
Management of User Preferences in
Data Intensive Applications

Riccardo Torlone1 and Paolo Ciaccia2

1 Dip. di Informatica e Automazione, Università Roma Tre
Via della Vasca Navale, 79 - 00146 Roma, Italy

torlone@dia.uniroma3.it
2 DEIS — CSITE–CNR, Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna, Italy
pciaccia@deis.unibo.it

Abstract. The management of user preferences is becoming a funda-
mental ingredient of modern Web-based data-intensive applications, in
which information filtering is crucial to reduce the volume of data pre-
sented to the user. However, though deriving and modeling user prefer-
ences has been largely studied in recent years, there is still a need for
practical methods to efficiently incorporate preferences in actual systems.
In this paper we consider the qualitative approach to user preferences in
which a binary preference relation is defined among objects and a special
operator (called Best) is used to extract relevant data according to the
preference relation. In this framework, we propose and study a special
index structure, called β-tree, which can be used for a rapid evaluation
of the Best operator. We then present a number of practical algorithms
for the efficient maintenance of β-trees in front of database updates and
discuss some relevant implementation issues.

1 Introduction

The continued explosion in the amount of content and the number of information
sources available online is making the need for effective personalized content
delivery more crucial. This has resulted in a renewed interest in personalization
as a fundamental tool for Web-based data intensive applications. Personalization
can be defined as any action that tailors the interaction with an information
system to a particular user, or set of users. The interaction can be something as
casual as browsing a Web site or as (economically) significant as trading stocks
or purchasing a car. The actions can range from simply making the presentation
more pleasing to anticipating the needs of a user and providing customized and
relevant information. In this framework, one of the most challenging problem is
the management of user preferences, that is, representing in the most appropriate
way the specific interests of the user (or of a class of users) and deliver, according
to them, only the most appropriate information.

In the database field, the problem of expressing and managing user prefer-
ences has received growing attention in the last few years [1–5]. A recent and



very general approach relies on qualitative preference relations [2, 3, 6]. They
are simple binary relations between tuples: each pair of tuples in a qualitative
preference relation specifies the preference of one tuple over another one. This
approach includes, as a proper sub-case, quantitative preferences, which asso-
ciate a score of preference with each tuple and therefore require, the definition
of a linear order over them. Preference queries make use of special operators
defined with respect to a given set of preferences. For instance, the skyline oper-
ator [2] returns all the tuples which are not dominated by any other tuple, where
t1 dominates t2 if t1 is at least as good as t2 in all dimensions and better than
t2 in at least one dimension. As an example, hotel t1 might be considered to
dominate hotel t2 if t1 is cheaper than t2 and both have the same rating. Along
this line, Chomicki [3] has recently considered the case where formulas used to
compare the tuple dimensions are restricted to use only built-in predicates, and
predicates can be freely combined with logical connectives. He also proposed an
operator, called winnow, for the retrieval of tuples according to these formulas.

In this paper we consider qualitative preferences and, for the sake of general-
ity, disregard the orthogonal problems of how preferences are expressed (that is,
in which language) and in which way they are collected (that is, defined explicitly
by the user or derived implicitly from, e.g., click-streams). With this in mind,
we consider the Best operator (a variant of the winnow) that selects the n−th
ranked set of tuples in terms of preference [7, 8]. In particular, unlike previous
works, we focus on the case where not only the highest ranked tuples are to be
computed, but possibly also tuples with a lower rank are to be returned. In [7,
8] we studied general properties of the Best operator and presented a basic algo-
rithm for its computation. Building on these results, we illustrate in this paper
a special index structure, called β-tree, that can be used for a fast evaluation
of Best queries. A β-tree has limited size since it only stores the information
about user preferences that is strictly needed for computing Best queries. To our
knowledge, this is the first proposal of index structure for preference queries. We
also consider the problem of maintenance of this structure in front of database
updates and propose efficient algorithms that solve this problem. These results
provide the basis for the development of a practical preference systems for dy-
namic data intensive applications.

