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Abstract. Networks of cooperating peers are a new exciting paradigm
for evaluating queries in a distributed environment. In this scenario, a
query originated at a peer propagates through the network, and the
overall result is obtained by aggregating those returned by the peers
involved in the evaluation. In this paper we consider the relevant case
of preference queries, in which the user is interested in obtaining all and
only the “best” results. We highlight the fundamental difference between
queries in which preferences define a weak order (wo) over objects and
the more general ones for which a strict partial order (spo) has to be
considered. While for wo queries a simple algorithm that minimizes the
overall number of objects to be transmitted across the network can be
easily derived, we show that this is not the case for spo queries. Then,
we detail a set of basic issues whose solution is a key to the derivation
of an efficient distributed algorithm.

1 Introduction

Efficiently processing queries in a peer-to-peer (P2P) environment is an impor-
tant and challenging research area [12]. Specific approaches differ in how they
consider the network topology (e.g., structured vs. unstructured), the type of
supported queries (e.g., keyword-based vs. SQL-like), and the peers’ query ca-
pabilities (see [2] for a survey). A relevant case of queries which has recently
found its way in the database community are preference queries, in which, be-
sides possibly stating a set of hard constraints that objects have to satisfy, the
user can also specify in which sense an object is deemed to be better than another
one, in which case only undominated objects are returned. Although several pa-
pers have addressed the problem of how to efficiently evaluate preference queries,
see e.g., [3, 8], the few of them that have studied this for P2P environments lack
a comprehensive view of the problem [1, 9, 13]. In this paper we partially fill this
gap by first highlighting the fundamental difference, in terms of computational
overhead, between queries in which preferences define a weak order (wo) over
objects and the more general ones for which a strict partial order (spo) has
to be considered. We show that, while for wo queries a simple algorithm that
� This work is supported by the WISDOM MIUR Project



minimizes the overall number of objects to be transmitted across the network
can be easily derived, this is not the case for spo queries, for which performance
deterioration can be arbitrarily large. Starting from this unpleasant finding we
then suggest as a way to alleviate the problem a processing strategy based on
the idea of making a peer aware of what other peers can contribute to the result.
This opens a set of interesting and challenging problems.

2 The Model

Without loss of generality, we consider a “global” relation schema R(A1, . . . , Am),
with attributes Ai, i ∈ [1,m], whose current instance r is distributed over a net-
work of peers P = {p1, . . . , pj , . . . , pm}. The subset of r managed by peer pj is
denoted as rj . We are interested in specifying preferences over the tuples of r.
Intuitively, a query with preferences allows r tuples to be ranked, so that only
best-matching tuples are returned.

Definition 1 (Preference Relation). Let A be a set of attributes. A prefer-
ence relation � over A is a binary relation over dom(A)× dom(A) that is tran-
sitive and irreflexive, i.e., a strict partial order (spo). If t1 and t2 are A-tuples
and (t1, t2) ∈ �, written t1 � t2, we say that t1 dominates t2. If neither t1 � t2
nor t2 � t1 hold, we say that t1 and t2 are indifferent, written as t1 ∼ t2. �

The query we consider are expressed as β�P
(r), where P is a preference

relation and β is the Best operator,1 which computes the set B of undominated
tuples in r. Let Lj = β�P

(rj) be the set of “local” best tuples in rj , and Bj =
Lj ∩ B the subset of Lj that is also globally undominated. We call Bj the
“contribution” of rj to B. Since P is an spo, it is immediate to derive that
B =

⋃
j Bj ⊆ ⋃

j Lj , i.e., it is not possible to have a globally undominated tuple
that is not also a local best result. Also observe that, although Lj �= ∅ ∀j (since
P is an spo), it might well be the case that Bj = ∅ for some j.

A particular case of spo’s are weak orders (wo), i.e., spo’s whose indifference
relation is transitive or, more intuitively, linear orders with ties. Relevant cases
of wo’s are those defined using numerical scoring functions. As an example, the
following operators all produce a base preference that is a wo:

– min(E): prefers tuples minimizing the value of the numerical expression E
(e.g., min(price)),

– max(E): prefers tuples maximizing the value of the numerical expression E
(e.g., max(rating)),

– pos(E), prefers tuples for which the boolean expression E is true (e.g.,
pos(price ∈ [30, 50])).

