Integration of Semantic and Structure Similarity
for XML Data Ranking

Wilma, Penzo

DEIS - CSITE-CNR
University of Bologna, Italy
wpenzo@deis.unibo.it

Abstract. In this paper we present a generic measure that integrates
semantic and structure similarity to evaluate results of queries against
XML documents. Differently from other proposals, we follow a set-oriented
approach to results, that, depending on different relaxations on require-
ments, return possible alternatives that the user may be interested in.
Approximate answers present both structure and semantic loosening,
and solutions are ranked with respect to contextual factors, such as the
coverage rate of the query and the cohesion of data retrieved. Finally, we
present an algorithm that implements our proposal.

1 Introduction

Because of the expected diffusion of XML as a standard for future data represen-
tation, efficient and effective treatment of XML documents are important issues
to be faced. At present, it is widely acknowledged the necessity of a full-fledged
approach to query XML documents [6]. Several proposals [5,10,11,16-20] have
extensively emphasized that, besides content, also structure has a crucial role
in the effectiveness of retrieval, and in most cases similarity techniques are ap-
plied as well. However, these proposals show some lacks. For instance, most of
them do not cope with the problem of providing incomplete results when parts
of query conditions are not satisfied. Also, they do not capture the presence of
multiple occurrences of query results in a document, only returning the “best
match”. Instead, this information could be exploited, for instance, to strengthen
the relevance of documents. As to this latest point, most of the existing works
provide scoring methods that simply specify a ranking with respect to other so-
lutions. Further, in these proposals, each single score assigned to a document is
not enough informative as it is, since it does not indicate “how well” the single
document per se satisfies query requirements.

This paper presents a generic similarity measure to support the effective re-
trieval of data in XML format. The main goal is to cover also common cases
where providing specific relaxations on structure proves to be a powerful fea-
ture in absence of knowledge on data organization. Our method relies on a set-
oriented approach, so as not to limit results to the best one, but also to present
alternative solutions to satisfy user’s requirements. We also present a scoring
method that, besides ranking, gives a flavor of the quality of data retrieved.

The outline is as follows: In Section 2 we discuss some sample queries to show
the limits of existing proposals. Section 3 introduces a starting query language
to express user requirements on XML data. A tree representation for queries and
documents is presented. In Section 4 tree embedding is the method we use to
compare a query and a data tree, and we extend it in two directions: 1) to capture
also partial matching on query structure, and 2) to assign a score to embeddings.
This introduces the concept of scored approzimate tree embedding. Then, we show
how some “critical” queries are effectively managed by our method, by elegantly
handling structural discrepancies. In Section 5 an algorithm that implements
our measure is introduced, and implementation is briefly presented. Then, we
compare our method with other approaches in Section 6 and, finally, in Section
7 we conclude and discuss future features we intend to work on.

2 Motivation

A common limit of most of current methods for querying XML data is that they
do not return results which are incomplete with respect to query requirements.
For instance, let consider a user looking for CD’s authored by Sting, and relating
to a concert held in a stadium in the city of Orlando. If data is organized as in
documents in Fig. 1, only Doc2 would be retrieved, since it is the only document
that contains a city element, thus making condition on Orlando checkable.
Nevertheless, it is easy to notice that also Docl is relevant for the query, and
should be returned. To our knowledge, this functionality, that we call partial
match on query structure, is provided only in [17].

<cd> <cd>
<title>Brand New Day< /title> <concert>
<singer>Sting< /singer> <stadium> Citrus Bowl< /stadium>

<price>15,39 § < /price> <city>Orlando, FL< /city>
<concert> <date>Aug 9th, 2001< /date>
<stadium>Citrus Bowl, Orlando< /stadium> < /concert>
<date>09-06-2001< /date> <tracklist>
< /concert> <track>
</cd> <artist>Sting < /artist>
<cd> <title>Desert Rose< /title>
<title>>Mercury Falling</title> < /track>
<singer>Sting< /singer> <track>
<price>12,99 $ < /price> <artist>>Elton John< /artist>
<concert> <title>1 want love< /title>
<stadium>Waterhouse C., Orlando</stadium> < /track>
<date>08-07-2001< /date> o
< /concert> < /tracklist>
</ed> </ed>
Doc1l Doc2

Fig. 1. Sample XML documents

However, in [17] only the best approximate result is retrieved. In many cases,
this seems to be a too restrictive condition. In fact, consider Docl in Fig. 1.
Two relevant CD’s are present, but according to [17] only one of them would
appear in the final result. This approach looses an important information useful
to score higher documents containing multiple occurrences of results. To this

end, a set-oriented approach seems to be more adequate, provided that, in order
to reduce the amount of retrieved solutions, the user is given the possibility of
defining proper thresholds to exclude results scoring least.