The paper is organized as follows. In Section 2 we introduce some basic no-
tions about preferences and querying with preferences. In Section 3 we illustrate
and investigate the notion of β-tree and, in Section 4 we propose a number of al-
gorithms for its maintenance. Then, in Section 5 we discuss some implementation
issues and finally, in Section 6, we draw some conclusions.

2 Preferences in Relational Databases

In this section we briefly recall the notion of user (qualitative) preference [3] and
present the notion of reduced preference graph. For simplicity we refer to the
relational model but the approach can be easily extended to more involved data
models.



2.1 Qualitative Preferences

Let R(X) be a relation scheme, where R is the name of the relation and X =
A1, . . . , Ak is a set of attributes each of which has associated a set of values Di

called the domain of Ai. User preferences over R(X) can be naturally expressed
by a collection of pairs of tuples over R(X): each pair specifies the preference of
one tuple over another one. These are called qualitative preferences [3].

Definition 1 (Preference relation). A (qualitative) preference relation �
over a relational scheme R(X) is a binary relation over

∏k
i=1 Di. We denote a

single preference (t1, t2) ∈ � by t1 � t2 and say that t1 is preferable to t2.

Example 1. Consider the following set of tuples.

Make Model Color Price
t1 BMW 330 Black 30K
t2 Ford Escort White 20K
t3 Toyota Corolla Silver 15K
t4 Ferrari 360 Red 100K

A set of qualitative preferences over them, possibly expressing the interest of a
potential customer, can be the following: t1 � t2, t3 � t2, t4 � t1 and t3 � t1.

A notion of indifference [3] can be naturally derived from the definition above.

Definition 2 (Indifference). Given a qualitative preference relation � over a
scheme R(X), an indifference relation ‖ over R(X) is defined as follows: t1 ‖ t2
if neither t1 � t2 nor t2 � t1; if t1 ‖ t2 we say that t1 is indifferent to t2.

A preference relation can be naturally represented by means of a directed
graph G� that we call preference graph. In this graph, nodes correspond to
tuples and there is an edge from a node t1 to a node t2 if t1 � t2. For instance,
the preference graph for Example 1 is reported in Figure 1.

t4

t2

t1 t3

Fig. 1. A preference graph

Several properties of preference relations can be expressed and studied in
terms of properties of the corresponding graph and for this reason in the following
we will often switch from a preference relation to its graph representation.

Note that, according to the above definition, a qualitative preference is in
general an infinite relation. In real application however, we are interested into
the restriction of a preference relation to actual data included into a repository.



Thus, given an instance r be over a scheme R(X), that is, a finite set of tuples
over R(X), and a preference relation � over R(X), we will denote by �r the
restriction of � to r, that is, the subset �r of � such that t1 �r t2 if and only
if t1 � t2 and both t1 and t2 are in r.

2.2 Properties of Preferences

Usually, in many applications, a preference relation � is at least a (strict) partial
order [3]. This means that � is irreflexive (we never have t �� t), asymmetric (we
never have both t1 � t2 and t2 � t1), and transitive (if t1 � t2 and t2 � t3
then also t1 � t3). When a preference relation is a partial order, its graphical
representation requires a reduced number of edges, since preferences that can
be derived by transitivity do not need to be represented. We then introduce the
following notion.

Definition 3 (Reduced Preference Graph (RPG)). Let � be a preference
relation over R(X) that is a partial order and let r be a relation over R(X).
The reduced preference graph (RPG) of �r is the directed graph G�r

= (N,E)
defined as follows:

1. There is a node in N for each tuple t ∈ r plus a special node t�;
2. There is an edge in G� for each pair of tuples t1, t2 ∈ r such that t1 � t2

but no tuple t′ ∈ r satisfies t1 � t′ � t2;
3. There is an edge from t� to each node t ∈ r such that does not exist t′ ∈ r

with t′ � t.

