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Abstract. Automatically providing semantics to multimedia objects is
still a major open problem. In this paper we describe recent advances
within this context and how they have been implemented within the
Scenique image retrieval and browsing system. Scenique is based on a
multi-dimensional model, where each dimension is a tree-structured tax-
onomy of concepts, also called semantic tags, that are used to describe
the content of images. We describe an original algorithm that, by exploit-
ing low-level visual features, tags, and metadata associated to an image,
is able to predict a high-quality set of semantic tags for that image.

1 Introduction

Automatic image annotation aims to enable text-based techniques (search, brows-
ing, clustering, classification, etc.) to be applied also to objects that otherwise
could only be dealt with by relying on feature-based similarity assessment, which
is known to be inherently imprecise [11]. Approaches to automatic image anno-
tation include a variety of techniques, and they even differ in what “annotation”
actually means, ranging from enriching images with a set of keywords (or tags)
[8, 1, 6, 7], to providing a rich semantic description of image content through the
concepts of a full-fledged RDF ontology [10]. Further, solutions may differ in
what kind of tags/concepts they ultimately provide, in this case the difference
being among general-purpose systems and others that are tailored to discover
only specific concepts/classes [9, 12].

In this paper we present Ostia (Optimal Semantic Tags for Image Anno-
tation), a novel image annotation method that predicts for an image a set of
so-called semantic tags, i.e., concepts taken from a set of tree-structured tax-
onomies (also called classification hierarchies). Semantic tags can be regarded
as a means to describe images that is more precise and powerful than free tags
(with no inherent semantics), yet not so complex to derive as concepts of RDF-
like ontologies (whose semantics might not be so easy to grasp by end-users).
Figure 1 provides an intuition on the problem we deal with: Given an image,
possibly coming with some textual description, and a set of taxonomies, the
objective is to predict which are the concepts in such taxonomies that better
describe the image. We have implemented Ostia within our Scenique searching

? This work is partially supported by the CoOPERARE MIUR Project.
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Fig. 1. For the image on the left, predicted semantic tags (on the right) are
animal/bear/polar, landscape/water/ice, landscape/land/, and geo/artic.

and browsing system and tested over a real-world collection of 100, 000 images.
The preliminary results we report in Section 4 demonstrate that our approach
can be highly effective in predictive relevant semantic tags.

2 The Problem

Scenique [2] is an integrated searching and browsing system that allows images
to be organized and searched along a set of orthogonal dimensions (also called
facets). Each dimension is organized as a tree and can be viewed as a particular
coordinate used to describe the content of images. Scenique supports both se-
mantic and visual facets, the latter being used to organize images according to
their low-level features and not relevant in this paper.

A semantic dimension Dh, h = 1, . . . ,M , is a tree-structured taxonomy of
concepts, also called semantic tags. More precisely, a semantic tag stj is a path
in Dh, stj = n0/n1/ . . . /nk ∈ Dh, where each ni is a node of the taxonomy.
Node ni has a label that, for the sake of simplicity, we also denote as ni.

1 The
label of the root node is the dimension name (e.g., location, subject, etc.)

In the scenario we consider, Scenique manages an image database DB =
{I1, . . . , IN} and a set of M dimensions D1, . . . , DM . In the more general case,
an image Ii ∈ DB has the following components: A source file Pi (e.g., a JPEG
picture); a set of low-level visual features Fi automatically extracted from Pi;
the image metadata Mi, of which for the purpose of this paper we consider only
the title, a textual description and a set of free tags (some, or even all, of these
metadata might be missing for an image); a set of keywords Ki = {kwdi,j},
automatically derived from Mi; and a set of semantic tags STi = {sti,j}. Thus,
each image Ii can be concisely represented as Ii = (Pi, Fi,Mi,Ki, STi). The
problem we consider can be concisley stated as follows:

1 This is only to simplify the presentation: Scenique allows the same label
to be attached to multiple nodes, e.g., activity/sport/soccer/Italy and
activity/sport/basket/Italy.



Problem 1 Given an image database DB and a (query) image Q = (P,M)
(i.e., F = K = ST = ∅), determine the set of m (m ≥ 1) semantic tags ST that
better describe the content of the image Q.

