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Abstract. Due to the complex nature of multimedia data and the inherent difficulty of
classifying objects in a clear and precise form, traditional exact matching query processing
techniques turn out to be too restrictive and do not lead to satisfactory results in terms of
effectiveness. In this paper we present an algebraic framework, SAMEY | in order to model
and query multimedia data in a flexible way. As a starting point, we assume the more general
case where “imprecision” is already present at the data level, typically because of the am-
biguous nature of multimedia objects’ content. Queries on such complex data are carried out
by means of similarity and fuzzy predicates which prove to be effective ingredients to return
interesting results matching the user requirements. A further basic feature of SAMEW is that
it allows user preferences, expressed in the form of weights, to be specified so as to assign dif-
ferent importance to predicates in queries. Moreover, in SAMEY the semantics of operators
is deliberately left unspecified in order to better adapt to specific scenarios.

1 Introduction

Due to the complex nature of multimedia data and the inherent difficulty of classifying objects in
a clear and precise form, traditional exact matching query processing techniques turn out to be
too restrictive, and many systems now exist that allow users to issue queries where some form of
“imprecision” is allowed. For instance, in the QBIC system [FSNT95] images can be searched on
the basis of their “similarity” to a target one, according to color, texture, and shape of embedded
objects. Since MM queries can lead to (very) high response times, many efforts have been spent in
order to devise access methods able to efficiently deal with complex features [CPZ97]. This line of
research has been somewhat complemented by activity aiming to provide users with a full-fledged
query language able to express complex similarity queries [NRT99]. Although the processing of
such complex queries has been the subject of some recent works [ABSS98,CPZ98,Fag96,MT99], a
full understanding of the implications (both at a formal and at a system level) of similarity query
processing is still lacking. In particular, several important issues have only partially been addressed,
such as models able to capture the “essential” aspects of MM objects needed by similarity queries,
the impact of “user preferences” on query processing, query equivalence, and so on. Furthermore,
contributions to above issues typically consider ad-hoc scenarios and /or completely ignore the other
coordinates of the problem, thus resulting in a set of difficult-to-integrate recipes.

In this work we address several of the above points in a unified algebraic framework. We have
deliberately chosen to “start simple” from the modeling point of view, in order to better focus on
those aspects which are peculiar to similarity query processing. Thus, we consider a (extended)
relational framework which takes into account the two major sources of “imprecision” arising when
querying MM databases [SS98]: 1) imprecision of classification of MM data, and 2) imprecision in
the matching of features that characterize the content of MM objects. As to the first point we rely



on basic concepts from fuzzy set theory, and allow representation of “vague classification” both
at tuple and at attribute level (Section 2). This reflects the fact that in some cases imprecision
characterizes an object as a whole, whereas in others it only affects some of its attributes. We then
consider the presence of “weights” in the queries, so as to assign different relevance to the required
conditions, in order to better adapt to user preferences. In Section 3 we introduce a “similarity
algebra”, called SAME"Y ! which extends relational algebra in a conservative way and incorporates
the use of weights in most of its operators. We show how complex similarity queries can be easily
expressed in SAMEWY (Section 3) and how equivalence rules can be exploited for the purpose of
query rewriting and optimization (Section 4). Finally, we briefly discuss related work and conclude.

2 A Flexible Approach

The SAMEWY data model extends the relational one in that it allows both fuzzy attributes and
fuzzy relations. This results in a more flexible approach to deal with imprecision that may occur,
for instance, when multimedia data is modeled, because of the well-known intrinsic complexity
of non-textual information, as well as when data has to be arranged according to classification
purposes or specific (application) criteria.

As shown in [CMPT00], imprecision at the attribute level is captured by the notion of “fuzzy
domain”, whereas imprecision at the whole tuple level motivates the introduction of fuzzy rela-
tions?. Briefly, given a tuple ¢, a fuzzy attribute A in ¢ is formed by two components A? (the
“value”, that is a fuzzy set), and A* (the “score”) which, intuitively, have the following meaning:
“t fits AV with score A#*”. Given a set of attributes X and a relation name R, a fuzzy relation r over
R(X) is characterized by a membership function pr which represents how much a given object
(tuple) “fits” the concept expressed by R(X)3. Besides fuzzy attributes, our model also includes
the concept of feature attribute, defined over complex domains like, say, color histogram, which
are required to represent feature values extracted from MM objects. For such attributes similarity
predicates (rather than exact-matching) are the usual way to compare feature values (see Section
2.1). A further peculiarity of SAMEWis that it allows the use of weights to deal with user prefer-
ences when retrieving information of interest. In order to present such a functionality we rely on
the results gained by Fagin and Wimmers [FW97] (see Section 2.2).

2.1 Dealing with Imprecision

SAMEW expressions can use ordinary (Boolean), similarity, and fuzzy predicates which can be
combined into complex formulas with logical connectives respecting the syntax f == p|f A f|f V
fI=fI(f), where f is a formula and p is a predicate. The evaluation of f on a tuple ¢ is a score
s(f,t) € 8 =[0,1] which says how much ¢ satisfies f. How s(f,t) depends on (the evaluation on
t of) the predicates in f is intentionally left unspecified, in order to achieve parametricity with
respect to the semantics of logical operators, which can therefore be varied in order to better
adapt to user and application requirements. s(f,t) is computed by means of a so-called “scoring
function” [Fag96], sy, whose arguments are the scores, s(p;,t), of t with respect to the predicates in
f, that is: s(f(p1,...,Pn),t) = s¢(s(p1,1),...,8(pPn,t)). A similarity predicate has either the form

! SAMEY stands for “Similarity Algebra for Multimedia Extended with Weights”.

