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Abstract. Data streams are pervasive in many modern applications,
and there is a pressing need to develop techniques for their efficient
management. In this paper we consider real-valued streams and deal
with the problem of reporting in real-time all the instants in which their
distance falls below a given threshold. Current distance measures, such
as Euclidean and Dynamic Time Warping (DTW ), either are inaccurate
or are too time-consuming to be applied in a streaming environment.
We propose SDTW , a novel DTW -like distance measure which can be
continuously updated in constant time and experimentally show that it
improves over DTW by orders of magnitude without sacrificing accuracy.

1 Introduction

Management of data streams has recently emerged as one of the most challenging
extensions of database technology. The proliferation of sensor networks as well
as the availability of massive amounts of streaming data related to telecommu-
nication traffic monitoring, web-click logs, geophysical measurements and many
others, has motivated the investigation of new methods for their modelling, stor-
age, and querying. In particular, continuously monitoring through time the cor-
relation of multiple data streams is of interest, among others, in financial, video
surveillance and biological applications, and, more in general, for mining tem-
poral patterns.

Previous works dealing with the problem of detecting when two or more
streams exhibit a high correlation in a certain time interval have tried to extend
techniques developed for (static) time series to the streaming environment. In
particular, Zhu and Shasha [7], by adopting a sliding window model and the
Euclidean distance as a measure of correlation (low distance = high correlation),
have been able to monitor in real-time up to 10,000 streams on a PC. However,
it is known that for time-varying data a much better accuracy can be obtained if
one uses the Dynamic Time Warping (DTW ) distance [2]. Since the DTW can
compensate for stretches along the temporal axis, it provides a way to optimally
align time series that matches user’s intuition of similarity much better than
Euclidean distance does, as demonstrated several times (see, e.g., [5] for some
recent DTW applications and [1] for a novel DTW -based approach to shape



matching). Further, although not a metric, DTW can be indexed [3], which
allows this distance to be applied also in the case of large time series archives.

Unfortunately, when considering streams the benefits of DTW seem to vanish
since, unlike Euclidean distance, it cannot be efficiently updated. The basic reason
is that the (optimal) alignment one has established at time t is not guaranteed
to be still optimal at time t + 1, thus forcing the DTW to be recomputed from
scratch at each time step. Given this unpleasant state of things, in this paper
we propose a novel DTW-like distance measure, called SDTW (Stream-DTW ),
which is efficiently updatable and it is a very good approximation of DTW .

We demonstrate that SDTW is orders of magnitude faster than DTW and
that its accuracy is much better that currently known approximation techniques
of DTW developed for the static case.

2 Dynamic Time Warping

We start with some basic definitions related to the static case, i.e., for real-
valued time series of finite length. Let R ≡ Rn

1 and S ≡ Sn
1 be two time series

of length n and let Ri (Si) be the i-th sample of R (resp. S). The Euclidean

(L2) distance between R and S, L2(Rn
1 , Sn

1 ) =
√∑n

i=1 (Ri − Si)
2, only compares

corresponding samples, thus it does not allow for stretches along the temporal
axis. As a consequence, two time series might lead to a high L2 value even if
they are very similar. This problem is solved by the Dynamic Time Warping
(DTW ) distance. The key idea of DTW is that any point of a series can be
(forward and/or backward) aligned with multiple points of the other series that
lie in different temporal positions, so as to compensate for temporal stretches.

Let d be the n×n matrix of pairwise squared distances between samples of R
and S, d[i, j] = (Ri − Sj)2. A warping path W = 〈w1, w2, . . . , wK〉 is a sequence
of K (n ≤ K ≤ 2n− 1) matrix cells, wk = [ik, jk] (1 ≤ ik, jk ≤ n), such that:

boundary conditions: w1 = [1, 1] and wK = [n, n], i.e., W starts in the lower-
left cell and ends in the upper-right cell;

continuity: given wk−1 = [ik−1, jk−1] and wk = [ik, jk], then ik − ik−1 ≤ 1 and
jk − jk−1 ≤ 1. This ensures that the cells of the warping path are adjacent;

monotonicity: given wk−1 = [ik−1, jk−1] and wk = [ik, jk], then ik − ik−1 ≥ 0
and jk − jk−1 ≥ 0, with at least one strict inequality. This forces W to
progress over time.

