Getting the Best from Uncertain Data

Ilaria Bartolini, Paolo Ciaccia, and Marco Patella
DEIS - Universita di Bologna, Italy
{i.bartolini,paolo.ciaccia,marco.patella}@unibo.it

Abstract. The skyline of a relation is the set of tuples that are not
dominated by any other tuple in the same relation, where tuple u domi-
nates tuple v if u is no worse than v on all the attributes of interest and
strictly better on at least one attribute. Previous attempts to extend
skyline queries to probabilistic databases have proposed either a weaker
form of domination, which is unsuitable to univocally define the skyline,
or a definition that implies algorithms with exponential complexity. In
this paper we demonstrate how, given a semantics for linearly ranking
probabilistic tuples, the skyline of a probabilistic relation can be univo-
cally defined. Our approach preserves the three fundamental properties
of skyline: 1) it equals the union of all top-1 results of monotone scoring
functions, 2) it requires no additional parameter to be specified, and 3) it
is insensitive to actual attribute scales. We also detail efficient sequential
and index-based algorithms.

1 Introduction

Uncertain data management has recently become a very active area of research,
due to the huge number of relevant applications in which uncertainty plays a key
role, such as data extraction from the Web, data integration, biometric systems,
sensor network readings, etc. Further, uncertainty might also occur as a result
of data anonymization.

According to a commonly adopted model, uncertain data can be represented
through probabilistic relations, in which each tuple has also a probability (con-
fidence) to appear [11,12]. A probabilistic relation compactly represents a set
of possible worlds, i.e., subsets of tuples. In the general case, the formation of
possible worlds is constrained by a set of generation rules, that are used to model
correlation among tuples (e.g., a rule might state that two tuples are mutually
exclusive).

In recent years, several works have focused on extending different query types
to probabilistic databases. Among them, in this paper we concentrate on skyline
queries, whose relevance in supporting multi-criteria decision analysis is well
known [3]. The skyline of a relation R is the set of undominated (or Pareto-
optimal) tuples in R, where tuple u dominates tuple v if u is no worse than v on
all the attributes of interest, and strictly better than v on at least one attribute.
The appeal of skyline queries comes from the observation that the skyline consists
of all and only top-1 results obtainable from scoring functions that are monotone
in the skyline attributes, thus providing users with an overall picture of what
are the best alternatives in a relation. Further, unlike top-k queries, a skyline
query does not require any input parameter to be specified. Not less important

is also the fact that the skyline is insensitive to attributes’ scales, being it only
dependent on the relative ordering of tuples on each attribute.

As a motivating example, consider a traffic-monitoring application collecting
data by means of a radar, a sample of which is shown in Figure 1.! Each radar
reading has associated a Prob value, representing the overall confidence one has
in the reading itself. A skyline query on the Time and Speed attributes would

165

[TID[Plate No| Time[Speed|Prob 160 b «
t; | X-123 [11:50] 145 | 0.4 155 |
t, | W-246 [11:40] 160 | 0.3 el
ts | Z-456 |11:15| 145 | 0.6 g "
ti | H-121 [11:05] 137 | 0.4 o usr s ¢ 8
t; | Y-324 [11:00 140 | 0.6 1o | .
te | X-827 [10:50] 135 | 0.4 sl owg M
t; | C-442 [10:45| 155 | 0.5 130
10:33 11:02 Time 11:31 12:00

Fig. 1. A probabilistic relation
return those tuples (i.e., readings) that are, at the same time, the most recent
ones and that concern high-speed cars. In the deterministic case it would be
SKY(R) = {t1,t2}, as it can be easily verified from the figure on the right. In the
probabilistic case, in which also the confidence of each tuple has to be considered,
even defining what the skyline should be is challenging.

1.1 Related Work

The first work to consider skyline queries on probabilistic data has been [10].
There, the basic idea is to compute for each tuple u the probability, Prsgy(u),
that v is undominated, and then rank tuples based on these skyline probabilities.
Intuitively, Prgxy(u) equals the overall probability of the possible worlds W in
which w is in the (deterministic) skyline of W. The p-skyline of a probabilistic
relation is then defined as the set of tuples whose skyline probability is at least p.
This approach is unable to preserve the basic skyline properties, since it requires
an additional parameter (the p threshold), and has no apparent relationship
with the results of top-1 queries. Subsequent works on the subject have provided
efficient algorithms to compute all skyline probabilities [1], and shown how to
compute p-skylines on uncertain data streams [14]. More recently, Lin et al.
have proposed the stochastic skyline operator [9]. Unlike p-skyline, the stochastic
skyline has the advantage of not requiring any parameter. However, this comes
at the price of an algorithmic exponential complexity, since testing stochastic
domination is an NP-complete problem. Further, the stochastic skyline equals
only a subset of possible top-1 results, namely those arising from the expectation
of multiplicative scoring functions.