2 Remind that a fuzzy set F over a “universe” U is a set characterized by a membership function pp : U —
S, where pr(z) is the degree of membership of z in F', also called “score” or “grade”. In the following
we will always consider a normalized score domain S = [0,1].

8 The notation t.ur will be used with the same meaning of pr(t).



A ~ v, where A is a feature attribute, v € dom(A) is a constant, and ~ is a similarity operator,
or Ay ~ Ay, where both A; and A, are over the same domain.* The evaluation of p: A ~v on t
returns a score, s(p,t) € S, which says how much ¢.A4 is similar to the value v. Then, the evaluation
on t of a fuzzy predicate ¢ : A = w, where w is a fuzzy set, is the score s(q,t) = t.A#, if t.AY = w,
otherwise s(q,t) = 0. For fuzzy predicates of the form ¢ : A1 = As, s(q,t) = 0 if t.AY # t.AY,
otherwise the score is computed as a “parametric conjunction” of the two membership degrees, that
is, s(g,t) = sa(t. A}, t.AY), where s, denotes the AND scoring function. For the sake of definiteness,
in the following we restrict our focus on the class F of scoring functions corresponding to fuzzy
t-norms and t-conorms [KY95,Fag96], for which the AND (A) and OR (V) operators are both
associative and commutative, and, together with the NoT (—) operator, satisfy boundary and
monotonicity conditions [CMPTO00]. For instance, S (fuzzy standard) and F.A (fuzzy algebraic)
[K'Y95] semantics are given by the following set of rules:

FS FA
s(f1 A fa,t)|min(s(f1,t), 5(f2,t)) s(f1,t) - s(f2,t)
S(fl v fz’t) maX(s(flvt)as(f%t)) s(flat) + 5(f27t) - s(flat) . 5(f2’t)
5(_'f7t) 1_3(fat) l—S(f,t)

2.2 Dealing with User Preferences: Weights

With a non-Boolean semantics, it is quite natural and useful to give the user the possibility to
assign a different relevance to the conditions he states to retrieve tuples. Such “user preferences”
can be expressed by means of weights as shown in [FW97]. To this end, we apply the weighted
version sg, of any scoring function s; for a formula f on a set of predicates pi,...,p,. More in
details, a vector of weights @ = [61,...,0,] is considered in such a way that sy, reduces to sy when
all the weights are equal, sy, does not depend on s(p;,t) when 6; = 0, and sy, is a continuous
function of the weights, for each fixed set of argument scores. Let z; = s(p;,t) denote the score of
t with respect to p;, and assume without loss of generality 8; > 6> > ... > 6, with 6; € [0,1] and
>;0; = 1. Then, Fagin and Wimmers’ formula is:

Sfef(-’h,---,fﬂn) =(01—02)-21+2-(02—03)-s¢(z1,22) + - +n-0p-sp(21,...,2,) (1)

Although above formula is usually used to weigh the predicates appearing in a (selection) formula,
our position is that whenever scores have to be “combined”, then a weighting should be allowed. For
instance, if we take the union of two relations, it might be reasonable to require that tuples in the
first relation are “more important” than tuples in the second one. A meaningful example is when
we want to integrate results from different search engines, but we trust more one than the other.
Accordingly, most of the SAMEW operators® that compute new tuples’ scores can use weights.

3 The SAMEY Algebra

Basic operators of SAMEY conservatively extend those of RA in such a way that, if no “imprecision”
is involved in the evaluation of an expression, the semantics of RA applies (see Theorem 1).
Genericity with respect to different semantics is achieved by defining SAMEW operators in terms

% This is a simplification. It suffices that the domains are compatible for ‘~’ to be well-defined.

5 We only leave out Difference, because we were not able to conceive any meaningful “weighted Difference”
query. As to Projection, since the duplicate tuples to be combined together are not a priori known, it is
not possible to assign weights to them.



of the (generic) scoring functions of the logical operators. Thus, if a given semantics is adopted for
formulas, the same is used by SAMEW operators, which avoids counter-intuitive phenomena and
preserves many RA equivalence rules. As an example, the semantics of Union (U) is based on that
of the OR (V) operator.

In the following, E(X) denotes an expression with schema X, and e = E[db] is the fuzzy set of
tuples with schema X obtained by evaluating E(X) over the current database db. We say that a
tuple ¢ belongs to e (¢t € e) iff t.ugp > 0 holds. Two tuples ¢; and ¢; with attributes X are equal
iff t1[A;] = t2[A;] holds for each A; € X. In case of fuzzy attributes, tuple equality thus requires
that also the attributes’ grades are the same. Two relations e; and e, are equal iff: 1) they consist
of the same set of tuples, and 2) Vt; € e1,Vi2 € e : t1 = ta = t1.4 = t2.u. Thus, besides tuple
equality also the tuple scores have to be the same.