The node t� is added in order to have a unique source in G�r
, a technical

feature that will be useful in the following. It is easy to show that given any
preference relation � its RPG G� is unique and can be obtained as the transitive
opening of G� (an operation that deletes from the graph all the edges that can
be derived by transitivity).

Example 2. Figure 2 gives an example of a preference graph and its reduced
version.

t2 t5

t4 t6

t1 t3

t2 t5

t4 t6

t1 t3

t
T

Fig. 2. A preference graph and its reduced version



2.3 Querying with Preferences

In order to smoothly embed preferences in queries, we consider a special operator
that, combined with the standard operators of relational algebra, can be used
to specify queries over a database with preferences. This operator is called Best
(denoted by βn

�) and selects the n−th ranked set of tuples in terms of preference
(for n = 1 we obtain the best tuples in absolute terms).

Definition 4 (Best operator). Let r be a relation over a scheme R(X) and
let � be a qualitative preference relation over R(X). The Best operator βn

� of
rank n > 0 is defined as follows:

– β1
�(r) = {t ∈ r | �t′ ∈ r, t′ � t}

– βn+1
� = β1

�(r −
⋃n

i=1 βi
�(r))

β1
�(r) returns all the tuples t of a relation r for which there is no tuple in r

better than t according to �. If the user is not satisfied from the basic result,
this operation can be applied iteratively: at each step it returns the best tuples
of r, excluding the tuples retrieved in previous steps.

Example 3. Consider the preferences represented by the graph in Figure 1. Then
we have β1

�(r) = {t4, t3}, β2
�(r) = {t1} and β3

�(r) = {t2} .

There is a strong relationship between the topology of the reduced preference
graph associated with a preference relation and the result of the Best operator.
In particular, in [8] we have shown the following result.

Lemma 1. Given a preference relation � and its RPG G� (1) β1
�(r) returns

the children of t�, and (2) for every t ∈ r, t ∈ βk
�(r) where k is the length of

the longest path in G� from t� to t.

Example 4. Let us consider the RPG in Figure 2. According to Lemma 1 we
have that t4 ∈ β3

�(r) since the longest path from t� to t4 in the RPG has length
3. Note that there is indeed another path from t� to t4 whose length is 2.

In [8] we have proposed the Beta Algorithm for the computation of the Best
operator. The Beta algorithm is composed by a number of phases, one for each
iteration of the Best operator. In turn, each phase consists of a number of scans
over a set Ci of candidate tuples which might belong to the output Outi of
the i−th phase. Each scan identifies one tuple to be inserted into Outi and
generates, for each examined tuple t, the set of all tuples Dt

� dominated by t
that have been identified in the scan. The algorithm returns two collections of
sets of tuples. The former contains the results of the various iterations of the
Best operator: Outi = βi

�(r). The latter contains, for each tuple t examined by
the algorithm, the set Dt

� of tuples that have been found to be dominated by t
during its execution.



3 β-trees

In this section we present and investigate a special data structure, called β-tree,
that can be built while running the Beta algorithm and can be later used to
compute very efficiently the Best operator.

3.1 Definition of β-tree

Lemma 1 suggests that in order compute the Best operator over a set of tu-
ples with preferences we actually need to know just a portion of the reduced
preference graph. This is the idea underlying the notion of β-tree.

Definition 5 (β-tree). Let � be a qualitative preference over a scheme R(X)
and let r be a relation over R(X). A β-tree T = (N,E) over �r is any tree
embedded in RPG G�r

= (N,E′) (E ⊆ E′) such that, for each t ∈ r, the length
of the path from the root of T to n equals the length of the longest path from the
node t� of G�r

to t.

An important observation is that, by definition, the size of a β-tree is linear
in the cardinality of the relation, thus possibly much less than the size of the
reduced preference graph.

Example 5. A β-tree for the RPG in Figure 2 is reported in Figure 3. Note that
another different β-tree can be built from the same RPG. In such β-tree t6 is
the child of t5 instead of t3.

