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Abstract. We consider the problem of efficiently answer preference queries
when access to the database is through a set of ranked lists and prefer-
ences define a strict partial order over the database objects. The iMPO-1
algorithm we introduce minimizes the number of database accesses and
can also incrementally return objects as soon as they are guaranteed to
be part of the result. As such it generalizes known techniques developed
for specific cases, such as Skyline queries.

1 Introduction

Modern information systems are increasingly faced with the problem of efficiently
answering preference queries. Unlike ordinary queries, which specify a set of con-
straints that database objects have to satisfy in order to qualify, a preference
query retrieves those objects that “best match” the query specification, thus
automatically relaxing the query conditions depending on the actual database
contents. Although a multitude of works have addressed the problem of how to
efficiently evaluate preference queries when the goodness of an object is measured
through a (numerical) scoring (or utility) function, recent works have highlighted
the intrinsic limits of such approach [5] and proposed more general preference
models. Remarkable extensions are so-called Skyline queries [4], dealing with
Pareto preferences, and Best-Matches-Only (BMO) queries [5,9,12], dealing
with preferences defining an arbitrary strict partial order over database objects.
Efficient query evaluation techniques for these extended models can be found,
among others, in [1,2, 4,10, 11], both for centralized environments, in which ac-
cess to objects is through a single multi-dimensional index, as well as for the
distributed case, in which objects’ features are to be accessed through separate
index structures and/or they are remotely distributed over multiple information
sources. While for Skyline queries both cases have been addressed and optimal
solutions are nowadays available [11, 2], this is definitely not the case for the more
general BMO queries, for which only sequential algorithms are known [6,12]. In
this paper we partially fill this gap by providing an optimal algorithm, called
iMPO-1, for answering the “interesting” fragment of BMO queries under the
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distributed access model. More precisely, iMPO-1 can correctly compute the re-
sult of any BMO query that respects a natural assumption of monotonicity with
respect to the results returned by the underlying sources.

2 Query and Access Model

Our query and access model is deliberately simple and abstract, so as to avoid
making unnecessary hypotheses on the underlying architecture. In particular, we
do not make any assumption about the specific data model and query language.

Staying in the stream opened by Fagin’s pioneering work [7], and then adopted
by many others (see, e.g., [8,2,1]), we consider a collection C of objects, C =
{01,...,0,}, where all o;’s share (at least) a set of m common features (at-
tributes) F = {Fy,..., Fi,}. A preference query is a pair Q = (SQ, >), where
SQ = (Q1,Q2,...,Qm) consists of m (preference) sub-queries (each @, refers to
a distinct objects’ feature!) and > is to be explained below. For each sub-query
Q, we assume that objects in C are assigned a partial score, s; 4 € [0, 1], which
synthesizes “how well” object o; matches QQ,, with higher values being clearly
better. The specific modalities adopted for the evaluation of sub-queries are un-
influential to our arguments. We just require that the evaluation of @, yields
a corresponding ranked list L, of pairs (0;,s;4), ordered by descending score
values. Relevant information can then be retrieved through one of two distinct
access modalities: A sorted access retrieves from a list L, the next unseen object
on that list, say o;, together with its partial score, s; 4; a random access, on the
other hand, given an object o; seen via sorted access on some list Ly, gets the
partial score s; o for sub-query Q4 (¢’ # q).

Sub-queries in SQ map each object o; into a point p; = (S1,- - -, Si,m) of the
m-~dimensional answer space A = [0,1]™. The image of C in the answer space is
denoted P.2 The result of evaluating Q over C, Q(C), is then taken to be the
set of objects corresponding to the “overall best” points in the answer space.
Clearly, what “overall best” actually means heavily depends on user preferences.
For this we first remind the notion of a preference relation.

Definition 1 (Preference Relation) A preference relation over a domain X
is a binary relation > C X x X. If v1,29 € X and (z1,x2) € >, we also write
1 = o and say that x1 is preferable to x4 or, equivalently, that x1 dominates
xo. If neither x1 > x2 nor xo = x1 hold, we say that x1 and xo are incomparable
(or indifferent ), written x1 ~ xs.

In order to define Q(C) we adopt the semantics of Best-Matches-Only (BMO)
queries as formalized by the Best operator [12]:3

B-(P)={pecP|# cPp -p} (1)

! Generalization to the case where @, refers to a subset of features is immediate.

2 Note that this abstraction allows us to take an uniform view of the effects of
sub-queries evaluation, thus disregarding problems related, say, to normalization
of scores, which are orthogonal to the problem we are dealing with.

3 This is called winnow in [5, 6] and preference selection in [9].



Thus, 8, (P) returns all the undominated points in P and Q(C) is the set of cor-
responding objects, Q(C) = {o; € C | p; € B (P)}. Slightly abusing notation,
we also write B, (C) in place of . (P) and o0; > 0; whenever p; > pj holds.