We start by extending “traditional” operators of RA, and then introduce new operators which
have no direct counterpart in RA. In order to show the potentialities and flexibility of SAMEY we
carry on a simple example which refers to a biometric DB using faces and fingerprints to recognize
the identity of a person. Stored data include extracted features relevant for identification,® and
modeled by the FaceFV and FP_FV attributes, respectively. Because of the huge size of biometric
databases, a viable way to improve performance is, at face and fingerprint acquisition time, to clas-
sify them with respect to some predefined classes. As to fingerprints, as demonstrated in [LMM97],
a “continuous” classification approach, where a fingerprint is assigned with some degree to many
(even all) classes, can perform better than an approach based on “exclusive” classification. As to
faces, we consider that the Chin and the Hair are also preventively classified.

Our simplified biometric DB consists of the following relations, where the ‘x’ denotes fuzzy
attributes and relations that can have fuzzy instances, and primary keys are underlined. The Freq
attribute is the relative frequency of a fingerprint class.” This can be computed by considering
the scalar cardinality (also called the sigma count [KY95]) of the fuzzy set corresponding to the
fingerprint class. A partial instance is shown in Fig. 1.

Persons(PId,Name)
Faces(PI1d,FaceFV,Chin* ,Hair*)
FingerPrints(FPId,PId,FingerNo,FP FV)
FPClasses(Class,Freq)
FPType*(FPId,Class)

Selection (o). The Selection operator applies a formula f to the tuples in e and filters out those
which do not satisfy f. The novel point here is that, as an effect of f and of weights, the grade of a
tuple t can change. Weights can be used for two complementary needs: In the first case, they weigh
the importance of predicates in f, as in [FW97], thus leading to use the scoring function s fo, in
place of s7.% In the second case they are used to perform a weighted conjunction, s‘,?, between the
score computed by f and the “input” tuple score, t.ug. This determines the new tuple score, t.u:

0f,,(e) = {t]t € € At = 52(s(fo, 1), t.ux) > 0} (2)

Example 1. Retrieve those persons who have black hair, and whose facial features match the ones
(inFace) given in input, by trusting more hair classification (weight 0.7) than feature matching

8 For fingerprints these can be “directional vectors”, positions of “minutiae”, etc. For faces, position of
eyes, nose, etc., can be considered.

" Class names are among those adopted by NIST (U.S. National Institute of Standards and Technology).

8 When using weights, f is restricted to be either a conjunction or a disjunction of predicates by Fagin’s
definition [Fag96].



Persons Faces

PId Name FPClasses |PId |FaceFV Chin Hair
P00001|John |Class | Freq| P00001|FFV0001|pointed:0.74 |black:0.87
P00002(Mary Arch 3.7% P00002|FFV0002|rounded:0.65 |brown:0.75
P00003|Bill LeftLoop |33.8% P00003|FFV0003|pointed:0.93 |brown:0.84
P00004|Jack RightLoop|31.7% P00004|FFV0004|pointed:0.58 |brown:0.73
P00005|Susan P00005|FFV0005|rounded:0.83|brown:0.92
FingerPrints
FPType
[FPId  [PId  [FingerNo|FP_FV
[FP1da  [class  [jp |
FP 1|P 1|1 FPF 1
00011 P0000 V000 FP0001|Arch 0.65
FP0002|P00001|2 FPEFV0002 .
FP0001|RightLoop||0.25
FP0003|P00001|3 FPFV0003 FP0003| Arch 0.58
FP0011|P00002|1 FPFV0011 ’
FP0003|LeftLoop |/0.95
FP0015|P00002|5 FPEFV0015
FP0017[P00002|7 FPFV0017 FP0025| Arch 045
FP0025|LeftL 0.20
FP0025|P000043 FPFV0025 croop

Fig. 1. An instance of the biometric database

(weight 0.3):
O (Hair="‘black’)°-7 A(FaceFV~inFace)0-3 (Faces)

Consider the similarity table ~inFace shown in Figure 2. The final score of a tuple ¢ is obtained

~ inFP

~ inFace FP_FV

FPFV0001] 0.72
FFV0001] 0.60 FPFV0002| 0.48
FFV0002| 0.84 FPFV0003| 0.43
FFV0003| 0.33 FPFV0011 0.84
FFV0004| 0.72 FPFV0015| 0.38
FFV0005 0.58 FPFV0017| 0.55

FPFV0025| 0.42

Fig. 2. Similarity tables for fingerprints and facial features

by combining the scores of both Selection predicates and the initial score of the tuple (this is 1,
since Faces is a crisp relation). For instance, if the s, = min scoring function is used, the score of
the unique resulting tuple is computed as:°

t=(0.7=0.3) - 5(p1,t) +2- 0.3+ s5(s(p1, 1), 8(p2,t)) = 0.4 - 0.87 + 0.6 - min(0.87, 0.60) = 0.708

Projection (7). As in RA, the Projection operator removes a set of attributes and then eliminates
duplicate tuples. Projection can also be used to discard scores, both of fuzzy attributes and of the
whole tuple. In this case, however, in order to guarantee consistency of subsequent operations,
such scores are simply set to 1, so that they can still be referenced in the resulting schema. This
captures the intuition that if we discard, say, the tuples’ scores, then the result is a crisp relation,
that is, a fuzzy relation whose tuples all have score 1.