Base preferences can be composed using either the Pareto rule, &, or prioriti-
zation, � [10], to create arbitrarily complex preferences. Intuitively, the Pareto
rule considers all preferences equally important, thus t1 � t2 iff t2 ��Pi

t1 on

1 This is called winnow in [5, 6] and preference selection in [10].



all preferences Pi and t1 �Pj
t2 on at least preference Pj , and produces spo

(but not wo) preferences, whereas with prioritization base preferences are con-
sidered sequentially, thus t1 � t2 iff t1 �P1 t2 on preference P1 or t1 ∼P1 t2 on
preference P1 and t1 �P2 t2 on P2, and so on.2 Note that the Skyline operator
proposed in [3] corresponds to the Pareto composition of a set of weak orders
(e.g., P = min(price) & max(rating) & pos(cuisine = “Indian”)).

Example 1. Let P consist of three peers, pX , pY , and pZ , containing tuples of a
relation restaurants(name, price, rating). Consider an user wanting to retrieve
the best restaurants according to price and rating, i.e., the ones having a high
rating and a low cost. The preference is thus, Pspo = min(price) & max(rating)
and defines an spo. If the local relations are:

pX

name price rating

rX1 17 1
rX2 45 5
rX3 10 1
rX4 35 2
rX5 30 2
rX6 50 4

pY

name price rating

rY 1 12 0.5
rY 2 45 4
rY 3 42 4
rY 4 20 2
rY 5 25 2.5
rY 6 20 3

pZ

name price rating

rZ1 40 5
rZ2 35 2.5
rZ3 38 2
rZ4 50 5
rZ5 15 1

then local results for the each peer are LX = {rX2, rX3, rX5}, LY = {rY 1, rY 3, rY 6},
and LZ = {rZ1, rZ2, rZ5}, respectively. The global result is B = {rX3, rY 6, rZ1}.
For instance, rX2 ∈ LX but rX2 �∈ B since it is dominated by rZ1 (same rating
but lower price). On the other hand, if the user asks for higher-rated restaurants
with price ranging in [30,50], Pwo = pos(price ∈ [30, 50]) � max(rating) defines
a wo. Local results are LX = {rX2}, LY = {rY 2, rY 3}, and LZ = {rZ1, rZ4},
respectively, and now it is B = {rX2, rZ1, rZ4}. �

The model we consider for query propagation and execution follows standard
approaches in P2P proposals. A query q : β�P

(r) is issued at a peer, denoted
pinit, which, besides computing its local result, will forward q to a set of other
peers in the network. These will recursively propagate q to other peers in the
network, so that a query tree for q, T (q), rooted at pinit originates. Each peer
pj (but pinit) has a unique parent peer, parj , and, if not a leaf, a set of children,
chj . The sub-tree of T (q) rooted at pj is denoted as Tj . Issues related to how
T (q) is actually built and on how many peers are involved in the evaluation of
q are orthogonal to the problem we address here and are not considered at all.
We only require that the topology of T (q) does not change during the evaluation
of q. Further, we do not enter into details of how peers actually compute their
local result, since this might depend on specific peer’s algorithms [8].

As to peers’ interface, we assume that each peer exports standard methods
for incrementally delivering its results. Besides Open() and Close() methods,

2 The definition of the composition operators is deliberately simplified here. Indeed,
when composing spo preferences, care is needed to guarantee that the resulting
preference is still an spo [11].



respectively needed for initializing internal structures and for terminating the
execution, the interface exports a GetNext() method, which returns the next
best result for the query under evaluation; if no more results can be delivered,
an EndOfStream (EOS) message is returned.

In the above-sketched model, all strategies for evaluating B = β�P
(r) need

to propagate partial results through the tree until they reach pinit, which will
deliver the final result to the user. How this can be done by minimizing the
network overhead, i.e., the number of tuples that flow through the network, is
the problem we address in the following. The overall logic implemented by the
peer pinit at which a query q originates is however common to all the algorithms
we describe, and is summarized by Algorithm 1.

Algorithm 1 Main @ peer pinit

1: B ← Linit � Initialize the global result with the local one
2: for all peers pi in chinit do � This can be done in parallel
3: id← pi.Open(q) � pi assigns the ID id to the query
4: while not pi.EOS(id) do B ← β�P (B ∪ {pi.GetNext(id)}) � Updates B

3 Query Evaluation

The simplest (näıve) way of computing the result of preference queries is to have
each peer sending all its local best results to pinit, which will eventually make
all the necessary comparisons (Algorithm 2). This works since B ⊆ ⋃

j Lj :

Algorithm 2 Näıve GetNext(id) @ peer pj

1: if first then compute Lj , first← false � 1st invocation of GetNext(id)

2: if Lj �= ∅ then remove the first tuple from Lj and return it
3: else � All tuples in local result have been returned
4: for all peers pi in chj do
5: if not pi.EOS(idi) then return pi.GetNext(idi)

6: return EOS

Above algorithm is inefficient for two reasons: First, if the cardinality of the
result, |B|, is much less than

∑
j |Lj |, many objects are needlessly sent up to the

tree root; second, all the computation concerning comparison of local results is
performed at pinit, thus not exploiting the parallelism offered by the network.