Preference relations expressible through a scoring function (e.g., min, max,
avg, etc.), S : A — [0, 1], which assigns to each point p; an overall score s; =
S(pi), are obviously covered by Definition 1, since for any S one can define =g
as pi »s pP; © S(pi) > S(pj). However scoring functions can only represent
weak orders, i.e., linear orders with ties,* thus they are far too restrictive if one
aims to support more powerful and flexible preference models.

Recent works [9,5,6,12] have considered the more general case in which >
is a strict partial order (PO for short), thus an irreflexive (x % x) and transitive
(21 > za, 9 = x3 = x1 = x3) relation. Given our distributed access model, is it
possible to devise some efficient algorithm to compute 3. (C') when > is a generic
PO? Unfortunately the answer is negative. The intuitive reason is that, if there
is no correlation at all between the partial scores and the “overall goodness” of
an object (as established by >), then it could be well the case that the overall
best matches of Q are the ones at the end of the ranked lists. Note that this
would be rather counter-intuitive, since it is reasonable to demand that doing
better on sub-queries should not worsen the overall goodness of objects. This is
formalized by the following definition.

Definition 2 (Monotonicity of preference relations) A preference relation
> over the answer space A = [0, 1] is monotone if s; , < s; 4 Vq implies p; ¥ pi,
and strictly monotone if s; 4 < s;4 Vq implies p; > pj.

Note that a non-strict monotone preference relation has the pitfall of being
potentially insensitive to changes in partial scores, that is, being o; better than o;
on all sub-queries would not guarantee p; > pj. Again, we find this very counter-
intuitive, the reason of why in the sequel we will only consider strictly monotone
PO’s, a first example of which are the well-known Skyline preferences [4].

Definition 3 (Skyline preferences) The Skyline preference relation > gy, over
A =[0,1]" is defined as: pi =51 Pj = (Vg : 8j.q < Sig) A (3q: 85,4 < Sig)-

Thus, object o; is preferred to o; iff it is at least as good as o; on all sub-queries
and there is at least one sub-query for which o; performs better than o;. The set
of objects of C for which there is no object that dominates them according to >,
is called the Skyline of C. Skyline preferences coincide with the notion of Pareto
optimality from decision theory, where the Skyline is known as the Pareto set.
Their importance stems from the observation that each Pareto-optimal object
0; maximizes some monotone scoring function S; over the objects in C. This is
also to say that the Skyline provides us with an “overall view” of the potential
best alternatives, without the need to tune the parameters of a scoring function.

Without distracting the reader with too many details on the engineering of
complex preferences (see, e.g., [9]), in the following we concentrate on a kind of
preferences based on the concept of priority among regions of the answer space.

4 Equivalently, a weak order is a partial order whose indifference relation is transitive.



Consider the case where op,q has scores, say, ppaa = (0.8,0.01,...,0.01), and
assume 0.8 is the best score for sub-query @)1, with no other object obtaining
such score. Regardless of the poor partial scores Spqa,q = 0.01 (¢ = 2,...,m),
this alone is sufficient to guarantee that op,q will be part of the Skyline. This
could be questionable to the user, especially if the database contains (possibly
many) other objects with somewhat “more balanced” score values. On the other
hand, the user could be interested in opqq if no such alternative solutions are
currently available. Imposing hard constraint on partial scores clearly does not
work, since the problem is to return to the user the “best” results compatible
with the actual contents of the database. Region prioritization easily solves the
dilemma. Let Y = {A4,..., Ap} be a partition of the answer space and let >y
be a strictly monotone PO preference relation over Y.

Definition 4 (RS preferences) Let Reg : A — Y be a function that maps
each point of A into its (unique) region of Y. The Region-prioritized Skyline
(RS) preference relation >gs over A =10,1]"™ is defined as:

Pi —rs Pj & (Reg(pi) =v Reg(p;)) V ((Reg(pi) = Reg(p;)) A (Pi =sL Pj))

Thus, within a same region the Skyline logic applies, whereas priority among
regions prevails if two points belong to different regions.

Ezxample 1. Consider the following Hotels relation, and a query aiming to find
cheap and good hotels, thus m = 2. Regardless of how partial scores are obtained,
those for )1 will be negatively correlated with Price and those for ()2 will exhibit
a positive correlation with hotel rating.