Formally, let e be a relation with schema E(X),Y C X, and V a set of v-annotated fuzzy
attributes, V = {AY}, where V contains exactly those fuzzy attributes for which scores are to be

® We omit the score of the original crisp tuple since it equals to 1 and it does not influence the computation.



discarded. Note that V' can include A} only if A; € X — Y. Finally, let F stand for either u or the
empty set. Then, the projection of e over YV'F' is a relation with schema YW, where if AY € V
then A; € W, defined as follows:

nyvr(e) = {{{YW]|3t' €e: t{YV]=t[YV]AVAl € V : t.Al =1 (3)
At = sy{t".ug|t"[YV] = t[YV]}if F = u, otherwise t.u = 1}
Thus, tuples’ scores are discarded (i.e. set to 1) when F = (), whereas they are preserved when

F = p. In the latter case, new scores are computed by considering the “parametric disjunction”,
sy, of the scores of all duplicate tuples with the same values for YV (see Example 5).
Union (U). In SAMEW the Union is an n-ary operator,'® which, given n relations e; with schemas

E;(X), computes the score of a tuple t as a weighted disjunction, s&(t.ug,,...,t.ug,), with @ =
[01,-..,0n], of the input tuples’ scores, that is:

U (er,...,en) ={t|(t€esV...VtEe,) A tu=sE(t.ug,,...,t.ug,) > 0} (4)
Note that, because of the presence of weights, Union is not associative anymore. This implies that
the n-ary Union cannot be defined in terms of n — 1 binary unions, as it happens in RA.

Ezample 2. Retrieve Ids and scores of fingerprints belonging to class ‘Arch’ (weight 0.6) and Ids
and scores of fingerprints belonging to class ‘LeftLoop’ (weight 0.4).
This can be expressed as follows!!:

//TFPId,p(a-Class:‘Arch’ (FPTyPC)) U[O'G’OA] WFPId,p(aClass:‘LeftLoop’ (FPType))

and the resulting tuples are:

FP0001| 0.65
FP0003|0.876
FP0025| 0.45

where, for instance, the score of the second tuple has been computed as (where the s, = max
scoring function has been used):

tp=(0.6—0.4)-t.up, +2-04-sy(t.us,,t.ug,) = 0.2-0.58 + 0.8 - max(0.58,0.95) = 0.876

Join (). Also the weighted (natural) Join is an n-ary operator, where, given n relations e; with
schemas F;(X;), Vi = 1,...,n and where the score of a result tuple ¢ is a weighted conjunction,
sQ(t1-Eys - -y tn-pm, ), of the scores of matching tuples:

<® (e1,...,en) = {t[X1...X,]| 1 € €1,...,3tn E eyt (5)
tX1] = ta[X1] Ao A HXp] = ta[Xn] At = (t1pmy,. .- tnps, ) > 0}
Example 3. Retrieve those persons with an ‘Arch’ fingerprint and with a ‘pointed’ chin, giving these
conditions weights 0.6 and 0.4, respectively.
This can be expressed by means of a weighted Join, where a 0 weight is used for the FingerPrints
relation on which no predicates are specified:
'><1[0'6’0‘4’0] (UClass:‘Arch’ (FPType)ao'Chinz‘pointed’ (Faces),FingerPrmts)

where the resulting tuples, are:

10 We also use the infix notation, E; UP1%2] By when only two operands are present.

! Note that this is not equivalent to 7rp1du(0(Class=Arch!)0-6v(Class=‘LefiLoop')o-4 (FPType)) since
weights are assigned to predicates on Class which is a crisp attribute, whereas the operands of the
above Union are fuzzy relations.



[FPId [Class[PId  [FaceFV [Chin Hair FingerNo|FP_FV [ & |

FP0001|Arch (P00001|FFV0001|pointed:0.74|black:0.87 |1 FPFV0001||0.65
FP0003|Arch |P00001|FFV0001|pointed:0.74|black:0.87 |3 FPFV0003|(0.58
FP0025|Arch |P00004|FFV0004|pointed:0.58brown:0.73|3 FPFV0025||0.45

where, for instance, the score of the third tuple has been computed as (with s, = min):

tu=(06—04) -t.pug, +2-(04—0)sa(t-pg;,t-bg,) +3-0- SA(t-ligy, By, t-iEs) =
=0.2-0.45 + 0.8 - min(0.45,0.58) + 3 - 0 - min(0.45, 0.58, 1) = 0.45

Difference (—). Given relations e; and e» with schemas E;(X) and E,(X), respectively, their
Difference is defined as:

e1—ex={t|tc€er A tu=sp(t-ug,,s-(t.ug,)) >0} (6)

Ezxample 4. Retrieve the Ids and the scores of fingerprints of persons having a ‘pointed’ chin, but
not belonging to the ‘Arch’ class.
The corresponding SAMEW expression is:

TFPId,u (UChz'n:‘pointed’ (Faces) > FingerPrints) — TFPId,u (UClass:’Arch’ (FPType))

and the resulting tuples are:

FP0001| 0.35
FP0002| 0.74
FP0003| 0.42
FP0025| 0.55

where, for instance, the score of the first tuple has been computed as (where the s, = min scoring
function has been used):

t.u = sa(t-pg,,s-(t-pe,)) = min(0.74,1 — 0.65) = 0.35

Renaming (p). The Renaming operator is as in RA, thus we do not repeat its definition here.
The following result proves that the “RA-fragment” of SAMEY | that is, SAMEW restricted to the
above operators, is indeed a conservative extension of relational algebra [CMPTO00].