Fig. 3. A β-tree for the RPG in Figure 2

3.2 Construction of a β-tree

Interestingly, it turns out that the Beta algorithm can be used to build a correct
β-tree. More precisely, let Tr be the tree defined as follows:

1. Tr has a node t for each t ∈ r plus a special node t�;
2. there is an edge from t1 and t2 in Tr if, at the end of the basic algorithm,

t2 ∈ Dt1� ; and
3. there is an edge from t� to t in Tr if t has no other incoming edge.



Since the sets Dti� are pairwise disjoint, it is guaranteed that the resulting
structure is indeed a tree.

Example 6. Let r = {t1, t2, t3, t4, t5, t6} and assume we have the set of prefer-
ences represented by the RPG reported in Figure 2. By running the basic algo-
rithm on this input we obtain the following sets of dominated tuples: Dt1� = {t3},
Dt2� = {t5}, Dt3� = {t4, t6}. From them, we obtain exactly the β-tree reported in
Figure 3.

We recall that the level of a node n in a tree T is the length of the (unique)
path from the root of T to n. Let Li(T ) denote the set of nodes of T at level i
(hence, L0(T ) only contains the root of T ). By construction and by Lemma 1
we can easily show the following.

Lemma 2. Let r be a relation over a scheme R(X), � be a preference relation
over R(X) and Tr the tree built as above. Then:

1. Tr is a β-tree over �r, and
2. βi

�(r) = Li(Tr), for each i > 0.

4 Management of a β-tree

4.1 Tuple insertion

Assume we have a preference relation � over a relational scheme R and let Tr

the corresponding β-tree built as described in Section 3.1. Assume now that we
need to insert a new tupe t to r; we have that �r⊆�r∪{t}⊆� and thus Tr need to
be modified accordingly. The effect of the insertion of a new tuple on the β-tree
Tr does not consist in a simple node addition but, in general, to a restructuring
of Tr. Regarding that, a number of preliminary results can be stated.

Lemma 3. Let t be a tuple to be inserted into a relation r over a scheme R(X),
� a preference relation over R(X) and Tr be a β-tree over �r.

1. if there is a tuple t′ at level k− 1 of Tr such that t′ � t and there is no tuple
t′′ at level k of Tr such that t′′ � t then t ∈ βk

�(r ∪ {t}), and
2. if there is a tuple t′ at level k of Tr such that t′ �∈ βk

�(r ∪ {t}) then t′ ∈
βk+1
� (r ∪ {t}).

Point (1) specifies a simple way to find the correct level of Tr to which t has to
be inserted: at level k of Tr as a child of any tuple t′ at level k− 1 satisfying the
specified property. Conversely, point (2) suggest how Tr has to be modified to
reflect the insertion of t into Tr, since it states that if a tuple at level k of the
β-tree is no more returned at the k-th iteration of the Best operators as effect
of the insertion of a new tuple, it has to be moved exactly one level down in Tr.

A method for updating Tr to take into account the insertion of t in r can be
therefore divided into two main phases: (1) the identification the correct level k
of Tr in which t has to be inserted, and (2) the evaluation of the effect of the
insertion of t on the higher levels l (l > k) of Tr. The basic ideas that will be
used to speed up the computation are (1) moving entire subtrees of Tr instead
of single tuples and (2) restricting the search space as much as possible.



First phase The first phase proceeds by inspecting Tr level by level, starting from
level 1 and initializing the parent tuple of t to t�. The scan of level i (i ≥ 1)
proceeds as follows.