Then, an effective retrieval system should also capture ordinary structural
dissimilarities that may occur on possibly relevant results. As an example, let
suppose to ask for Elton John’s CD’s containing love songs. Doc2 in Fig. 1
represents a collection of songs of several authors, where also an Elton John’s
song appears. This CD should be retrieved, but it should be pointed out that
the author is related to the song and not to the CD.

None of the above proposals treat these cases, the latter covered only in [10].
Also, when result ranking is provided, the data retrieved is usually scored in a
“absolute” fashion, in that constraint relaxations are assigned specific costs to
be combined according to formulas that do not indicate the goodness of results
with respect to requirements. For instance, let consider two queries with 10 and 5
conditions to be satisfied, respectively. Suppose, in both cases, the best result is
obtained by the relaxation of 3 conditions. We expect the “quality” of the former
solution (7 matching conditions out of 10) to be quite good, whereas the latter
one (2 matching conditions out of 5) to be rather poor. Absolute scoring does not
provide this information. In order to cope with these situations, we make scores
dependent of factors such as the coverage rate of the query and the cohesion
of data retrieved. This has the effect of “normalizing” the scores to the context
they are applied in. The method we propose, the SATES (Scored Approzimate
Tree Embedding Set) function, provides the features described above.

3 Query Language and Tree Representation

3.1 Preliminaries

Our approach deals with typed and labelled trees. As to tree representation of
XML documents, we follow the XML Information Set standard [3] (with parent
and children, root as document element property, and label as local name prop-
erty). We also define some additional functions: nodes(n) which returns the set
of children of a node n, and type(n) that returns the type (element, attribute,
or PCDATA) of a node n. Further, we define leaf(n) iff children(n) = 0, and an-
cestor(ny,ne) iff (parent(ni,n2) V In € N s.t. (parent(ni,n) A ancestor(n,ns)).
We denote with T the set of such trees. Then, given a node n in a tree T' € T,
we define support(n) the subtree of T rooted at n, and we call it the support of
nin T.

3.2 The XQuery~ Query Language

As a starting point, we consider a subset of XQuery1.0 grammar [4], that we call
X Query—, and we report it in appendix A. The portion we consider is limited
to path expression queries of the form:

/" im//"] (<StepExpr> CYAILYTAD))* <PrimaryExpr>" ["<EXpI‘>"] "

where the part before the square brackets denotes the context where conditions
in <Expr> have to be checked. For simplicity, predicates are restricted to equal-
ity predicates on attribute values, and can be combined through the and and
or logical connectives. Then, we neglect expressions that consider position of
elements inside documents as well as dereferences. Queries are modeled as trees
made of typed labelled nodes and (possibly labelled) edges: a legenda of symbols
is provided in Fig. 3. The following is an example of complex query, with its tree
representation.

Example 1. Retrieve authors of books, having lastname “Spencer” and either
1) having a phone number with value “1392”, and a secretary (attribute) or 2)
living in “Chicago”:

book/author[lastname=*‘Spencer’’ and ((.//phone=‘¢1392’’ and
@secretary) or address/*=‘‘Chicago’’)]

Two separate queries are generated, each one expressing an alternative condition
expressed by the or operator; final result is obtained by merging results coming
from both. The corresponding trees are described in Fig.2 where the ‘4’ sign
stands for the merging operation.

/ O / Document root node
*
(Obook Element node with label "book’
book
O * Any element node
+ author @title Adtrib. node with labdl "title"
@ * Any attribute node
hi |asti add
phone name ress O"XML" PCDATA node with value "xmL"|
* O Output node
" Spencer” "1392" " Spencer” ‘ Parent-Child rel.
> ‘ * Ancestor-Descendant rel.
"Chicago"
Fig. 2. Query trees of Example 1 Fig. 3. Query and data tree symbols

For representation purposes, an output node is also present to point out the
target of the query. Let 7o C T be the set of all query trees. With regard
to XML documents, we intentionally neglect the presence of namespaces and
IDREFs and we assume data is well-formed, but we do not require validity with
respect to a DTD. Let D be the set of well-formed XML documents. Given a
document d € D, its corresponding tree is a tree tg € 7. Let Tp C T be the set
of all data trees.