Theorem 1. Let E be a SAMEY expression that does not use weights and that includes only
operators in {o,m,U,<, —, p}. If E does not use similarity operators, the database instance db is
crisp and the semantics of the scoring functions is in F, then E[db] = Egraldb], the latter being
evaluated with the Boolean semantics of RA.

The two new operators introduced in SAMEW are the Top and the Cut.
Top (7). The Top operator retrieves the first k£ (k is an input parameter) tuples of a relation e,
according to a ranking criterion, as expressed by a ranking function g. If weights are used to rank
tuples according to ge,, then g has to be a formula of predicates over the schema of e.l?2 If e has
no more than k tuples, then Tgk@g (e) = e, otherwise:
T;@g (e) ={t|t e A s(go,,t) >0 A |T;°Qg ()] =k AVte 7';“99 (e) :

At :t'cent' ¢ rg’“% (e) A go,(t') > go,(t)} (7)
with ties arbitrarily broken. When g is omitted, the default ranking criterion, based on the score
of tuples, applies, thus the & tuples with the highest scores are returned.

12 If “bottom” tuples are needed, the ranking directive < can be used, written 96,,<-



Example 5. Retrieve the chin and the final score of the three best matching tuples of persons

who have brown hair (weight 0.7) and facial features (weight 0.8) matching those given in input
(inFace):

TChin®,pu (T3 (U(HaiT:‘brown’)0-7/\(FaceFV~inFace)°-3 (Faces)))

The tuples corresponding to the inner selection, and the final result obtained after Top and Pro-
jection, are shown in the following two tables, respectively:

[PId  [FaceFV [Chin |Hair | & |
P00002|FFV0002|rounded:0.65|brown:0.75|| 0.75
P00003|FFV0003|pointed:0.93 |brown:0.84(|0.534 pointed [0.724
P00004|FFV0004|pointed:0.58 |brown:0.73(|0.724 rounded| 0.75
P00005|FFV0005|rounded:0.83|brown:0.92(|0.716

where the score of the second tuple of the final result (0.75) has been computed by assuming that
the sy scoring function used by the Projection operator is the max function (max{0.75,0.716},
because tuples corresponding to PIds PO0002 and PO0005 belong to the intermediate result of the
Top operator and have the same Chin value, i.e. rounded).

Cut (7). The Cut operator “cuts off” those tuples which do not satisfy a formula g, that is:

vo(e) ={t|t€e A s(g,t) >0 A t.u=t.ug >0} (8)

Unlike Selection, Cut does not change tuples’ scores. Thus, if g includes non-Boolean predicates,
the two operators would behave differently. However, the major reason to introduce Cut is the need
of expressing (threshold) conditions on tuples’ scores, e.g. u > 0.6. Such a predicate cannot be part
of a Selection, since it does not commute with others. This is also to say that the expressions
Yu>0.6(07(E)) and of(vu>0.6(E)) are not equivalent. Indeed, the first expression is contained in
the second one, that is:

Yisa(07(B)) € 07 (Vusal(E)) (9)

Example 6. Given in input the two values inFP and inFace, retrieve the tuples of those persons

having a corresponding combined match on fingerprints (weight 0.4) and facial features (weight
0.6) and an overall score greater or equal to 0.55:

1ql0-6,0.4]

’7u20-55(UFaceFVNinFace(Faces) UFP_FVNinFP(Fingerprints))

Consider the similarity table ~inFP shown in Figure 2. The Join produces the following output:

[PId  [FaceFV [Chin Hair [FPId  |FingerNo|FP_FV | & |
P00001|FFV0001|pointed:0.74 |black:0.87 |[FP0001(1 FPFV0001|| 0.60
P00001|FFV0001|pointed:0.74 |black:0.87 [FP0002|2 FPFV0002(|0.504
P00001|FFV0001|pointed:0.74 |black:0.87 |FP0003|3 FPFV0003|/0.464
P00002|FFV0002|rounded:0.65 brown:0.75|FP0011 (1 FPFV0011|| 0.84
P00002|FFV0002|rounded:0.65|brown:0.75|FP0015(5 FPFV0015(|0.472
P00002|FFV0002|rounded:0.65|brown:0.75|FP0017|7 FPFV0017|/0.608
P00004|FFV0004|pointed:0.58 |brown:0.73|FP0025|3 FPFV0025(| 0.48
then reducing to three final tuples which satisfy the cut-off condition:
[PId  |[FaceFV [Chin Hair [FPId  |FingerNo|FP_FV | v ]
P00001[FFV0001|pointed:0.74 |black:0.87 [FP0001|1 FPFV0001[ 0.60
P00002|FFV0002|rounded:0.65 |brown:0.75|FP0011|1 FPFV0011|[ 0.84
P00002|FFV0002|rounded:0.65|brown:0.75| FP0017|7 FPFV0017/[0.608




4 Query Rewriting in SAMEW

The introduction of fuzzy attributes and fuzzy relations, as well as the presence of weights in user
queries, inevitably introduces new aspects to be considered when reasoning about query rewriting
and evaluation. This is mainly due to the different semantics all the operators have with respect
to the standard relational algebra, as well as to the introduction of new operators.