1. We compare t with a tuple t′ in Li(Tr); the following cases can occur:
(a) if t‖ t′ no operation is performed;
(b) if t � t′ we perform the following operations: (i) we put t′ into the

(initially empty) set Di of declassed tuples of level i; (ii) we remove from
Tr the whole tree Tt′ rooted at t′ and attach Tt′ as a subtree of t; we
construct in this way a tree having t as root that will be denoted by Tt;

(c) if t′ � t the tuple t′ becomes the parent tuple of t and the scan stops.
2. The scan of of level i stops when either case (c) occurs or all the tuples in

Li(Tr) have been examined:
(a) in the first case we proceed by inspecting in the same way level i + 1 of

Tr; if i is the last level the first phase is concluded;
(b) in the second case we just record the parent tuple of t and this concludes

the first phase.

Second phase Assume that the first phase is concluded at the end of the inspec-
tion of level k. The second phase of the method consists in evaluating the effect
of the insertion of t to the levels l > k of Tr. This is done by moving subtrees of
Tr to Tt as follows.

1. For each tuple td in the set Dk of declassed tuples of level k, we compare td
with all the tuples at level k + 1 of Tr. Note that not all the original tuples
in Lk+1(Tr) will be examined since some of them could have been removed
from Tr and inserted into Tt.

2. Only two cases can occur by comparing td with a tuple t′ in Lk+1(Tr): either
td ‖ t′ or td � t′. In the first case no operation is performed; in the second
case we proceed as follows: (i) we put t′ into the (initially empty) set Dk+1

of declassed tuples of level k + 1, and (ii) we remove from Tr the whole tree
Tt′ rooted at t′ and attach it in Tt as a subtree of td.

3. If at the end of the scan of level l (l > k) a new set Dl of declassed tuples
is generated we proceed in the same way with level l + 1 until either no
declassed tuple is generated or we reach the last level of Tr.

4. The last step of the method simply consists in attaching Tt to Tr as a subtree
of the parent tuple of t.

Example 7. Assume that we want to insert t7 into the relation of Example 6
whose β-tree is reported in Figure 3. Assume also that t2 � t7 and t7 � t5. By
inspecting the first level we find that t2 � t7 and so t2 becomes the parent tuple.
At the second level we have no tuple preferable to t7 but t5 is declassed, since
t7 � t5, and is attached as a subtree of t7 (Figure 4.a). This concludes the first
phase. Now we need to compare the declassed tuple t5 with the tuples at level
3 of Tr (t6 and t4). We have that t5 � t6 (see the RPG in Figure 2) and so t6
is declassed and is inserted into Tt7 as the child of t5 (Figure 4.b). Conversely,



t5 ‖ t4 and so t4 is not declassed. Since this is the last level we can attach Tt6 as
a subtree of t2 (the parent tuple): the algorithm terminates and we obtain the
β-tree reported in Figure 4.c.

t2

t1 t3

t
T

t7 t5

*(a)

t4

t6

t2

t6

t1 t3

t
T

t7 t5

*(b)

t4

t2 t6

t1 t3

t
T

t7 t5

(c)

t4

Fig. 4. The execution of the insertion algorithm described in Example 7

Theorem 1. The insertion algorithm produces a correct β-tree and requires
quadratic time in the worst case.

We point out that while the proposed technique requires no more than O(n2)
comparisons in the worst case (a rather degenerate situation in which all the
tuple are distributed along only two levels of the β-tree), it exhibits a very good
performance in the average case.

4.2 Tuple deletion

Assume now that we need to delete a tuple t from r: we have that �r−{t}⊆�r⊆�.
Again, this update can require a quite involved restructuring of Tr, but we can
proceed very rapidly by operating over entire subtrees of Tr. The following result
can be easily shown.

Lemma 4. Let t be a tuple to be deleted from a relation r over a scheme R(X),
� be a preference relation over R(X) and Tr be a β-tree over �r. Then, if there
is a tuple t′ at level k of Tr such that t′ �∈ βk

�(r ∪ {t}) then t′ ∈ βk−1
� (r ∪ {t}).

This lemma suggests that suggest if a tuple at level k of the β-tree is no more
returned at the k-th iteration of the Best operators as effect of the deletion of a
tuple, then it has to be promoted of exactly one level in Tr.