1.2 Contributions

In this paper we address the problems of defining and efficiently computing the
skyline of a probabilistic relation. We start by providing in Section 3 a formal

! A similar example was also used in previous works on top-k queries [12, 8].

definition of skyline, which is based on a generalization to the probabilistic case
of the concept of domination among tuples. The P-domination relationship we
introduce to this purpose is formally grounded in order theory, and satisfies all
the properties the skyline has in the deterministic case. Since P-domination is
parametric in the semantics used to rank probabilistic tuples, this implies that,
whatever ranking semantics for top-k queries one wants to adopt, our skyline
definition will be always consistent with it, which is a remarkable property.

In Section 4 we show how the skyline can be computed in O(n?) time for
a relation with n tuples, by detailing the analysis for the case in which the
“expected rank” semantics is used for ranking tuples [5]. In Section 5 we describe
algorithms aiming to reduce the actual response time. Experimental evaluation
on large datasets shows the practical applicability of our approach.

For lack of space, we only consider probabilistic relations in which tuples are
pairwise independent, i.e., no generation rule is present; however, our results can
be also smoothly extended to the correlated case.

2 Preliminaries

We model a probabilistic relation RP as a pair, R? = (R,p), where R is a
relation in the standard sense, also called a deterministic relation, and p is
a function that assigns to each tuple u € R a probability, p(u) € (0,1]. A
posssible world W of RP is any subset of tuples from R. The set of possible
worlds of RP is denoted W. The probability of possible world W is computed as:
Pr(W) = [T,c p(w) [Ty (1 — p(0)).

Given a (deterministic) relation R whose schema includes a set of numerical
attributes A = {A1, A, ..., Aq}, the skyline of R with respect to A, denoted
SKY 4(R) or simply SKY(R), is the set of undominated tuples in R. Assuming
that on each attribute higher values are preferable, tuple u (Pareto-)dominates
tuple v, written u = v, iff it is u.A; > v.A; for each A; € A and there exists at
least one attribute A; such that uv.A; > v.A;. Thus:

SKY(R)={u€R|PveER:v>=u} (1)

If neither v > v nor v > w hold, then u and v are indifferent, written u ~ v.

A scoring function s() on the attributes A, s : dom(A) — R, is monotone
iff w.A; > v.A; (i =1,...,d) implies s(u) > s(v). Although it is folklore that
SKY(R) equals the union of top-1 results of monotone scoring functions, this
is imprecise because of the non-deterministic nature of top-1 queries. For in-
stance, consider the max function, which is monotone, and R = {(3,4), (1,4)}.
Although (3,4) > (1,4), it is max{3,4} = max{1,4}, thus (1,4) might be (non-
deterministically) returned as the top-1 result. To obviate the problem, in this
paper we only consider monotone functions that are also domination-preserving,
i.e., u = v implies s(u) > s(v).2 In the following, we always implicitly assume
that a monotone function is also domination-preserving.

2 Domination-preserving monotone functions are exactly those functions that Fagin
et al. call strictly monotone in each argument [6].

3 The Skyline of a Probabilistic Relation

In order to define the skyline of a probabilistic relation we start by rewriting
Equation 1 as:

’SKY(RP):{u€R|§§v€R:v>pu}‘ (2)

in which the only difference with the deterministic case is that > is substituted
by >p,. We call -, probabilistic domination, or P-domination for short. Note that
>p is a binary relation in the standard sense, i.e., no probability is present in >,.

In order to define P-domination so as to preserve all skyline properties, we
approach the problem by considering things from an order-theoretic viewpoint.
In order-theoretic terms, = is a strict partial order, i.e., an irreflexive (Vu : u # u)
and transitive (Vu,v,t:u > v Av =t = u > t) relationship on the domain of
skyline attributes. A linear order > is a strict partial order that is also connected,
i.e., for any two distinct tuples u and v, either u> v or v > u.? A linear order >
is called a linear extension of > iff u = v = u>wv, i.e., > is compatible with >.
Notice that a linear extension of > can be obtained by ordering tuples with a
monotone scoring function and then breaking ties arbitrarily.

Let EXT(>) denote the set of all linear extensions of . A fundamental result
in order theory, derived from Szpilrajn’s Theorem [13], asserts that any strict par-
tial order - equals the intersection of its linear extensions, == ({>| > € ExT(>)}.
This is the first ingredient needed to define P-domination.