Reminding that two relations e; and es are equal iff: 1) they consist of the same set of tuples,
and 2) Vt; € e1,Vt2 € e3 : t1 = t2 = t1.u = t2.u, we can state that two expressions F; and Es
are equivalent iff E;[db] = E-[db] Vdb. Basically, equivalence and containment rules in SAMEW can
only partially rely on results from RA since, unless we consider the FS semantics, rules based on
idempotence and/or distributivity of logical operators are no longer valid (e.g., EUE # E and
07(E1 U Ey) # 07(E1) Uoys(E2) in FA). However, many opportunities for query rewriting are
still left. As for weights, we will show that their presence leads to new interesting results, where
numerical reasoning is strongly involved. For lack of space, here we discuss optimization issues
related to a selected sample of such rules, focusing on Cut and Top operators and on the effect of
weights. Complete proofs are given in [CMPTO00]. In order to simplify the notation, when weights
are not involved we understand their presence, thus writing, say, f in place of fo,.

4.1 The Role of Cut’s

Consider the “canonical” Cut condition, v,~«, abbreviated v, applied to a Join. As for Selection
in the relational algebra, we expect that the Cut operator can be “pushed down” the Join, since
the Selection and the Cut operators can be considered equivalent. However, in SAMEY we have to
carefully consider the case of a Cut applied to a weighted Join, i.e. when a different importance
is assigned to tuples from different relations. This condition influences the criterion to cut off in
advance those tuples which will not contribute to the result. In fact, as we will show in Example 7,
also tuples with tuple’s score lower than o can take part in the final result and, as a consequence,
they cannot be discarded. Indeed, our first equivalence rule (Eq. 10) shows that a Cut v, can be
applied to the i-th Join operand, where o; depends on the values of weights (Eq. 11). The intuition
is that, because of the weighting and the asymmetry of the weighted scoring function, also tuples
with low tuple scores, if joined with tuples with a properly high score and having assigned a high
weight, can contribute to a Join tuple which satisfies the external Cut condition, thus appearing in
the result. Thus, in order to guarantee relevant data is not lost, thresholds of pushed down Cut’s
have to be relaxed for less important Join operands. Assuming 6, > 62 > ... > 6,,, we have:

Ya (0] (By, o Br)) = 70 (0?00 (40, (Bn), - Yo (Bn))) (10)

where:

i—1
a=>j-(6;—041)
j=1

o = i€ [l.n] (11)

i—1
1= "5 (8; —6j41)
j=1

Note that a; = a and that a; = a when all the weights are equal, i.e. y,(< (Ey, Ea,...,E,)) =
Yo (> (Ya(E1); Ya(E2), - - - s Ya (En)))-

Ezample 7. Consider the following SAMEY expression:

Y0.6 (l><1[0'5’0'3’0'2] (0chin= pointea’ (Faces), 0ciass=:arcn (F PType), Finger Prints))



The first and second Join operands, obtained by the Selection on Faces and FPType, respectively,
are as follows:

[PId  |[FaceFV [Chin Hair | & | [FPId  |Class| 4 |
P00001|FFV0001|pointed:0.74|black:0.87 (|0.74 FP0001|Arch |[0.65
P00003|FFV0003|pointed:0.93|brown:0.84(/0.93 FP0003|Arch ||0.58
P00004|FFV0004|pointed:0.58|brown:0.73||0.58 FP0025|Arch (|0.45

The third operand is just the FingerPrints relation. The result of the weighted Join is then (with
FS semantics):

[PId  [FaceFV [Chin Hair [FP1d  [Class|FingerNo|FP_FV | & |
P00001|FFV0001|pointed:0.74|black:0.87 |FP0001|{Arch |1 FPFV0001(/0.668
P00001|FFV0001|pointed:0.74|black:0.87 |FP0003|Arch |3 FPFV0003(/0.612
P00004|FFV0004|pointed:0.71|brown:0.73|FP0025|Arch |3 FPFV0025((0.502

Finally, the external Cut discards the third tuple since it does not satisfy the threshold condition.
Now, we show how the above SAMEY query can benefit of an optimized execution if expressed like
in the right-hand side of Equation 10. In this case, it would have the form:

70.6(><1[0'5’0'3’0'2] (

70.6(0'Chin:‘pointed’ (Faces)), ¥0.5(0Class=Arch (FPType)),71/3(FingerPrints)))
The first Cut reduces the cardinality of the intermediate result, i.e. the first operand of the weighted
Join, since tuple corresponding to PId P00004 has an overall score (0.58) lower than the required
threshold. Similarly, the second Cut discards the last tuple of the second operand of the weighted
Join (tuple score 0.45, threshold 0.5). On the other hand, the same tuples previously included in
the Join would have been discarded later by the outer Cut. Thus the number of tuples involved
in the Join are reduced by the inner Cuts. 13 Finally, it is worth to note that if the threshold of
Cut operator for the second Join operand had been 0.6 instead of being relaxed to 0.5, the second
tuple would have been discarded, thus losing the corresponding tuple of the final result.

