to sequential query evaluation is
due to the reduced number of candidate images, and that the number of computed distances has
a minor impact on performance.
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Fig. 6. Average number of computed distances (a) and average query resolution time (b) as a function of

k (n = 3).



6.2 Effectiveness

In order to compare the “goodness” of results obtained by approximated algorithms (i.e. the
original Windsurf image matching algorithm and AWSapp

0 ) with respect to those obtained by
exact ones (ERASE and AWS

0 ), we need a performance measure able to compare results of k nearest
neighbor queries. Such measure should compare two sorted lists of results: This is obtained by
contrasting ranks (positions) of objects in exact and approximate results. Given the i-th image
in the approximate result, its rank, rank(i), is given by the position of that image in the exact
result. As an example, consider the case when k = 1: The “goodness” of an approximate result
with respect to the exact one can be obtained by only taking into account rank(1). The measure
can be easily extended to the case where k > 1 by considering all the rank for the k images that
form the approximate result, i.e. rank(1), . . . , rank(k).

In [WB00], the normalized rank sum is used to quantify the loss of result quality when k nearest
neighbor queries are approximately evaluated.

nrs =
k(k + 1)

2 · ∑k
i=1 rank(i)

(9)

The overall measure, hence, is computed by the inverse sum of all the exact ranking for the objects
in the approximate result. This measure, however, is not able to capture inversions in the result
(e.g. when image Is is ranked higher than image Is′ in the approximate result and lower in the
exact result), since no difference between ranking of objects in the approximate and in the exact
result is taken into account.

In [ZSAR98], the precision of approximation measure P is introduced, which is defined as:

P =

∑k
i=1

i
rank(i)

k
(10)

P , therefore, measures the relative error in ranking for all the objects in the approximate result.
This measure, however, relies on the assumption that i ≤ rank(i), thus no inversions on results are
allowed.

To overcome above limitations in quality measures, we introduce a new measure: the normalized
rank difference sum ψ. To compute ψ, we sum differences in ranking for objects in approximate
result and divide by k. Normalization of the measure in the interval [0, 1] leads to the formulation
of ψ as follows:

ψ =
1

1 + 1
k

(∑k
i=1 1(rank(i) − i)p

)1/p
(11)

where 1() is the ramp function (1(x) = 0 if x < 0, 1(x) = x if x ≥ 0), and p is an integer parameter
(in our experiments, we always used p = 2). The use of the ramp function 1() is necessary for correct
accounting of inversions in ranking. Consider, as an example, the case where k = 3 and the exact
result is I1, I2, and I3. If the approximated result is I1, I3, I2, it is not correct to add to the error
the rank difference for both I2 and I3, since the error for I2 is generated from the shift of I3 (or vice
versa). Hence, by using the ramp function, we only consider downward shifts in ranking. Values of
ψ close to 1 indicate high quality of the approximate result.

Figure 7 shows average (a) and minimum (b) values of ψ for exact and approximated algorithms
as a function of the fraction of query regions used to query the database (the value of k is kept



fixed at 20, other values lead to similar results and are omitted here for brevity). This is to show
the effectiveness of different approaches when only some regions of the query image are used for
the query (this can be done in order to reduce the query response time or just because we are
interested only in some objects included in the query image). Both graphs exhibit similar trends:
The effectiveness of the AWSapp

0 algorithm is almost always the lowest, and, for all curves, ψ only
reaches high values when the fraction of query regions is close to 1. Figure 7 (b) shows that, in order
to find a “good” result, we have to use all the regions in the query image. From Figure 7 (a), on
the other hand, we see that approximate algorithms lead to a very low effectiveness, even if, as we
have seen before, they attain slightly better performance with respect to their exact counterparts.
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Fig. 7. Average (a) and minimum (b) ψ as a function of the fraction of query regions (k = 20).

7 Conclusions

In this work we introduced an original approach to correct resolution of similarity queries on
region-based image retrieval systems. In particular, a sequential algorithm (ERASE) was presented
computing the optimal matching between regions of the query image and regions of a database
image, in order to maximize the overall similarity score between images. We then proposed an index-
based approach (AWS

0 ) to reduce query resolution times for large image data-sets. Preliminary
experiments conducted over an existing CBIR system (Windsurf) showed that the presented
approach is indeed very effective with respect to existing region matching heuristics. However, from
the efficiency point of view, we still have room for improvement. In particular, we observed that the
index-based algorithm, even if it reduces query resolution times with respect to the sequential one,
is not successful in reducing the number of distance computations during the sorted access phase.
In order to overcome this limitation, we plan to employ approximate techniques for index access
[CP00]. Another issue that needs to be investigated regards the possible parallelization of sorted
access to the index [BEKS00]; in fact, in the worst case the same index node is retrieved once for
each query region, whereas a “shared” access for all query regions could substantially reduce query
costs.
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