3 The Ostia Algorithm

We adopt a 2-step approach to solve Problem 1, as illustrated in Figure 2 (a).
First, a set of low-level visual features F and high-quality keywords K are ex-
tracted from Q. To this end we use, respectively, the feature extraction algorithm
of the Windsurf library [3], which characterizes an image with color and texture
features, and text analysis procedures, such as stemming, stoplist, and NLP [4]
techniques,2 not further described here for lack of space.
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Fig. 2. Illustration of the approach (a) and of the modules of the Ostia algorithm (b).

Once both F and K have been extracted, they are input to an algorithm,
called Ostia, that exploits information associated to images in the DB that are
similar to Q either at the visual or the textual level (or both), to predict a set of
semantic tags for Q. Ostia consists of two main modules, see Figure 2 (b). A first
module is in charge of predicting a superset of ST , which are hereafter called
candidate semantic tags (or simply candidates) and denoted CST . A second
module organizes, for each dimension Dh, the candidates into a candidate tree
CTh ⊆ Dh, ranks them, and returns the Top-m ones.

3.1 Generating Candidate Semantic Tags

The first module of Ostia predicts, for each dimension Dh, a set of candidate
semantic tags CSTh, with CST =

⋃M
h=1 CSTh. The basic rationale of CSTh

computation is to exploit available information of the query Q (i.e., K and F )
in order to find images Ii ∈ DB that might contain tags relevant for Q.

We exploit query keywords K by applying a co-occurrence search on DB
image keywords. The search provides a set of images that share at least e terms
with Q. We rank the images on the base of the co-occurrence value and, for the
top-p images only, their keywords are added to a set RK of relevant keywords

2 OpenNLP: http://opennlp.sourceforge.net/



(which by default includes all keywords in K), and all the semantic tags are
used to initialize CST . For example, if K = {beach, sea}, e = 2, and there is
an image Ii with Ki = {beach, sea, sky} and STi = {landscape/water/sea},
then sky is added to RK and landscape/water/sea to CST .

Starting from the query features F , a nearest-neighbors search is performed
on the DB, which determines the set of the g images most similar to Q. For
all keywords kwdj (resp. semantic tags stj) associated to at least one of such
images, a frequency score is computed as the number of top-g images annotated
with kwdj (resp. stj). Such annotations are then ranked based on their frequency
and the top-s ones are added to RK and CST , respectively.

After the above-described steps, each relevant keyword kwdj ∈ RK is pro-
cessed, since it can provide new candidate semantic tags. For each kwdj we check
if there is any path (i.e., semantic tag) stj in the taxonomy of some dimension
Dh terminating with a label equal to kwdj (we call this step joining phase). If
this is the case, stj is added to CSTh and kwdj deleted from RK.

For keywords that, after the joining phase, still populate RK, we apply a
keyword expansion step in order to verify if it is possible to collect further se-
mantic tags by means of correlated terms (namely, synonyms) available from
WordNet.3 For instance, if sea ∈ RK and the label sea is not part of any di-
mension, whereas the semantic tag stj = landscape/water/ocean appears in
some Dh, then stj will be added to CSTh. For each keyword kwdj ∈ RK, we find
the matching lexical concept in WordNet, collect the synonyms of the associated
synsets, add them to RK, and then apply to them the joining phase.

Algorithm 1 summarizes the above steps. Notice that, since in general a
semantic tag stj can be predicted multiple times, we keep trace of its frequency,
freqj , which will be used by the second module of Ostia.

Algorithm 1 Ostia: Candidate Semantic Tags Predictor
Input: Q = (F,K): query image, DB: image database, e, p, g, s: integer
Output: CST : candidate semantic tags
1: CST ← ∅, RK ← K;
2: COImg ← Top(KwdSearch(K,DB, e), p); . Top-p images sharing ≥ e kwd’s with Q
3: RK ← RK ∪ {kwdi,j : Ii ∈ COImg};
4: CST ← CST ∪ {sti,j : Ii ∈ COImg};
5: NNImg ← NNImgSearch(F,DB, g); . Top-g most similar images to Q
6: RK ← RK ∪ Top({kwdi,j : Ii ∈ NNImg}, s); . Top-s freq.-based keywords
7: CST ← CST ∪ Top({sti,j : Ii ∈ NNImg}, s); . Top-s freq.-based semantic tags
8: CST ← CST ∪ Joining(RK, {Dh}); . join keywords in RK to paths in some Dh