A similar rule applies when the Cut has the form v, ., and follows a weigthed Union:

7u<a(U[01w“’0"] (E1,y...,En)) = 7;L<a(U[€1"“’0"] (7u<a1 (Er),. .- y Yu<an (En))) (12)

where a; = /(1 — Z;;llj - (0; — 8j41)), and a; = « if weights are not used.
Now, let consider the case of a sequence of canonical Cut’s and Selection’s applied to a given
expression E:

Yo (051 (Yo (01 (- - - Ve (01, (E)))))) (13)

The intuition is that after each Selection oy, tuples are required to have a score higher than «;.
It is worth to note that, when oy > a; Vi € [2..n], in order to belong to the final result, a tuple
must satisfy the a; threshold condition also at the intermediate steps. This is equivalent to say
that intermediate Cut’s, supposed to have lower thresholds than a3, do not change the final set of
tuples, and they can be eliminated. Thus, such a complex expression can be reduced, without loss
of information, as the following rule shows:

Yo (011 (Yoz (915 (- - - Yan (04, (E)))))) = Yor (0f1nfan 010 (B)) ifar > a; Vie[2.n]14)

This is due to the following basic property of t-norms.

13 The third Cut on FingerPrints is uninfluential since the relation is crisp and all tuples satisfy the
required condition.



Property 1. Let sp be a (n-ary) t-norm and S = [0, 1] be the scoring domain. Then, Vz1,..,2, € S:
sa(Ty .-y @y) <min(zy,...,z,) < z; Vi € [1..n] (15)

Thus, if the final score has to be higher than a4, also scores of single components have to be, thus
concluding that lower Cut’s do not influence the final result.

Let us now consider the case where we apply to a crisp relation E[db] a “cheap” predicate, p1,
and a “costly” one, p2, after which we Cut the result. If predicates are weighted, and 6; > 05, we
can apply a Cut just after evaluating p;, which can lead to considerable cost saving. The intuition
is that, in order to belong to the final result a tuple must have a score higher than o also when
evaluating the most important predicate p;. In fact, due to (1) for the binary case, it has to be:

(01 — 92) . S(pl,t) +2-05- S/\(S(pl,t),S(p2,t)) > o (16)

Then, due to (15) and since 6; + 82 = 1, also it has to be s(p1,t) > «, thus concluding that v,
can be safely applied after filtering tuples by p;. This also shows how weights on predicates can be
transformed into weights on tuples’ scores:

Ya(0,01 py02 () = Va(oh2 " (a(0p, (E)))) (17)

Note that above equivalence does not hold if p; is commuted with ps, when 6; > 62 holds. In this
case, indeed, a tuple ¢ can satisfy T3 ppl2 (E) but not 01[31’92](0,72 (E)). In particular, this is the
case when s(p2,t) = 0. In fact, in this case a tuple ¢ which cannot result from the latter expression,
can instead belong to the former one if a sufficiently high score is reached from the evaluation of

p1, and if weights are rather unbalanced, so that their difference is somewhat high.

4.2 Handling Top’s

Turning to the Top operator, consider the case where the ranking criterion, go, (or simply g) does
not refer to tuples’ scores. If no ties, according to g, occur in E;[db] (i € [1..n]), then it is safe to
apply a Top to each operand of a weighted Union, that is:

T:(U[Gl"“’(’"](El, L ER) = T;(U[el""’e"](T: (E1),--- ,T; (En))) (18)

In fact, since the Union operator keeps all the (distinct) tuples coming from each E; expression,
the k& best matching tuples can be searched only among the best k of each E;. Since g does not
refer to tuples’ scores, even if scores can change owing to Union, this does not influence the choice
of the relevant tuples. On the other hand, if the ranking criterion is based on tuples’ scores, the
above rule can be applied only if Union is unweighted and the FS (max) semantics is used:

™*(U(Ey, ..., E,)) = T* (V" (BL), ..., T8 (E,))) (19)

As a negative result, we state that in no case operands of a (weighted) Join followed by a Top can
be reduced by pushing down the Top (as done for Union). In fact, it is not guaranteed that the k
best matching tuples of each operand finally contribute to the Join, possibly leading to the worst
case, i.e. an empty set of tuples.

Considering the relationship between Top and Cut operators and the expression v;(7F(E)),
in the general case no manipulations are possible. On the other hand, when f = g, we have the
following result:

15 (TF(B)) = 7§ (17 (E)) = 7 (E) (20)



In fact, if ranking and filtering are made on the same formula f, since the k best matching tuples
satisfy also this formula, inner or outer Cut’s are redundant, since the filtering condition is already
expressed by the ranking criterion and, as a consequence, it can be eliminated. On the other hand,
the former equivalence is also obtained when both operators have their “canonical” form, that is:

™ (7a(E)) = 1a(r*(E)) (21)

However, with regard to Cut’s, elimination is not possible anymore, since the ranking rule on tuple
scores does not require that they must be higher than a.

4.3 Dealing with Selection

Since the Selection operator changes tuples’ scores, particular care has to be paid when reasoning
about it. For instance, the following equivalence holds only for the FS semantics (and unweighted
Union):

o5 (U(E1,...,Ep)) =U(of(Er),...,08(Er)) (22)

In fact, since in FS the s, = min and s, = max operators are used to compute the scores of
tuples after a Selection and a Union, respectively, since distributivity holds for both min and max,
the order of tuple Selection, before or after a Union, is not relevant at all, since the same score
is produced. On the other hand, also the same set of tuples is generated, likewise asserted by the
corresponding rule of the relational algebra.