Any warping path W defines an alignment between R and S and, consequently,
a cost to align the two series. The (quadratic) DTW distance is the minimum
of such costs, i.e., the cost of the optimal warping path, Wopt:

DTW (Rn
1 , Sn

1 ) = min
W
{

∑

[ik,jk]∈W

d[ik, jk]} =
∑

[ik,jk]∈Wopt

d[ik, jk] (1)

The DTW distance can be recursively computed using an O(n2) dynamic pro-
gramming approach that fills the cells of a cumulative distance matrix D using



the following recurrence relation (see also Figure 1):

D[i, j] = d[i, j] + min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]} (1 ≤ i, j ≤ n)

and then setting DTW (Rn
1 , Sn

1 ) = D[n, n]. Note that D[i, j] = DTW (Ri
1, S

j
1),

∀i, j, since the DTW distance is also defined for series of different length.
In practical applications, warping paths are commonly subject to some global

constraint, in order to prevent pathological alignments. The most commonly used
of such constraints is the Sakoe-Chiba band [6] of width b (b ∈ [0, n−2] integer),
that forces warping paths to deviate no more than b steps from the matrix
diagonal (see Figure 1 (b)). It is worth noting that, besides reducing the time
and space complexity of DTW computation to O(nb),1 rather surprisingly a
band of limited width b leads to better results in classification tasks [5].
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Fig. 1. Computing the DTW distance with a Sakoe-Chiba band of width b = 2: (a) Op-
timal alignments; (b) The d matrix of pairwise sample distances; (c) The D cumulative
distance matrix; highlighted cells constitute the optimal warping path Wopt

3 The Stream-DTW Distance

Let us go back to the streaming environment, in which R and S are now possibly
infinite sequences of samples. We assume that at each time step a new sample for
both streams becomes available (i.e., streams are synchronized). We consider the
well-known sliding window model, according to which, given a sliding window of
size n, only the last n points of the streams are significative. Thus, at time t, the
subsequence of stream R falling in the current (active) window is Rt

t−n+1. At
time t + 1 sample Rt+1 arrives and Rt−n+1 expires, thus the new active window
consists of Rt+1

t−n+2. The same is true for stream S.
If one wants to monitor the streams so as to report when their distance dist

falls below a given threshold value ε, a näive approach would be to compute,
at time t + 1, dist(Rt+1

t−n+2, S
t+1
t−n+2) from scratch, i.e., without considering the

computation performed at previous time steps. This might be a challenging task,
especially with high sampling rates, large sliding windows, and many (hundreds,
thousands) streams. As anticipated in the Introduction, the DTW distance is not

1 More precisely, the number of cells reduces to n+2
Pb

i=1(n−i) = (2b+1)n−b(b+1).



efficiently updatable, since, in the general case, the optimal alignment established
at time t is of no help to find the optimal alignment at time t + 1. The resulting
update cost is therefore O(nb), which is clearly unsuitable especially with large
sliding windows.

Given this unpleasant state of things, we move to consider a more realistic
objective, that is, to devise a DTW -like distance measure suitable for streaming
environments. The measure should fulfill the following requirements:

1. It should be fast to update, i.e., its complexity should be O(b).2 In particular,
update complexity should be independent of the sliding window size, n.

2. It should be a good approximation of DTW . This is because of the success
DTW has already demonstrated for the static case (i.e., time series).

3. It should be a lower bound of DTW , i.e., it should never overestimate the
DTW value.

Let us briefly comment on the 3rd requirement. Although not strictly neces-
sary, if our new distance measure, call it SDTW , is a lower bound of DTW ,
then, whenever we have SDTW (Rt

t−n+1, S
t
t−n+1) ≥ ε we can also immediately

conclude that DTW (Rt
t−n+1, S

t
t−n+1) ≥ ε, without performing the costly DTW

computation. This implies that, if one insists in having the DTW as the ultimate
comparison criterion, then SDTW can also be used as a fast and accurate filter
to discard too-dissimilar streams, thus speeding-up the overall process.

We start with a couple of preliminary definitions.

Definition 1 (Frontier) A frontier F is any set of cells of the cumulative dis-
tance matrix such that for any warping path W it is W ∩ F 6= ∅. The x-frontier
anchored in cell [i, i] is the set of 2b + 1 cells x[i, i] = {[i, i], [i, i + 1], . . . , [i, i +
b], [i + 1, i], . . . , [i + b, i]}. The q-frontier anchored in cell [i, i] is the set of 2b + 1
cells q[i, i] = {[i, i], [i, i− 1], . . . , [i, i− b], [i− 1, i], . . . , [i− b, i]}.
Thus, any warping path (including Wopt) has to pass through a frontier.

Definition 2 (Boundary-relaxed DTW) Given streams R and S, let ts and
te be two generic time instants. We define:

– The start-relaxed DTW (DTW x) between subsequences Rte
ts

and Ste
ts

is the
value of Dx[te, te], where Dx is the start-relaxed cumulative distance matrix
initialized as follows:

Dx[ts, ts +j] = d[ts, ts +j]; Dx[ts +j, ts] = d[ts +j, ts] (0 ≤ j ≤ b) (2)

Thus, DTW x computation proceeds as with DTW , yet all the cells in the x-
frontier anchored in ts have as value the distance between the corresponding
samples (see Figure 2 (b)). This is to say that warping paths can start from
any cell in x[ts, ts]. When te < ts we conventionally set DTW x(Rte

ts
, Ste

ts
) = 0.