9: RK ← GetSynonyms(RK);
10: CST ← CST ∪ Joining(RK, {Dh});
11: return CST = {(stj , freqj)}. . candidate semantic tags

3.2 Ranking the Candidates

The second module of Ostia organizes, for each dimension Dh, the candidate
semantic tags CSTh into a candidate tree CTh ⊆ Dh, and then computes the
overall Top-m results. Ranking is based on weights. The weight wj of stj is
computed as wj = freqj · utilj , where freqj is the frequency of stj and utilj is

3 WordNet: http://wordnet.princeton.edu.



the so-called utility of stj wrt all other candidates sti ∈ CSTh, defined as:

utilj =
∑

sti∈CSTh,i6=j

len(stj ∩ sti)

MaxPh
(1)

where len(stj ∩ sti) is the length of the common (prefix) path between stj and
sti, whereas MaxPh is the maximum path length within the dimension Dh.
Utility measures the amount of overlap between stj and all other sti’s, and
aims to score higher: a) longer (i.e., more specific) semantic tags (since for such
candidates the degree of overlap with the other candidates is likely to be high),
and/or b) candidates occurring in a “dense” part of the candidate tree. On the
other hand, the frequency tends to be higher for more generic semantic tags
because it is more common to provide generic annotations than specific ones.

Computing all the utilities by directly applying Equation 1 would require
O(N2

h · MaxPh) time, with Nh being the cardinality of CSTh. To reduce the
computational overhead, we present an equivalent, but more efficient (linear),
algorithm. For a semantic tag stj = n0/n1/ . . . /nk, whether stj is a candidate
or not, let us say that the count cntj of stj is the number of candidates sti ∈
CSTh that contain stj as a prefix (i.e., of which stj is an ancestor): cntj =
]candidate semantic tags sti of type n0/ . . . /nk/ . . . /np, p ≥ k.

Figure 3 (a) shows an example. For instance, the candidate a/b/d has fre-
quency 5 (as given) and count 3, since the number of candidates whose prefix is
a/b/d is 3, i.e., a/b/d/g, a/b/d/h, and a/b/d itself.
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Fig. 3. Candidate tree example (a). Blank circles denote candidate semantic tags (e.g.,
the one labelled d corresponds to the candidate semantic tag a/b/d). Close to each
candidate stj , the pair (freqj , utilj) is shown (utilj is initially undefined), whereas
count values [cnti] are shown for each node ni. The tree is completed in (b) with
the utility values of the candidates. For clarity of exposition, in this figure we do not
normalize utility values by MaxPh.

Theorem 1 The utility utilj of the candidate semantic tag stj = n0/n1/ . . . /nk

can be computed as:

utilj =

∑k
l=0 cntl − len(stj)

MaxPh
=

∑k
l=0(cntl − 1)

MaxPh
(2)

where cntl is the count of the semantic tag n0/n1/ . . . /nl, ancestor of stj.



Figure 3 (b) completes the example of Figure 3 (a) showing the utility val-
ues of all candidates. For instance, the utility of the semantic tag a/b/d/g is
((5 + 4 + 3 + 1) − len(a/b/d/g))/MaxPh = (13 − 4)/MaxPh = 9/MaxPh.
The same result is obtained from Equation 1, which would compute the util-
ity as (len(a/b/d/g∩a/b/d)+len(a/b/d/g∩a/b/d/h)+len(a/b/d/g∩a/b/e)+
len(a/b/d/h ∩ a/c/f/i)/MaxPh = (3 + 3 + 2 + 1)/MaxPh = 9/MaxPh.

The utilities of all candidates in CSTh can be computed in O(Nh ·MaxPh)
time if counts are available. Counts are incrementally obtained while generating
the candidate tree CTh, by adding 1 to the count of a semantic tag stl whenever
a new candidate stj of which stl is an ancestor is added to CTh, as detailed in
Algorithm 2.