4 The Tree Embedding Problem

Satisfying a query g on a document d may lead to different results, depending
on how much we are willing to relax constraints on semantics and requirements
dependencies. When a query has to be completely satisfied, we are looking for

a “tree embedding” of the query tree ¢, in the data tree ¢4. This means that
all query nodes must have a corresponding node in the document tree, and
each parent-child relationship should be guaranteed at least by an ancestor-
descendant one in the data tree. In many cases, this approach is not satisfactory,
since it limits the set of relevant results. In order to overcome these limitations,
our work basically relies on:

1. relaxation on the concept of total embedding of ¢, in t4, in that we admit
partial structural match of the query tree.

2. approximate results, that are ranked with respect to cohesion of retrieved
data, to relaxation of semantic and structural constraints, and to the cover-
age rate of the query. The ranking function we use takes into account the
“query context”, in that a score provides a ranking value but also a “quality
measure” of results.

3. aset oriented approach to results that, depending on different relaxations on
requirements, returns possible alternatives that the user may be interested
in. This also possibly strengthens the relevance of data presenting multiple
occurrences of query requirements.

In our view, finding an embedding for a query tree t; in a document tree t4 is
a problem that can be defined in a more flexible way. The following definition
introduces our interpretation of an approximate tree embedding.

Definition 1 (Approximate Tree Embedding (ATE)). Given a query tree
ty € T and a document tree t; € T, an approzimate tree embedding of t, in
tq is a partial injective function é[tq,t4] : nodes(ty) — nodes(tq) such that
Vg, q; € dom(€é):

1. sim(label(q;),label(€(g;))) > 0, where sim is a similarity operator that returns
a score normalized in [0,1] stating the semantic similarity between the two
given labels

2. parent(gi,q;) = ancestor(€(¢:),€(¢;))

Let & be the set of approximate tree embeddings. Now we define how scores can
be assigned to embeddings so that they can be ranked according to a similarity
measure p.

Definition 2 (Scored Approximate Tree Embedding). A scored approzi-
mate tree embedding é, is an approximate tree embedding extended with scoring
data in a domain SD. The domain SD of scoring data is a set of tuples contain-
ing information on the coverage of the embedding with respect to the query tree,
on the overall semantic similarity and structural correctness of the embedding,
and on the cohesion of the resulting embedding with respect to the document
tree. Details of SD elements are provided in Section 5. Formally: é; : SD x &.

Finally, in order to rank the embeddings we define our ranking fuction:

Definition 3 (Ranking Function). We denote with p a ranking function
that, given a scoring data value in 8D returns a normalized score in [0, 1] that
summarizes the overall similarity denoted by the input scoring data. Formally:
p:8D —[0,1].

In the remainder of the paper, we will use the simplified notation: Vt, € Tg,Vtq €
Tp,t € T, let s(tq,tq) be sim(label(root(ty)), label(root(ty))), let r(t) stand for
root(t), and let t(ty,t4) be the equality predicate type(t,) = type(tq) that eval-
uates to true iff types of r(¢,) and r(t4) are the same. Let Mﬁj be a Bipar-
tite Graph Matching' between the two sets children(r(t,)) and children(r(ty)).
When clearly defined in the context, we will use M in place of Mﬁj

4.1 The SATES function

The similarity measure we propose to compare query trees over document trees
is provided by the SATES function, that we define below.

Definition 4 (Scored Approximate Tree Embedding Set Function).
(SATES Function) Let T be the set of query trees, Tp the set of document
trees, such that 7 = 7o U Tp. We define the scored approzimate tree embedding
set function as:

SATES : Tg x Tp — 257%¢

such that, Vt, € Tg,Vtq € Tp, SATES(t,,tq) returns a set of approximate tree
embeddings for ¢, in t4. Each returned embedding is assigned a “scoring data”
value sd in SD that denotes the semantic and structural similarity of ¢, in ¢4
with respect to that specific embedding. The SATES function returns a result
set, thus capturing the possibility of having more than one embedding between
a query tree and a document tree. The scoring data value sd is used as the
input of the p function to rank the embedding with respect to all the different
alternatives.