Also in this case we can divide the process into two phases: (1) the modifi-
cation of the β-tree around the level k that includes t, and (2) the evaluation of
the effect of the deletion of t on the higher levels l (l > k) of the β-tree. Again,
we can speed up the computation by operating over entire subtrees.



First phase Let t be at level k of Tr and t̂ be the parent of t. The children of
t in Tr are the tuples which are candidate for promotion at level k . We then
proceed by inspecting these tuples as follows.

1. We put the children of t into the set Ck of the candidates for promotion at
level k and then delete t from Tr.

2. For each tuple t′ in Ck, we compare t′ with a tuple t′′ at level k of Tr.
– if t′′ � t′ we attach the whole tree rooted at t′ as a subtree of t′′.
– if t′′ ‖ t′ we proceed by comparing t′ with the other tuples at level k of

Tr.
3. If we do not find any tuple t′′ � t′ at level k of Tr we attach t′ as a child of t̂

(the parent of t) and put the children of t′ into the set Ck+1 of the candidate
for promotion at level k + 1.

Second phase The second phase proceeds similarly to the first phase by operating
over the set of tuples that are candidate for promotion.

1. For each tuple t′ in the set Cl of candidate for promotion at level l (initially
l = k + 1), we compare t′ with a tuple t′′ at level l of Tr.
– if t′′ � t′ we attach the whole tree rooted at t′ as a subtree of t′′.
– if t′′ ‖ t′ we proceed by comparing t′ with the other tuples at level l of

Tr.
2. If we do not find any tuple t′′ � t′ at level l of Tr we just insert the children

of t′ into the set Cl+1 of the candidate for promotion at level l + 1.

This procedure is iterated until no candidate for promotion is generated or
we reach the last level of Tr.

Example 8. Assume that we want to delete t1 from the relation of Example 6
whose corresponding β-tree is reported in Figure 3 (note that t1 is at level 1).
Then, t3 is the only child of t1 and therefore it is candidate for promotion at
level 1. Hence, after the deletion of t1, we have to compare t3 with t2 (the only
tuple at level 1). Since t3 ‖ t2, t3 is attached as a child of t� (the parent of t1)
and both t4 and t6 (the children of t3) become the candidate for promotion at
level 2. We now have to compare t4 and t6 with t5 (the only tuple at level 2).
Since t5 ‖ t4, t4 remains a child of t3 (and so it is actually promoted) Conversely,
we have t5 � t6 (see the RPG in Figure 2) and so t6 is attached as a subtree of
t5. No candidate for promotion are generated in this step and so the algorithm
terminates producing β-tree reported in Figure 5. Note that among the candidate
for promotion only t3 and t4 have been promoted.

Theorem 2. The deletion algorithm produces a correct β-tree and it requires
quadratic time in the worst case.



t2 t5 t6

t3

t
T

t4

Fig. 5. The β-tree produced as described in Example 8

5 Implementation issues

To verify the effectiveness and the efficiency of our approach, we have started
an implementation of a system for the management of preference in a relational
database based on β-trees. In this section we briefly discuss some implementation
choices done in the realization of the system.

The system makes use of the XXL (eXtensible and fleXible Library) toolkit
[9]: a flexible platform independent Java-library that provides a powerful col-
lection of generic index-structures, query operators and algorithms facilitating
the performance evaluation of new query processing techniques. The rationale
under this choice is that XXL provides many building blocks suitable to imple-
ment query processing algorithms. In particular, all operators known from the
relational algebra like join or selection are currently implemented in the pack-
age. Moreover, XXL is easily extensible: this allows a rapid development of a
new relational algebra operator (like the Best) that can be then freely combined
with the traditional ones as well as novel database index structures.