Algorithm 2 Ostia: Optimal Set of Semantic Tags for Q
Input: CST : candidate semantic tags, m: integer
Output: ST : top-m predicted semantic tags for Q
1: for all Dh do
2: CTh ← ∅;
3: while ∃ a candidate semantic tag stj ∈ CSTh do
4: addCandidateTagToTree((stj , freqj), CTh); . add candidate to tree
5: for all ni ∈ stj = n0/n1/ . . . /nk do
6: if ni is a newly added node in CTh then
7: cnti ← 1
8: else cnti ← cnti + 1;

9: computeUtilities(CTh); . compute the utility of all the candidates
10: computeWeights(CTh, CSTh); . compute the weight of all the candidates
11: STh ← Top(CSTh,m); . optimal set of semantic tags for dimension Dh

12: return ST ← Top(
⋃M

h=1 STh,m). . optimal set of semantic tags

4 Experimental Results

We have implemented Ostia within our Scenique system, which makes use of the
Windsurf library4 for low-level feature managements (e.g., image segmentation
and support for k-NN queries, see [3] for more details). For experiments, we used
a dataset of about 100,000 images extracted from the CoPhIR collection [5]. For
the dimensions, we imported portions of open-access ontologies from Swoogle5,
for a total of 10 dimensions. The query workload consisted of 50 randomly chosen
images. Each query image was assigned a set of semantic tags (3, on the average)
by a set of volunteers so as to obtain a ground truth to evaluate the effectiveness
of Ostia, which was done by using classical precision (i.e., % of relevant predicted
semantic tags) and recall (i.e., % of relevant predicted term with respect to those
in the ground truth) metrics. The experiments were performed in the worst-case
scenario, where each image Ii ∈ DB has no semantic tag yet, i.e., STi = ∅.

Figure 4 shows a sample visual result of Ostia for the picture Q912 with
associated keywords K912 = {photo, shangai}. As we can observe, the predicted
semantic tags (pointed by arrows in the figure), are all relevant for the query.
Note that none of them contains keywords in K912.

Figure 5 shows the annotation accuracy of Ostia in term of precision and
recall when varying the number of predicted semantic tags m. It can be observed

4 Windsurf: http://www-db.deis.unibo.it/Windsurf/
5 Swoogle: http://swoogle.umbc.edu/



Fig. 4. A visual example of Ostia in action. The semantic tags predicted for the query
Q912 (with extracted keywords K912 = {photo, shangai}) are pointed by arrows.

that Ostia reaches high level of precision for low values of m (about 85% on the
average when m = 1) and that it is able to maintain a good quality even for
higherm values, by guaranteeing, at the same time, a good level of recall (around
70% for m ∈ [6, 12]).
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Fig. 5. Precision (a) and recall (b) varying the number of predicted semantic tags.

5 Conclusions

In this paper we introduced Ostia, an original algorithm that takes the advan-
tages of both image visual features and keywords, in order to predict for an
image a high-quality set of concepts taken from “light-weight” ontologies (or
classification hierarchies), here called semantic tags. Ostia can work in a focused
way, i.e., predicting semantic tags only for a subset of user-specified dimensions.
Further, it can also work even if no keywords are available for a query image,
which is the typical case when an image contains no metadata at all, as well as in
an incremental way, i.e., by predicting semantic tags for an image with semantic
tags (e.g., because a new dimension has been added).

Typically, general-purpose annotation approaches are based on machine learn-
ing techniques, that are used to train a set of concept classifiers [8, 6]. The limit



of this approach is that it requires a new classifier to be built from scratch when-
ever a new class/concept is needed. On the other hand, Ostia does not require a
learning phase, thus concepts can be freely added.

Among solutions which uses both visual features and text annotations with-
out pre-defined classes, [7] exploits the query visual features and its geotags
to derive a set of similar images in the database from which, by means of a
frequency-based procedure, geographically relevant tags are predicted. A similar
approach is followed in [1], even if not resticted to the geographical case. [6] adds
the use of Wordnet to prune uncorrelated tags. However, all these approaches
predict free tags only, rather than concepts in a taxonomy as Ostia does.

Future work will deal with the problem of exploiting the hierarchical nature of
dimensions and of Wordnet concepts to improve the search of correct synonyms
for a given keyword. Further, reasoning on the correlation of predicted semantic
tags is an open issue.
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