Intuitively, when comparing a query tree and a data tree, say t, and ¢4, respec-
tively, the SATES function determines “how well” t4 fits t,, by showing each
possible fitting for ¢,. The SATES function has a recursive definition that we
briefly explain to help the reading of its formal representation shown in Fig. 4. In
order to determine the scored embeddings, the function examines different cases:

Both leaves. This is the base case, where the two trees t, and t4 are simple
nodes without children. If labels are similar, the resulting embedding is simply
made of the two nodes, and a scoring data that depends on the overall similarity
of nodes (on labels and type). When dealing with leaves, if an embedding is
returned, the structural similarity can be considered “perfect”, thus ascribing to
semantic similarity the key role of determining the final score for the embedding
through the p function.

Query leaf and Data tree. If the semantic similarity between ¢, and ¢4 (root)
labels is positive, an embedding is found and its scoring data is determined as
in the previous case. Here, note that, even if the structure of the two trees is

! Consider a graph G = (V, E). G is bipartite if there is a partition V = AU B of the
nodes of G such that every edge of G has one endpoint in A and one endpoint in
B. A Matching is a subset of the edges no two of which share the same endpoint. In
our case A = children(r(ty)) and B = children(r(ts)).

Vtq € Tg,ta € Tp, SATES(t4,tq) is defined as:

case leaf(r(ty)) Aleaf(r(ta)):
if s(tq,tq) >0
SATES(tq,ta) = {[(s(ta,ta), t(ta, ta)), {(r(ta), 7(ta)) 1}
else SATES(ty,tq) =0

case leaf(r(tq)) A —leaf(r(tq)):
if s(tg,ta) > 0
SATES(tq,ta) = {[(s(ta,ta) t(tes ta)), {(r(ta), r(ta))1}
else SATES(tq,tq) = U S4(SATES(tq, support(c)))

¢ € children(ty)

case —leaf(r(ty)) Aleaf(r(tq)):
if s(tq,tq) >0
SATES(ty, ta) = {[(5(tas ta), ttay ta)), L(r(ta), r(t) D]}
else SATES(ty,tq) = | ©4(SATES(support(c),ta))

¢ € children(tq)

case —leaf(r(ty)) A —leaf(r(tq)):
if s(tq,ta) >0 SATES(tq,tq4) =
M|]

M
U U [®(s(tq,td),t(tq,td),s;l,...,sglM'l),{(r(tq),r(td))}Um;I u...um’
M:Z (th k) e m
ke [1..|M]]
(sk ,m:“k) € SATES(t?,t;?)

1, € [1..\5ATEs(tf,t;?)\]

else SATES(tq,tq) = U(Ul’Uz’ Us)

_ 1 | M| 1 | M]
where | J, = 6q¢0064 U [®(sll,...,sl|M|),m,1U...UmllMl]
mbd (&%, tk) e m
tq 2 J
k€ [1..|M]]

(sf‘k,m;“k) € SATES(ti.“,t;?)
I € [1..|SATES(11?,1;9)|]
U, =U &4 SATES(t4,¢)
¢ € children(ty)
Us =U ©q SATES(c, ta)

¢ € children(tq)

Fig. 4. The SATES Function

different (one of them is indeed a leaf), the embedding’s scoring data should not
be influenced from this. In fact, we can evidently conclude that the structural
coverage is complete.

More interesting is the case of null semantic similarity between labels. In this
case, the children of ¢4 are entrusted to determine among them some possible
embeddings for the leaf ¢,. If an embedding is found, even if we can say that t4
covers tq, indeed it provides a more generic context. Thus, the final score should
reflect the skip of t4’s root, that did not match with the query node. To this end
a lowering function is used, as follows:2

2 The definition presents also the dual function used in the case of unsuccessful match
for a query node (see later in this section).

Definition 5 (Lowering Functions). Let &, and &4 two lowering functions
that, given a set of scored approximate tree embeddings, change their scoring
data according to a lowering factor. New scoring data captures the unsuccessful
match of a query node and a data node, respectively.

Formally: ©, (64, resp.): 25P*¢ — 25PX€ guch that Vé, = (sd, €) € dom(9,)
(©4, resp.) ©4(&s) = (sd', €) A p(sd’) < p(sd).

Query tree and Data leaf. This is the case that concludes recursion in the
next step. Its role is made evident by the following case.