HotelID Price (F}) Rating (F2)
H1 $30 medium
H2 $35 low

H3 $60 high

H4 $ 60  very high

The Skyline will consist of hotels H1 and H4. On the other hand, with RS
preferences one could define, say, a “soft threshold” on the Price attribute, so
as to avoid getting too costly alternatives. Let Price=50 be the chosen soft
threshold, which leads to have only H1 in the result, since H4 is too costly. If H1
is deleted, the best alternative becomes H2, which now dominates H4. Finally,
if also H2 is cancelled, then H4 comes back since no hotel with Price< 50 is
left. This behavior cannot be obtained by setting Price=50 as a hard constraint,
which would simply lead to discard H4. [J

In order to guarantee the strict monotonicity of > grg, priority among regions
should not contrast with Skyline preferences. For this it is sufficient to have that,
whenever Reg(p;) # Reg(p;) and s;4 < s;4 Vg, it is also Reg(p;) v Reg(p;).

Although we have combined region prioritization with Skyline preferences,
one could easily generalize Definition 4 and use within each region any strictly
monotone PO preference relation to compare objects. For instance, one could
define Y = {4;, As, A3, A4}, and within each region use a, possibly different (!),
preference relation, say =gz, in Ay, =mnmin in Ao, and so on.



3 The iMPO-1 Algorithm

Our iMPO-1 algorithm works for any strictly monotone PO preference relation
and has an incremental (online) behavior. The logic of iMPO-1 can be explained
as follows (see Figure 1). At each step iMPO-1 retrieves via sorted access (step 4)
the best unseen object o; from one of the m sorted lists, and then obtains missing
partial scores for o; via random access (step 5). The so-obtained representative
point p; is then compared with the current objects in the Result set (steps 7 and
8). If no object o; dominates o;, o; is inserted in Result (possibly also removing
objects dominated by o; itself), otherwise o; is discarded. At each point iMPO-1
maintains a threshold point p, whose g-th component, s,, is the lowest partial
score seen so far under sorted access on list L, (step 1171MPO—1 progressively
delivers all objects that are not dominated by p (step 12) and stops as soon as
an object o; is found such that p; dominates the threshold point p (step 2).

Algorithm iMPO-1

(1) Set Result = 0; Set Output = 0; Set p = (1,...,1); /* p is the threshold point */
(2) While (#(o;, pi) € Result such that p; > P): B
(3) For each sub-query Qq (¢ =1,...,m) do:
(4) Retrieve the next unseen object o; from Lg; /* sorted access */
(5) Retrieve missing scores for the other sub-queries and obtain p;; /* random accesses */
(6) Set Dominated = false;
(7 While (not(Dominated)g\ 3 (0, pj) € Result unmatched with p;):
=p; > p; remove (0;,p;) from Result,
(8) Compare p; with pj: _Pi ~ Pj do nothing,
“p; = Pi set Dominated = true;
9) End While;
(10) If not(Dominated) insert (0;, pi) in Result;
(11) Let s, be the lowest score seen by sorted access on list Lg; Set p = (s1,...,5m);
(12) Set Output = Output U {(os, pi) € Result | p % pi}; /* send to output */
(13)  End For; n
(14) End While.

Fig. 1. The iMPO-1 algorithm

In order to prove that iMPO-1 is both correct and optimal (in a sense to
be made precise below), we assume that > is Pareto-consistent, that is, (x1 >
x2) A (22 =51 x3) = (1 > x3) and (21 >s1 22) A (x2 = z3) = (21 > x3).
This hypothesis has a negligible impact on the general applicability of iMPO-1.
Indeed, any reasonable strictly monotone PO preference relation is also Pareto-
consistent.® A non-Pareto-consistent preference relation would indeed exhibit a
rather strange behavior: A point pj is preferred to point pyx but not to another
point p; whose partial scores are all less than or equal to those of pk!®

® For instance, this is the case if > represents a strictly monotone scoring function S.
Skyline and Region-prioritized Skyline preferences are also Pareto-consistent.

5 However, extending algorithm iMPO-1 so as to process also non Pareto-consistent
preferences is easy: After p; > p has been verified, “freeze” p and execute some
further sorted accesses so as to see on all lists partial scores less than those of p.



Theorem 1 (Correctness) The iMPO-1 algorithm correctly computes 3. (C)
for any strictly monotone PO preference relation = that is Pareto-consistent.

Proof. (5.-(C) C Result). If an object 0o; € (. (C) has been retrieved via
sorted access, then step 8 guarantees o; € Result when the algorithm stops.
Thus, assume by contradiction o; € fy(C), yet o; has not been seen by the
algorithm. Let o; be the object that is found at step 2 to dominate the threshold
point. Unless pj is coincident with the threshold point, in which case we are done,
at least one partial score of o; is strictly less than the corresponding threshold
value. It follows that p >gsr. p;. Since > is Pareto-consistent it is p; > p; (since

pi = p), thus o; ¢ 3. (C).