2 Note that this is the best one can achieve, since at each new time step 2b+1 distances
between samples have to be necessarily computed.



– The start-end-relaxed DTW (DTW xq) between subsequences Rte
ts

and Ste
ts

is:

DTW xq(Rte
ts

, Ste
ts

) = min{DTW x(Ri
ts

, Sj
ts

) | [i, j] ∈q[te, te]} (3)

Thus, here we are also relaxing the end boundary condition. Note that for
computing DTW xq(Rte

ts
, Ste

ts
) one still uses the same start-relaxed Dx matrix

used for computing DTW x(Rte
ts

, Ste
ts

), and then just looks at the minimum
value on the q[te, te] frontier (see Figure 2 (c)).

R

4 9 16

1 4 9 1

1 4 9 1

9 16 4

1

4 1

25 9

4

9 4 9

4 1 4 9

4 1 4 9

0 1 4

3 4 5 3 3 2 3 43 4 5 3 3 2 3 4

1

2

2

1

0

1

1

2

1

2

2

1

0

1

1

2

S
d

(a)

R

3 4 5 3 3 2 3 4

1

2

2

1

0

1

1

2

D

5 14

15 16

17

21

22

23

24 28

1 5 14

15 16

17

21

22

23

24 28

1

S

15

5 14

10 21 18 19

35 27

31

27 26

31 25 34

35 26 34

23

4 9 16

1

15

5 14

10 21 18 19

35 27

31

27 26

31 25 34

35 26 34

23

4 9 16

1

(b)

3 4 5 3 3 2 3 4

1

2

2

1

0

1

1

2

R

5 14

15 16

17

21

22

23

1

23

5 14

15 16

17

21

22

23

1

23

15

5 14

10 21 18 19

35 27

31

27 26

31 25

35 26

4 9 16

1

34

34

24 28

15

5 14

10 21 18 19

35 27

31

27 26

31 25

35 26

4 9 16

1

34

34

24 28

S
D

(c)

Fig. 2. (a) Distance matrix; (b) Start-relaxed DTW ; (c) Start-end-relaxed DTW

The basic rationale underlying the computation of the Stream-DTW (SDTW )
distance is to split, using frontiers, the optimal warping path of the DTW into
2 distinct pieces (one of them possibly null at some time instants): The 1st piece
starts by spanning the whole current window of size n, and then, at each time
step, progressively reduces; the 2nd piece starts empty and then progressively
grows. After exactly n time steps everything starts again. For each of the 2 pieces
of Wopt the SDTW provides a suitable, accurate, lower bounding measure.

We first present the formal definition of SDTW , a detailed explanation of
how it works is provided in the Proof of Theorem 1. To stay general, we consider
that we want to measure the distance between subsequences Rte

ts
and Ste

ts
, where

te = kn + i for some positive integer k, 0 ≤ i < n, and ts = te − n + 1 =
kn + i− n + 1 = (k − 1)n + 1 + i.

Definition 3 The Stream-DTW (SDTW ) distance between subsequences Rte
ts

and Ste
ts

is defined as:

SDTW (Rkn+i
(k−1)n+1+i, S

kn+i
(k−1)n+1+i) = DTW xq(Rkn

(k−1)n+1, S
kn
(k−1)n+1) (4)

− (DTW x(R(k−1)n+1+i
(k−1)n+1 , S

(k−1)n+1+i
(k−1)n+1 )− d(R(k−1)n+1+i, S(k−1)n+1+i))

+ DTW x(Rkn+i
kn+1, S

kn+i
kn+1)

Theorem 1 (Lower bound) The SDTW distance is a lower bound of DTW .



Proof. For the sake of conciseness, denote with α, β, γ and δ the 4 terms in the
right-hand side of Eq. 4, so that we have to show that α− (β − γ) + δ is a lower
bound of DTW (see also Figure 3).