Our second ingredient comes from the observation that each linear order >
on the tuples of R can be used to define a corresponding linear order on the
probabilistic tuples of RP. Indeed, this has been the subject of several recent
works aiming to support top-k queries on uncertain data, which has lead to
different, alternative semantics for ranking tuples that come with both a score
and a probability [12,15,5]. In abstract terms, each of these semantics can be
viewed as a probabilistic ranking function ¥ that, given a linear order > on
the tuples of R and a probability function p, yields a probabilistic linear order
>, = ¥(>, p) on the probabilistic tuples of RP. In practice, any ranking semantics
assigns to each tuple u a value ¥(u), so that u >, v iff 1 (u) > ¥(v).2

We are now ready to define P-domination:

Definition 1 (P-domination). Let RP = (R, p) be a probabilistic relation, and
let > be the Pareto-domination relationship on the tuples in R when considering
the skyline attributes A. Let W be a probabilistic ranking function on RP. For
any two tuples u and v in RP, we say that v P-dominates v, written u >, v,
iff for each linear extension > of =, with associated probabilistic linear order
>, =U(>,p), it is u >, v, that is:

’u>pv<:>u>p v, V>p:W(>,p),>€EXT(>)‘ (3)

3 To denote linear orders over tuples we use the symbol > in place of the usual >, and
reserve the latter for the standard order on real numbers.

4 In the most general case, ¥ might also depend on the actual scores of the tuples,
rather that only on their ordering. This has no influence on the results we derive.

The diagram in Figure 2 summarizes how -, is conceptually obtained: from >
we obtain a set of linear orders, and for each of them a corresponding probabilistic
linear order. The intersection of such probabilistic rankings yields P-domination.

EXT(>) {>}

—
lu'/,p l@p

N
;S {>p}

Fig. 2. How P-domination is obtained

From Definition 1 three major results follow:®

Theorem 1. For any probabilistic ranking function ¥, the corresponding P-domination
relationship =, is a strict partial order.

Theorem 2. Let SKY(RP) be the skyline of RP, for a given probabilistic ranking
function W. A tuple u belongs to SKY(RP) iff there exists a monotone scoring
function s() such that u is the top-1 tuple according to the probabilistic linear
order >, = ¥ (>,p), where > is the linear order induced by s() on R.

A further important property of SKY(RP) is that, as in the deterministic
case, it is insensitive to actual attribute values, rather it only depends on the
relative ordering on each skyline attribute.

Theorem 3. Let RP = (R,p) be a probabilistic relation, and SP = (S,p) be
another probabilistic relation, in which S is obtained from R through an isomor-
phism ¢ that preserves Pareto domination (i.e., for any two tuples u,v € R it is
u = v if and only if p(u) = ¢(v)), and p(u) = p(d(u)) for all w € R. Then, for
any probabilistic ranking function ¥, it is SKY(RP) = SKY(SP).

4 Computing P-domination

Definition 1 cannot be directly used to check P-domination, since it requires to
enumerate all linear extensions of the Pareto dominance relationship, and these
can be exponential in the number of tuples.® In the following we first sketch how,
independently of the specific probabilistic ranking function ¥, P-domination can
be checked without materializing the linear extensions of >, after that we detail
the analysis for the case of in which ¥ is the “expected rank” semantics [5].

Consider a linear extension > of =, and let ¢ (u) be the numerical value
that ¥ assigns to tuple u. According to Definition 1, for u >, v to hold it has to
be 15 (1) > 15 (v) for all linear extensions > of >, that is:

L {5 n

® For lack of space, all formal results are stated without proof.
5 If RP consists of n pairwise indifferent tuples, then > is empty and EXT(>) has size
n!, since each permutation is compatible with >.

Uy V=

The key idea for efficiently checking the above inequality is to determine which
is the linear order that is the most unfavorable one for v with respect to v. If
s (u) > s (v) holds for this “extremal” order, then it will necessarily hold
for all other orders compatible with >. Regardless of the specific probabilistic
ranking function ¥, the two relevant cases to consider here are:

u > v: When u dominates v, we can restrict the analysis to those linear orders
for which it is u > v; starting from this we analyze how other tuples should
be arranged in the linear order so as to minimize the ratio s (u)/¥s (v).

u 3 v: If u does not dominate v, then the worst case for u and the best one for
v corresponds to a linear order in which: 1) u >t only for those tuples ¢ that
u dominates, and 2) ¢’ > v only for those tuples ¢ that dominate v.