3.1 Evaluation of wo Queries

Let us first assume that the preference P included in the query q induces a
weak order. In this case, it is possible to substantially improve over the Näıve
GetNext() by deriving an algorithm, LocalBestwo GetNext() (Algorithm 3), that



is optimal as to the amount of data flowing through the network. The idea is
twofold. First, each peer pj , rather than sending to pinit its local result Lj ,
delivers back to its parent parj only the best results, denoted as LTj

, for its sub-
tree Tj . This increases the level of concurrency and filters tuples not contributing
to the final result earlier. The second idea is that, for computing LTj

, pj does
not need to retrieve all the results from (the sub-trees of) its children. The key
observation here is that, when P is a weak order, then if the first tuple in LTi

is dominated by the first tuple in LTk
, where both pi and pk are children of pj ,

then all the tuples of LTi
are dominated as well.

This is exploited in line 3 of Algorithm 3, where the set of active children
of pj is determined by just fetching a single tuple from every child peer. Thus
only peers producing undominated tuples are kept active, whereas transactions
for non-active children can be immediately closed.

Algorithm 3 LocalBestwo GetNext(id) @ peer pj

1: if first then LTj ← Lj , first← false � 1st invocation of GetNext(id)
2: for all peers pi in chj do LTj ← β�P (LTj ∪ {pi.GetNext(idi)})
3: active← peers pi in chj that provided tuples which are still in LTj

4: remove the first tuple from LTj and return it
5: else � Subsequent invocations of GetNext(id)
6: for all peers pi in active do
7: while not pi.EOS(idi) do LTj ← LTj ∪ {pi.GetNext(idi)}
8: if LTj �= ∅ then remove the first tuple from LTj and return it
9: else return EOS � All result tuples have been returned

Example 2. Consider the scenario described in Example 1, where the prefer-
ence is Pwo = pos(price ∈ [30, 50]) � max(rating) and the query tree T (q) has
pinit ≡ pX and leaf nodes pY and pZ . Both pY and pZ only compute their
local results, LY = {rY 2, rY 3} and LZ = {rZ1, rZ4}, respectively. When pX

probes pY and pZ , it first receives, say, rY 2 and rZ1 and compares them with
its local result LX = {rX2}. Since rX2 ∼Pwo rZ1 but rX2 �Pwo rY 2, only pZ

needs to be further accessed, and the global result is then correctly obtained as
B = {rX2, rZ1, rZ4}. �

3.2 Evaluation of spo Queries

When the preference P is not a weak order, Algorithm 3 is not correct. Since in
a strict partial order the indifference relation is not necessarily transitive, one
cannot just look at the first result of a peer to decide that such peer cannot
contribute to the final result. Therefore, local results for children nodes have to
be collected at each parent node pj , the result for the sub-tree rooted at pj is
computed and it is forwarded up to parj . This is formalized in Algorithm 4,
where the LocalBestspo strategy is shown.



Algorithm 4 LocalBestspo GetNext(id) @ peer pj

1: if first then LTj ← Lj , first← false � 1st invocation of GetNext(id)
2: for all peers pi in chj do � Retrieve all results from children nodes
3: while not pi.EOS(idi) do LTj ← β�P (LTj ∪ {pi.GetNext(idi)})
4: remove the first tuple from LTj and return it
5: else � Subsequent invocations of GetNext(id)
6: if LTj �= ∅ then remove the first tuple from LTj and return it
7: else return EOS � All result tuples have been returned

Example 3. Consider the case depicted in Example 2, where the preference is
now expressed as Pspo = min(price) & max(rating) and the query tree T (q) is
pinit ≡ pX − pY − pZ . The evaluation starts at pZ , that as soon as its local
result, LZ = {rZ1, rZ2, rZ5}, has been computed, sends the 3 tuples to pY . pY ,
in turn, computes its local result LY = {rY 1, rY 3, rY 6} and waits to receive LTZ

to compute LTY
= β�Pspo

(LY ∪LTZ
) = {rY 1, rY 6, rZ1, rZ5}, which is sent to pX .