The β-tree has been implemented by means of a special hash structure.
Specifically, given a β-tree Tr and an hash function h, for each pair of tuples
t, t′ ∈ r such that there is an edge from t to t′ in Tr, the tid (tuple identifier)
τ ′ of t′ is stored in the bucket of address h(τ), where τ is the tid of t. It follows
that all the children of a tuple in Tr are stored in the same bucket. Collisions are
taken into account by associating with each tid stored in a bucket the tid of the
parent tuple. The advantage of using such an hash structure is that the β-tree
can be traversed very efficiently and the tree restructuring required by update
algorithms correspond in many cases to simple modifications of the hash table.

Another implementation choice has been that of storing and maintaining
only a limited number k of levels of a β-tree (usually 2 ≤ k ≤ 10 depending on
the cardinality of the levels). The rational under this choice is twofold. From a
conceptual point of view, users are usually satisfied by just the first iterations
of the Best operator and it would be therefore useless to store deeper levels of
a β-tree. From a practical point of view we obtain in this way a very compact
representation of a β-tree that can managed very efficiently. With this approach,
the size of a β-tree usually decreases over time since deletions do not promote
tuples from levels greater than k and insertion drop tuples that are declassed
to levels greater than k. Therefore, after a certain number of updates, a β-tree
need to be rebuilt. However, this work can be done off-line at predefined times
when, for instance, the size of the β-tree decreases under a certain threshold.



The result of the first experiments have demonstrated a good performance
of both the Beta algorithm and the algorithms presented in this paper for the
management of β-trees in front of tuples updates. We are currently producing
quantitative results and we are also carrying out a comparative study that takes
into account different implementation choices.

6 Conclusions

In this paper we have consider the qualitative approach to user preferences in
which a binary preference relation is defined among objects and a special opera-
tor (called Best) is used to extract relevant data according to such preference re-
lation. For this operator, we have proposed and studied a special index structure,
called β-tree, which can be used for a rapid evaluation of the Best operator. To
our knowledge, this is the first proposal of index structure for preference queries.
We have presented a number of practical algorithms for the efficient maintenance
of β-trees in front of database updates. Although the algorithms have an inherent
quadratic complexity, they perform very rapidly in the vast majority of cases.
In fact, the algorithms reduce at minimum the number of operations required
by operating over entire subtrees of β-trees. These results provide the basis for
the development of a practical preference systems for dynamic data intensive
applications.

References

1. R. Agrawal and E. L. Wimmers. A Framework for Expressing and Combining
Preferences. In Proc. of the 2000 ACM SIGMOD Int. Conference on Management
of Data, USA, pp. 297–306, 2000.

2. S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proc. 17th
Intl. Conf. on Data Engineering, Heidelberg, Germany, pp. 421–430, 2001.

3. J. Chomicki. Querying with Intrinsic Preferences. In Proc. 8th International Conf.
on Extending Database Technology, Czech Republic., 2002.

4. R. Fagin and E.L. Wimmers. Incorporating User Preferences in Multimedia
Queries. In Proc. 6th Intl. Conf. on Database Theory, Greece, pp. 247–261, 1997.

5. V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A System for the Ef-
ficient Execution of Multi-parametric Ranked Queries. In Proc. of ACM SIGMOD
Int. Conference on Management of Data, USA, pp. 259–269, 2001.

6. W. Kiessling. Foundations of Preferences in Database Systems. In Proc. of Inter-
national Conference on Very Large Data Bases, 2002.

7. R. Torlone, P. Ciaccia. Which Are My Preferred Items? In Proc. of Workshop on
Recommendation and Personalization in eCommerce, Spain, pp. 217–225, 2002.

8. R. Torlone, P. Ciaccia. Finding the Best when it’a a Matter of Preference. In X
Convegno su Sistemi Evoluti per Basi di Dati, Italia, pp. 347–360, 2002.

9. J. van den Bercken, B. Blohsfeld, J. P. Dittrich, J. Kramer, T. Schafer, M. Schnei-
der, and B. Seeger. XXL – a library approach to supporting effcient implemen-
tations of advanced database queries. In Proc. of 27th Intl. Conf. on Very Large
Data Bases, Roma, Italy, 2001.