Query tree and Data tree. The final embedding set is basically made of the
combinations of each single embedding that can be obtained for children of query
root in children of data root, possibly extended with the coupling of the roots
(depending on their semantic and type similarity). In order to capture all the
existing mappings, all possible bipartite graph matchings are considered between
query root’s children and data root’s children. Then, two cases may occur: either
1) semantic similarity of roots’ labels exists, or 2) no similarity is found. The
former is the simplest case, with embeddings including roots’ coupling.

Example 2. Consider trees in Fig. 5. The set of scored approximate tree embed-

Fig. 5. Bipartite graph matchings between children nodes

dings resulting from SATES(t4,tq) is obtained as follows. Without knowledge
on query and data subtrees shadowed in Fig. 5, let consider the more promis-
ing bipartite graph matchings between children of ¢, and ¢4: {(1,a),(2,e),(3,b)},
{(1,a),(2,e),(3,c)}, and {(1,a),(2,e),(3,d)}. Let consider the first matching. De-
pending on the satisfiability of conditions in the supports of “title” and “author”
query nodes in the supports of “title” and “writer” data nodes, respectively,
SATES(2,e) and SATES(3,b) may return either empty results or some em-
beddings. The embeddings returned by children are completed with the pair
(“paper”, “article”) of roots, and each one is finally assigned a scoring data that
depends on the scoring data of the source embeddings, and the semantic simi-
larity between terms “paper” and “article”, both being of type element.

In order to combine the scoring data coming from children embeddings, we
provide the following function:

Definition 6 (Combine Function). We denote with ® a n-ary function that,
given a set of n scoring data values in SD returns a new scoring data value in

SD obtained from the combination of the n input arguments. More formally:
®:25P & SD.

A more complex computation is required if root labels do not present any sim-
ilarity. In this case, the final embeddings are computed as the union of three
quantities, indicated in Fig. 4 by U, U,, and ;. U, captures the unsuccessful
match of the roots, thus changing the scoring data by means of the ©, and the
©4 lowering functions.® On the other hand, | J, and |J, capture the presence of
possible “swaps”, as well as sibling vs. hierarchical relationships, between nodes.
Consider Fig. 6. Assume semantic similarity between “song” and “cd” is 0. In

1 . song a |

NS . Ip
2 () T==ecTb, side
3 \title c/ song
4 Iovt;'i;—‘rld

title

"love"

Fig. 6. Swap of nodes Fig. 7. Structure unbalance Fig. 8. Loss of cohesion

order to provide flexibility and to avoid to assert that certainly no embeddings
exist, in the evaluation of SATES(t,,t,) some constraints are “relaxed” at both
query and document level. In fact: 1) we try to discover an embedding for the
query tree t, in the support of the “song” node in ¢4 (i.e. in the child of the
root of t4, since this did not match the query root) [J, computation]; 2) try
to partially satisfy the query by attempting a research of an embedding for the
support of the “cd” node in ¢, [[J; computation].

This “crossed comparison” may point out possible “swaps” between data
nodes, due to a different organization of data. In fact, in our example, two em-
beddings are retrieved: {(1,b),(3,c),(4,d)} and {(2,a),(3,c),(4,d)}. Query require-
ments are only partially satisfied in both cases.* Thus, in the computation of Us
the ©, function has to be applied. On the other hand, the use of the &4 function
in the construction of | J, is more evident in intermediate recursive steps. In fact,
the computation of | J, also captures structural dissimilarites like that shown in
Fig. 7. Here, the “song” and “singer” nodes are siblings in ¢, and parent-child
in t4. This also penalizes the final score of the embedding, and it is captured by
the ©4 function when computing the embedding of support(“singer”) in ¢, in
support(“song”) in t4.

Further, when comparing subtrees as an effect of recursive calls of the SATES
function, the event of unsuccessful match for the document (current) root may

% The expression 64 0 84 J[®(si,,-- -, sllj\ﬂl), ...] used in Fig. 4 can be considered
equivalent to expression [®(so, s,,- - -, S;\Af/\l/‘tl)’ ...], where sg is a scoring data value

that denotes the null similarity between root labels. Indeed, we chose the first form
because it better emphasizes the lowering of scoring data due to the unsuccessful
match of query and document roots.