Consider now the case where f = p; A ps A ... A p,, with p; over the schema of F;, and
O = (01,02, ...,6y,]. The following rule shows what happens if predicates are pushed down a Join,
provided no weights are used:

> (0p, (E1)y .y 0p, (En)) = 05(<x (En,..., Ep)) (23)

The above rule holds thanks to associativity of t-norms, the definitions of Join and Selection, and
by observing that both expressions return the same set of tuples as it happens in RA.

4.4 Using Rules

The following example shows how the above rules can be used to transform SAME"Y expressions
for optimization.

Example 8. Let consider the query which returns information on the three “best” fingerprints of
thumbs, with a feature vector FP_FV similar to a given value fv (weight 0.4), corresponding to
persons having brown hair (weight 0.6). The resulting score has to be greater than 0.5.

This can be expressed by the following expression:

¥o.5 (73 (O air—brown0-6 nFP_FV~fy®* (OFingerNo=11 (Faces X Finger Prints)))) (24)

Thanks to rule (21), the outer Cut can be swapped with the Top so that rule (17) can be applied,
and predicate on Hair and the Cut can be pushed-down as shown below. This is possible since
tuples resulting from the Selection on FingerNo to the Join of Faces and FingerPrints are again
crisp tuples.

(105 (002 % e (10.5(0Hair=tbrown' (OFinger No—-1 (Faces X Finger Prints)))))) (25)

Then, from the associativity of t-norms and the definition of Selection:

0.4,0.6 . .
T3 (70'5(0-;‘P_F11~fv(70'5 (UHaiT:‘brown’/\FingerNo:‘l’ (FGCCS Dl angerprznts))))) (26)



Now, the application of rule (23) leads to:

73 (70_5(052}3&?}va(70_5 (0Hair=brown' (Faces) X o ringerNo—1 (Finger Prints))))) (27)

Then, rule (10) can be applied, thus producing:

7 ('70-5 (Ug?-ﬁi(;—,:(:,]-,va('mj (')’0.5 (UHaz'r:‘broum’ (Faces)) X ¥o0.5 (UFingETNO:‘l’ (FingerPrints))))))

(28)
The Cut on FingerPrints can be eliminated, since the relation is crisp and the Selection has a
boolean predicate, thus scores of tuples are equal to 1. Also the Cut external to the Join can be
eliminated since the former Join operand has tuple scores higher than 0.5, whereas the latter one
is crisp. As a consequence, due to Property 1, the resulting scores of the Join tuples are also higher
than 0.5, and so the external Cut is redundant. Finally, the above expression reduces to:

0.4,0.6 . .
T (Y050 ) £ (10.5(OHair—strown' (Faces)) X 0pingerno=1 (FingerPrints))))  (29)
In conclusion, by considering the similarity predicate on fingerprints as a probably costly one, in
the last expression we evaluate it only on tuples previously satisfying the other (cheap) predicates.

5 Related Work and Conclusion

Over the years, many works have been proposed on methods for representing and reasoning with
“imprecise” information [Par96]. These works are only marginally relevant here, since they mostly
concentrate on modeling aspects (see e.g. [RM88]) and typically ignore issues related to advanced
processing of similarity queries, which are a major concern in multimedia environments. Indeed, it
is a fact that similarity queries arise even if the database does not store imprecise information at
all, provided “similarity operators” are defined. This is also the scenario considered by the VAGUE
system [Mot88], where, however, important features are missing, such as weights, the Top operator,
and fuzzy attributes. Further, problems related to query optimization are not considered in [Mot88].
Recent work by Adali et al. [ABSS98] addresses issues similar to ours, but important differences
exist. First, they do not consider weights, that we have shown to introduce new interesting problems
in the query optimization scenario. Second, they are mainly concentrated on problems related to the
integration of heterogeneous “similarity measures”, coming from different sources, into a common
framework. Finally, several works are related to ours from the point of view of query processing
and execution. In [CPZ98] complex similarity queries are evaluated through distance measures,
so that execution can benefit of efficient distance-based access methods [CPZ97]. In [Fag96] a
specific algorithm is proposed so as to efficiently process the so-called “Top queries”, which deal
with user limitation on the cardinality of query results. This argument has been an interesting
subject for recent research [CK97], and a tigh connection can be found with our Top (7) operator.
Optimization techniques considered in [CK97] to “push-down” the Top basically exploit primary
key-foreign key joins (as well as analysis of residual predicates) — a thing which we could embed
into SAMEY by means of functional dependencies.

In this paper we have introduced a “similarity algebra with weights”, called SAMEY, that
generalizes relational algebra to allow the formulation of complex similarity queries over multimedia
databases. SAMEY combines within a single framework several aspects relevant to multimedia
queries, such as new operators (Cut and Top) useful for “range” and “best-matches” queries,
weights to express user preferences, and “scores” to rank tuples. These aspects pose new challenges
to a query engine, which have not been considered yet in their full generality. For instance, if the
user evaluates the result of a query, thus the system should adapt to this by adjusting weights, how



does this affect execution costs? Indeed, as shown in Section 4, changing the weights will modify

the numerical values, thus the processing costs, used by some operators (like the Cut) to limit the

cardinality of the arguments of n-ary operators, such as Join and Union.
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