(Result C B (C)). We prove that o; ¢ B, (C) implies o; & Result. If 0; has not
been seen then it cannot be part of the final result. Thus, assume o; has been
seen. Since 0; ¢ (.- (C) and > is a PO there is at least one object o; € By (C)
such that o; > o0;. Since we have already proved that G, (C) C Result, such
0; has been seen. Thus, either o; and o; have been compared or 3 oy, such that
0; > Ok, o, > 04, and oy and o; have been compared. Therefore, 0; ¢ Result. [

Theorem 2 (Correctness of delivery condition) The iMPO-1 algorithm cor-
rectly delivers all the objects in By (C).

Sketch of proof. Having proved that Result = (. (C) it remains to show that
Result = Output. Result C Output, which says that when iMPO-1 stops all
objects in the final Result have already been sent to Output, follows since all ob-
jects in Result are pairwise indifferent and p; > p implies p ¥ p; Vp; € Result.
Output C Result, which asserts that the delivery condition p ¥ pj is correct,
follows from Pareto-consistency. [ N

Besides being correct, iMPO-1 is also instance-optimal [8]. Given a class A
of algorithms and a class DB of (database) instances (inputs), an algorithm
A € A is instance-optimal over A and DB iff VB € A and VDB € DB it is
Cost(A, DB) = O(Cost(B, DB)), where Cost is a suitable cost measure. Thus,
instance-optimality means optimality up to a constant factor (thus independent
of the instance size) over every possible instance, which is a much stronger prop-
erty than, say, worst-case optimality. Given our access model, the obvious choice
is to take as cost measure the total number of (sorted + random) accesses needed
to compute the query result.

Theorem 3 (Optimality) Let DB be the class of all instances ranking objects
into m lists, and A be the class of all algorithms accessing such lists using sorted
and random accesses and not making wild guesses that correctly compute the
result when > is as in Theorem 1. The iMPO-1 algorithm is instance-optimal
over DB and A.

Sketch of proof. First observe that an algorithm makes a “wild guess” if
it performs a (blind) random access for an object that has not been seen via
sorted access. Such algorithms have only a theoretical interest and would not



be considered for implementation. The proof essentially amounts to show that
any correct algorithm A € A can stop only if it finds o; such that p; > p,
and that, no matter how smart is the scheduling of accesses with respect to the
round-robin strategy of iMPO-1, this requires at least a number of accesses that
can improve over those performed by iMPO-1 by at most a constant factor m. [

Theorem 4 (Optimality of delivery times) Let DB and A as in Theorem 3.
No algorithm in A can output o; by performing less accesses than iMPO-1 does
(up to a constant factor).

Proof. Omitted.(J

4 Experimental Results

In this section we provide some experimental evidence of the actual performance
of iMPO-1, that we implemented in C++ on top of Windsurf [3]. Windsurf
is a region-based image retrieval system that, using wavelet transform and k-
means clustering, segments each image into a set of regions and then represents
each region through a 37-dimensional feature vector. When an image query Q
is submitted the same procedure is adopted and each of the resulting regions
becomes a distinct sub-query. Partial scores for a given query region are obtained
by using the Bhattacharyya metric. The results we present are obtained using
a real-world image collection of about 10,000 color images and by averaging
performance over a sample of 100 randomly-chosen query images. For integrating
sub-queries results we considered two scoring functions (min and avg), and the
Skyline (SL) and Region-prioritized Skyline (RS) preferences. For RS preferences
we defined on each of the m coordinates of the answer space a “soft threshold” 6,
(0 < 64 < 1), then assigning a 0 bit to the “below-threshold” interval [0,6,) and
a 1 bit to the “above-threshold” interval [6,, 1]. This leads to a partition Y of 2™
regions, each represented by an m-bit code. Given regions A; and A;, we define
A; =y Aj & code(A;) A code(Aj) = code(A;), where bitwise AND is used and
code(A;) is the binary code of region A;. For instance, when m = 4, region 1011
dominates region 1000, whereas it is indifferent to region 0100. Results we show
are obtained with 6, = 0.4 Vq.

Figure 2 clearly demonstrates the advantage of an early delivery of objects,
which reduces the user’s waiting time by orders of magnitude. For instance, the
1st result just requires 8 sorted accesses (2 on each list), rather than 628 if the
incremental delivery condition would be dropped and all objects returned at the
end of execution. Figure 3 reports the total number of accesses needed to deliver
k objects, depending on the specific preferences. It is evident that SL is the faster
alternative, saving on the average about 66% and 75% accesses against avg and
min, respectively. Efficiency of RS is only slightly poorer, however reaching a
performance level that is always better than that of both avg and min (30%
and 50% speed-up, respectively). The reason why the performance of iMPO-1,
although always optimal, can vary with the preference relation depends on the
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specific delivery condition. For instance, SL performs faster than RS since it can
be shown that (p ¥ rs pi) = (P ¥#sr Pi), thus the delivery condition of RS is
always more restrictive than that of SL. In particular, this is also true for any
other preference relation, thus Skyline preferences will always return faster their
k-th result object.
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