4 Note that, this is not always the case. In fact, sometimes query requirements are
completely satisfied since, in the computation of Uz, the query tree can be totally
found at a deeper level in the document tree.

be interpreted as a sign of low cohesion of the global result. As an example,
let consider the trees of Fig. 8. The evaluation of SATES(t,,t4) leads to the
embedding {(1,a),(2,d),(3,e)}. In this case, although the query tree is totally
embedded in the document tree, cohesion of retrieved data is not fully satisfied.
This is captured by the double® application of the ©4 function that lowers the
final scoring data to be assigned to this embedding. Note that the SATES func-
tion is not symmetric. Consider trees in Fig. 8 again. Finding an approximate
embedding of ¢4 in ¢, would result in a partial satisfaction of query requirements
since “side” and “song” current query elements do not have a correspondance in
t,. This means that the ©, lowering function “weighs” differently (much more
indeed) from ©4. Thus, the retrieved approximate embeddings would be scored
differently. This captures the intuition that priority is on complete satisfaction
of query requirements, and then on cohesion of results.

5 A Flexible Tree Similarity Algorithm

We implemented the SATES function through an algorithm that evaluates trees
in a bottom-up fashion. This is mainly due to the need of reducing the computa-
tional complexity of tree embedding methods that, for unordered labeled trees,
is known to be NP-hard [15]. In order to limit the portions of a data tree to
be considered during evaluation, we start from the bottom, looking for similar-
ity matches between query and data leaves. Branches that do not present any
similarity with any query leaf are not explored at all. The algorithm proceeds
evaluating nodes in postorder.

Leaves. Depending on the type of query leaves, two strategies are followed: 1)
query leaf is a PCDATA node. This is compared in turn with all PCDATA leaves of
the document tree, looking for similar data leaves; 2) query leaf is an element or
attribute node. This is compared in turn with all data nodes of type element
and attribute, starting from nodes at lowest levels, and ascending in each
branch until a similarity is found with some node label.

Intermediate Nodes. Non-leaf query nodes are compared with intermediate
data nodes under the following rule: the current query node try a match with
the lowest common ancestor of data nodes belonging to each embedding found
for query node’s children. Two cases may occur:

1. nodes are similar. In case data node’s children are ancestors of data nodes be-
longing to the embeddings previosly found for query node’s children, existing
intermediate data nodes contribute to lower the cohesion of data retrieved,
and are considered in the overall score.®

2. nodes do not match. The unsuccessful match of current roots is reported
through the use of the ©, and ©4 functions. Then, the algorithm starts

® Because of the two recursive steps with unsuccessful match of (2,b) and (2,c)
5 Note that this holds if a parent-child relationship exists between corresponding query
nodes; exceeding data nodes are neglected otherwise.

looking for a possible match of the query root with the parent of the current
data root and it proceeds recursively until either a match is found or current
data branch ends. If document root is reached without a match, the algo-
rithm “gives up” looking for a match of the current query root, and examines
the further query node. Thus, instead of declaring that no embeddings exist
for the current query tree, we are willing to relax some conditions with the
aim of finding future matches for the remaining query nodes.

In case a query leaf does not find any correspondence in the data tree, the path
connecting the leaf with its first ancestor having more than one child is not
traversed, but information on skipped nodes is used in the computation of the
overall scoring data.

5.1 Computing the Scoring Data

The embeddings returned by the SATES function are equipped with scoring
information build up during data tree exploration. This scoring data represents a
complex information that capture several properties of the retrieved embedding.
These properties reflect semantic and structural completeness and correctness of
results, as well as their cohesion. When a relaxation is applied, what we neglect
should be taken into account to determine the final overall score. We chose to
model a set of properties for each embedding. All these properties are normalized
in the interval [0,1]. Properties modelled are shown below, where values close to
1 denote high satisfaction:

Semantic Completeness. It measures how much the embedding is semanti-
cally complete with respect to the given query. We compute it as the ratio
between the number of query nodes in the embedding, and the total number
of query nodes.

Semantic Correctness. It states how well the embedding satisfies semantic
requirements. This is computed as a combination of label similarities of
matching nodes, possibly lowered by type mismatches.

Structural Completeness. It represents the structural coverage of the query
tree. It is computed as the portion of node pairs in the image of the embed-
ding that satisfy the same hierarchical” relationship of the query node pairs
which are related to.

Structural Correctness. It is a measure of how many nodes respect struc-
tural constraints. It is computed as the complement of the ratio between the
number of structural penalties (i.e. swaps and unbalances) over the number
of examined query nodes.