α

β

γ

δ

ts ten

Wopt

Dk

Dk+1

kn(k-1)n+1 (k-1)n+1+i kn+i

Fig. 3. How SDTW works (SDTW = α− (β − γ) + δ)

Let Wopt be the optimal warping path for aligning Rkn+i
(k−1)n+1+i and Skn+i

(k−1)n+1+i,
and consider the frontiers q[kn, kn] and x[kn+1, kn+1]. Consider the 1st part of
Wopt, call it Wopt,k, that ends in a cell of q[kn, kn], and the 2nd part of Wopt, call
it Wopt,k+1, that starts from a cell in x[kn+1, kn+1]. We claim that α− (β−γ)
lower bounds the DTW contribution, call it DTWk, corresponding to Wopt,k and
that δ lower bounds the component, call it DTWk+1, corresponding to Wopt,k+1.
Since the DTW distance between the two subsequences is ≥ DTWk + DTWk+1

this will prove the result.
[α−(β−γ) ≤ DTWk]. Consider the start-relaxed path, call it Wβ , corresponding
to β and ending in cell [ts, ts], and the path Wopt,k, which shares cell [ts, ts] with
Wβ . Counting just once the contribution of cell [ts, ts], i.e., γ, we end up with a
total cost given by β− γ + DTWk for going from x[(k− 1)n + 1, (k− 1)n + 1] to
q[kn, kn]. From the definition of DTW xq, this cannot be less than α.
[δ ≤ DTWk+1]. Immediate from the definition of start-relaxed DTW . ¤

Above proof shows how we can approximate from below the DTW by split-
ting the optimal warping path into 2 pieces. The two frontiers we use to this
purpose are by no means the only possible ones; in particular, as Figure 3 shows,
a part of Wopt could traverse some cells, after leaving q[kn, kn] and before en-
tering x[kn+1, kn+1], that SDTW does not consider at all. We can prove that
our arguments are still applicable should we replace x[kn + 1, kn + 1] with the
q[kn + 1, kn + 1] frontier. For lack of space we do not enter into details here.

Turning to consider efficiency issues, now we prove that SDTW is amenable
to be efficiently updatable.



Theorem 2 (Complexity) The SDTW distance can be updated in time O(b)
at any time step.

Proof. Denote with α′, β′, γ′ and δ′ the new values, at time step te′ = te + 1 =
kn + i + 1, of the 4 terms in Eq. 4. Let Dx

k be the start-relaxed cumulative
distance matrix for time interval [(k − 1)n + 1 : kn], and Dx

k+1 the one for the
interval [(kn + 1 : (k + 1)n]. Let dk and dk+1 be the corresponding matrices
storing distances between the samples of R and S.

The steps needed to update the value of SDTW include the computation of
distance values for the two new samples of R and S, and the extension of matrix
Dx

k+1 up to frontier q[te′ , te′ ] =q[te + 1, te + 1]. Both steps require O(b) time.
Consider now the case when te′ = kn + i + 1, with 0 ≤ i < n− 1. We have:

– α′ = α, since this term does not depend on i.
– By definition of start-relaxed DTW and of Dx

k, it is β′ = Dx
k[(k− 1)n + 1 +

i+1 : (k−1)n+1+ i+1], i.e., computing β′ costs O(1). The same is clearly
true for γ′ = d(R(k−1)n+1+i+1, S(k−1)n+1+i+1).

– Finally, δ′ = Dx
k+1[kn + i + 1 : kn + i + 1], again with cost O(1).

When i = n− 1, it is te′ = kn + (n− 1) + 1 = (k + 1)n and we have β′ = γ′ and
δ′ = 0 (by definition of start-relaxed DTW ). The new SDTW value reduces to
α′ = DTW xq(R(k+1)n

kn+1 , S
(k+1)n
kn+1 ), which, given matrix Dx

k+1, can be computed in
O(2b + 1) = O(b) time. ¤
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In order to provide a more precise characterization of the speed-up obtainable
from SDTW , in Figure 4 we show how many streams we can monitor in real
time, as compared to those manageable using DTW . More precisely, for a given
number of streams, we vary their arrival frequency (sampling rate) and plot
the value beyond which we cannot report results (i.e., when the distance falls
below the threshold ε) before the next stream samples arrive. Experiments are
performed on a 1.60GHz Intel Pentium 4 CPU with 512 MB of main memory
and running Windows 2000 OS.



It is evident that SDTW outperforms DTW by up to two orders of mag-
nitude. For instance, at 100 Hertz and with a sliding window of n = 128
samples (1.28 seconds), SDTW can monitor up to 16 streams (120 pairs),
whereas DTW can only handle 2 streams.

Figure 5 (a) provides evidence of the accuracy of SDTW with respect to
DTW , measured as the average of the SDTW/DTW ratio over 45 pairs of
streams. For this experiment, as well as for the previous one, we use three
datasets from the UCR archive [4] with very different features (shape, fre-
quency, etc.). The accuracy of SDTW varies between 0.81 (EEG dataset, b = 16)
and 0.99 (Stock price, b = 4). To better appreciate such values, consider that
LB Keogh, the best-so-far known method to lower bound DTW in the static
case (see [3] for details on LB Keogh), scores only 0.26 on EEG with b = 16 and
0.79 in the best case (Stock price, b = 4), as Figure 5 (b) demonstrates.
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Fig. 5. Accuracy of (a) SDTW and (b) LB Keogh with respect to DTW
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