When pX receives LTY
, it can compute the global result B as β�Pspo

(LX ∪LTY
),

correctly obtaining B = {rX3, rY 6, rZ1}. �

Unlike LocalBestwo, LocalBestspo performs all the computation in the first call
of GetNext(), where local results of children nodes are collected and compared
to build the result for the local tree, LTj

. With respect to the Näıve algorithm,
LocalBestspo reduces the number of tuples that are sent through the network,
since dominated tuples are trumped earlier.

3.3 Cost Analysis

We analyze the performance of above-presented algorithms according to the
amount of traffic flowing through the network, by only counting the tuples that
are sent through individual peers, e.g., from a peer pj to its parent node parj

in T (q). Here the aim is not to provide a detailed cost model for distributed
preference queries, rather to highlight ways for possible improvements.

When using the Näıve algorithm, the local result of each peer pj is sent up to
the root of T (q), thus the cost paid for tuples obtained from pj is |Lj | ·λj , where
λj is the level of pj in T (q) (λinit = 0). The overall shipping cost is therefore:

cost(Näıve) =
∑

j

|Lj | λj (1)

Should one be able to freely configure T (q), above equation suggests to place
peers providing largest local results close to the tree root. Clearly, this requires
of being able to estimate |Lj |, a problem which is not completely solved yet [4].

For the LocalBestwo algorithm, the overall cost depends on where active peers
(i.e., the ones contributing to the result) are located. The cost is now:

cost(LocalBestwo) =
∑

j∈active

|Lj |λj +
∑

j �∈active

1 =
∑

j∈active

|Bj |λj +
∑

j �∈active

1 (2)



Note that this cost is indeed optimal, in that, except for the result tuples (this
cost has to be paid anyway), only a single tuple for each peer has to be trans-
mitted. Clearly, it is impossible to pay a lower cost, since this would require to
ignore a peer that may however actually provide results for the query.

The cost of LocalBestspo can be derived by focussing on sub-trees, rather than
on individual peers, and it is:

cost(LocalBestspo) =
∑

j �=init

|LTj
| (3)

Assume now that each peer somehow “magically” knows which tuples of its local
result Lj will contribute to the global result, i.e., pj knows Bj . Under this ideal
assumption, the best one could obtain is:

cost(ideal) =
∑

j

|Bj |λj (4)

One might wonder if the cost of LocalBestspo can be bounded from above by a
polynomial function of the size of global result, |B|. This would provide us with
the guarantee that performance of LocalBestspo never degenerates to the Näıve
cost. Unfortunately, this is not the case, as the following example demonstrates.

Example 4. Consider a query q : β�P
(r), where P is an spo, and the query

tree T (q) with pinit ≡ pX and leaf nodes pY and pZ . Assume that LY = {t},
LZ = {t1, . . . , tn}, and that t �P ti, i ∈ [1, n]. Then, we have |B| = 1, but
cost(LocalBestspo) = n + 1, thus the cost cannot be upper-bounded. �

4 Reducing Costs for spo Queries

As we just saw, the LocalBestspo algorithm is not able to provide adequate per-
formance guarantees. In the following, we briefly sketch some basic strategies
that could be exploited in order to reduce its cost. The common idea shared
by such strategies is to make a peer somewhat aware of what other peers can
contribute to the final result.

Pushing-down tuples: This is similar to semi-join strategies in distributed
databases: when a join involves two sites, a possibility to reduce the amount
of transmitted data is to have one site sending join values to the other, so
that only tuples that satisfy the join condition are sent back. In our scenario,
this strategy would push down the query tree some tuples which are currently
in B, so as to filter out dominated tuples from local results.

Sampling local results: This strategy complements the previous one by ad-
dressing the problem of getting as soon as possible tuples which: (1) are likely
to be in the final B and (2) are likely to trump many other tuples. The idea
is to have each peer in the query tree getting a representative sample of its
children’ results, and then push-down the sample obtained from a child to
its siblings.



Maintaining peers’ synopses: The third strategy we envision to reduce the
amount of transmitted tuples consists in extending the peer network with a
distributed directory, in which synopses of peers’ contents are maintained.
Such content summaries, which are typically used in P2P networks to intel-
ligently drive the search towards peers relevant to a query [7], could provide
a query-independent view of what each peer can make available to other
peers. In this sense they could be exploited both for creating effective query
trees and for driving the sampling process, e.g., by implementing a biased
sampling strategy.

5 Conclusions
In this paper we have considered the problem of evaluating preference queries
in P2P environments. While for weak order preferences the problem can be
optimally solved, for generic strict partial order preferences we have shown that
this is not the case. The set of strategies we have suggested to overcome this
limitation will be the subject of future investigation. This will also include the
analysis of more complex scenarios where preferences are expressed over two or
more partitioned relations.
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