Cohesion of results. It represents the grade of fragmentation of the result-
ing embedding. It is computed as the complement of the ratio between the
number of skipped data nodes and the total number of examined data nodes.

Since all properties are to be considered in conjunction, a t-norm proves to be a
good candidate for the p ranking function.

7 Either parent-child or ancestor-descendant relationship.

5.2 Implementation

We implemented a prototype and experienced our similarity measure on a real
collection of XML documents. The dataset used is provided by the Astronomical
Data Center [1]. The prototype has been developed in Java and uses the API for
XML parsing, and the Xerces 1.4.4 parser to process documents. As to semantic
similarity, the system refers to the WordNet semantic network [2] and accesses
it through the Java WordNet Library (JWNL). As a similarity measure we used
an adaptation of the Sussna’s formula [8]. We experienced several queries on our
prototype, which proves to fully satisfy effectiveness in data retrieval. It captures
results presenting both semantic and structure dissimilarities as those shown
in Section 4.1, and not retrieved by other approaches. Then, it provides them
with a “fine-grained” ranking that also takes into account possible low cohesion
of results. However, much work still needs to be done on efficiency. We plan
to study and introduce specific indexing techniques to reduce the prototype’s
response time. We also intend to experience and refine our method, in order to
find the better rules to be used for our combine and ranking functions.

6 Comparison with Related Approaches

Several works deal with the management of XML data. Most of them present
query languages [7,13] and query processing methods [10,11,16,17,19], others
investigate new storage and indexing techniques [9, 12, 14, 18, 20]. However, all of
them try to capture both structure and semantics of XML documents to improve
effectiveness of data retrieval [6].

Our work belongs to the former class of approaches. As for these, approxi-
mate matching techniques are acknowledged to be powerful tools for querying
blindly XML data. Thus, many proposals provide similarity query capabilities
and, consequently, result ranking [10,11,17,19]. In [19] vague predicates are
introduced in the query language, and similarity scores are interpreted as a rel-
evance probability, where basic scores are multiplied in conjunctions and along
paths. This leads to a similarity measure that only depends on content, using
structure information only for semantic score combination. This approach does
not support partial match on query structure. In [11] the concept of index object
is introduced to specify a context type in an XML document. This is consid-
ered as an “atomic unit” where term weighting is applied locally. This technique
does not show how structure contributes to similarity score computation, except
for providing a term weighting domain. Partial match on query structure is not
discussed. In [10] documents and queries are represented as graphs. The result
of graph embedding is scored according to weights attached to the matching
arcs. However, neither semantic similarity nor partial match on query structure
are considered. The approach most similar to ours is that presented in [17], ba-
sically because it provides partial match on query structure. However, several
differences can be found. Similarity scores depend on the costs of basic trans-
formations applied on the query tree. These costs do not depend on data. Thus,
semantic relationships, like synonymy, are not exploited, and results that differ

in the content from the exact match are given the same score. Other approaches
use tree matching techniques [5,15,16]. Some of them do not consider result
ranking [15,16], others provide limited relaxations on structure [5]. Further, to
our knowledge, all proposed methods return only the best (in some cases ap-
proximate) matchings. The set-oriented approach used in the SATES function
also captures the relevance given by multiple occurrences of query requirements
in the retrieved data.

7 Conclusion and Future Research

We have presented a generic similarity measure to evaluate results of queries
against XML documents. The main novelties of our proposal are: 1) a set-
oriented approach to results; 2) a ranking function that provides a “quality
measure” to evaluate the adequacy of results with respect to user requirements;
3) partial match on query structure, in order to support at least partial satis-
faction of user requirements, when exact match is not possible. Several issues
urge to be investigated. In order to augment query flexibility, we plan to refine
our ranking function so as to take care of user preferences on either semantics or
structure of a query, thus assigning different priorities on results. As to queries
with conditions referring to ordered data, we intend to study constraints on our
generic unordered tree embedding method. With regard to implementation, in
order to cope with the possible hugeness of approximate results returned, we
plan to use threshold conditions expressed by the user, to keep only the most
relevant results. This would provide a lower bound that would help in pruning
branches during exploration, then reducing complexity and lightening system
execution. To strengthen optimisation, we also plan to study proper storage and
indexing techniques to further improve efficiency of retrieval.

References

ADC XML Resources Home Page. http://xml.gsfc.nasa.gov/.

WordNet Home Page. http://www.cogsci.princeton.edu/ wn/.

XML Information Set. http://www.w3.org/TR/xml-infoset.

XQuery 1.0: An XML Query Language. W3C Work. Draft, 2001,

http://www.w3.org/TR/xquery.

5. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern Relaxation. In Proc. of the
8th Int. Conf. on Extending Database Technology (EDBT 2002), Prague, March
2002.

6. R. Baeza-Yates and G. Navarro. Integrating Contents and Structure in Text Re-
trieval. SIGMOD Record, 25(1), 1996.

7. A. Bonifati and S. Ceri. Comparative Analysis of Five XML Query Languages.
SIGMOD Record, 29(1):68-79, 2000.

8. A. Budanitsky. Lexical Semantic Relatedness and its Application in Natural

Language Processing. Technical Report CSRG-390, Computer System Research

Group, University of Toronto, 1999.

W N =

9. Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. T. Ng, and
D. Srivastava. Counting Twig Matches in a Tree. In Proc. of the 17th Int. Conf. on
Data Engineering (ICDE 2001), pages 595-604, Heidelberg, Germany, April 2001.

10. E. Damiani and L. Tanca. Blind Queries to XML Data. In In Proc. of Int. Conf.
on Database and Ezpert Systems Applications (DEXA), pages 345-356, 2000.

11. N. Fuhr and K. Grofjjohann. XITRQL: A Query Language for Information Retrieval
in XML Documents. In Proc. ACM SIGIR Conf. on Research and Development
in Information Retrieval, 2001.

12. Y. Hayashi, J. Tomita, and G. Kikui. Searching Text-rich XML Documents with
Relevance Ranking. In Proc. ACM SIGIR 2000 Workshop on XML ad Information
Retrieval, Athens, Greece, July 2000.

13. H.V. Jagadish, L.V.S. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A
Tree Algebra for XML. In Proc. of Workshop on Data Bases and Programming
Languages (DBPL 2001), Italy, 2001.

14. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting Local Similarity
for Indexing Paths in Graph-Structured Data. In Proc. of the 18th Int. Conf. on
Data Engineering (ICDE 2002), 2002.

15. P. Kilpeldinen. Tree Matching Problems with Application to Structured Text
Databases. PhD thesis, Dept. of Computer Science, University of Helsinki, Helsinki,
Finland, 1992.

16. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with
Cupid. In Proc. of the 27th VLDB Conf., pages 49-58, Rome, Italy, 2001.

17. T. Schlieder. Similarity Search in XML Data Using Cost-Based Query Transfor-
mations. In Proc. of 4th Int. Workshop on the Web and Databases (WebDB01) ,
2001.

18. T. Schlieder and H. Meuss. Result Ranking for Structured Queries against XML
Documents. In DELOS Workshop: Information Seeking, Searching and Querying
in Digital Libraries, 2000.

19. A. Theobald and G. Weikum. Adding Relevance to XML. In Proc. 8rd Int.
Workshop on the Web and Databases (WebDB 2000), pages 35-40, Dallas, Texas,
May 2000.

20. J. Wolff, H. Florke, and A. Cremers. Searching and Browsing Collections of Struc-
tural Information. In Proc. of the IEEE Advances in Digital Libraries, pages 141—
150, USA, May 2000.

A XQuery—: A Subset of XQueryl.0 Grammar

Excerpt of the XQueryl.0 grammar we used to express path expression queries (EBNF
form), where Literal and QName are defined as in XQuery1.0 [4].

Query ::= PathExpr

PathExpr ::= AbsolutePathExpr | RelativePathExpr

AbsolutePathExpr ::= (¢‘/’’ RelativePathExpr?) | (‘¢//’’ RelativePathExpr)
RelativePathExpr ::= StepExpr ((¢‘/’> | “¢//’’) StepExpr)#*

StepExpr ::= (PrimaryExpr StepQualifiers) | (¢¢.’°2 | “¢..?? | (‘‘@’’ NameTest))
PrimaryExpr ::= Literal | QName | ¢‘*’’ | ““(’? Expr ¢¢)’°’

StepQualifiers ::= (‘“[’’ Expr ‘‘]’’)*

NameTest ::= QName | ©¢%?°

Expr ::= OrExpr | AndExpr | GeneralComp | PathExpr

OrExpr ::= Expr ‘‘or’’ Expr

(33

AndExpr ::= Expr
GeneralComp ::= Expr

and’’ Expr
¢¢=27 Expr