4.1 P-domination with Expected Ranks

According to [5], the result of a top-k query on a probabilistic relation RP is
based on the concept of ezpected rank. Given a linear order > on the tuples of
R, the rank of u in a possible world W with | W | tuples is the number of tuples
in W that precedes u, that is:

|[{te W |t>u}| fueW

ranky.» (u) = {|W| otherwise
Thus, ranks range from 0 to |W| —1, and tuples not in W have rank |W|. The
expected rank of is then defined as ERs. (u) = >y)y ranky,s (u) x Pr(W).

As in [5], we consider that if two tuples have a same expected rank value, a
tie-breaking rule is applied so that expected ranks define a linear order. Let >,
be such linear order, i.e.,: u >, v iff ER; (u) < ERs (v).

As explained in [5], the expected rank of a tuple u can be computed as:

ERs (u) = p(u) x Y p(t) + (1= p(u)) x Y p(t) ()

t>u t#u

where the first term is the expected rank of u in a possible world in which u
appears, and the second sum is the expected size of a possible world in which «
does not appear.

Let P be the overall probability of all the tuples in R, P =), p(t), and
let Hs (u) =), ,p(t) be the overall probability of those tuples that are better
than u according to >. A key observation that will be exploited in the following
is that, for any linear order > that extends >, it is Hx (u) € [H™ (u), H" (u)],
where the two bounds are respectively defined as:

H™(u) =7 p(t) H*(w)=7_p(t) =P —p(u) = Y _p(t)
t-u wyt ut
t#u

Notice that H~(u) is the best possible case for u, in which only those tuples that
dominate u are also better than u according to >, whereas the worst possible

case for w is given by a linear order in which w is better only of those tuples that
it dominates. Equation 5 can then be compactly rewritten as:

ERs (u) = p(u) X Hs (u) + (1 = p(u)) x (P —p(u))
According to Definition 1, it has to be ERs (u) < ERs (v) for each linear order
> that extends >, i.e.:
o (R0 00 x (g
>eBxt(-) | p(v) X Hx (v) + (1 = p(v)) x (P = p(v))

Let P,, = P — p(u) — p(v). Substituting, simplifying, and rearranging terms,
above inequality can be equivalently written as:
p(u)

Uy US| == > max Puy+1- Hy()
P p(v) = »ebxr(>) | Puo +1— Hs(u)

(6)

The two cases to be considered for Equation 6 are dealt with as follows.

u > v: Since u dominates v, and domination is transitive, it is Hs (v) > Hy (u) +
p(u) for each > € EXT(>). This ensures that the right-hand side of Equation 6
is strictly less than 1, which immediately yields the first P-domination rule:

u%vA%Zl (Rule 1)

Note that this perfectly matches the intuition that a more likely and better tuple
should probabilistically dominate a less likely and worse tuple.

When p(u) < p(v), we can maximize the right-hand side of Equation 6 as
follows. For any tuple ¢ such that uw > ¢, yet ¢ is indifferent to v, ¢t ~ v, we set
v >, so as not to increase the value of Hs, (v). For a tuple ¢ which is indifferent to
both u and v there are two alternatives to consider: either ¢ > u > v or u>v > t.
In the first case we would add p(¢t) to both Hx (v) and Hs (u), but this would
lower the ratio in the right-hand side of Equation 6. Thus, we conclude that the
second alternative is the one to be chosen. Finally, consider a tuple ¢ such that
t > v, yet t ~ u. In this case we set ¢t > wu, so as to increase the value of Hy (u)
(notice that Hs (v) already includes p(t), since ¢ > v).

Combining the above cases, it is evident that it is Hs (v) = H~(v). On the
other hand, for Hs (u) we have to add to H ™~ (u) the mass of probability of all
those tuples ¢ such that ¢ = v and ¢ ~ u, that is: Hy (u) = H ™ (u) + Z%ﬁ}v p(t).
By partitioning the set of tuples that dominate v depending on their relatggnship
with respect to u, the following identity is derived:

H™(v) = H™ (u) +p(u) + > p(t) + D p(t)
t>v t>v
t~u ut
Letting IbP(u,v) = Zth p(t) to stand for the in-between mass of probability of
U

those tuples that dominate v and are dominated by u we obtain:

H(u) = H™ (v) = IbP(u,v) — p(u)

from which we get the second P-domination rule:

p(u) > Puyw+1—H (v)
p(v) ~ Puo,+1—H=(v)+ IbP(u,v) + p(u)

u=v A (Rule 2)

Rule 2 generalizes Rule 1, which is therefore redundant. However we keep it
since, unlike Rule 2, it can be checked without the need to compute any bound.

u ¥ v: P-domination can occur even when u % v, provided p(u) > p(v). In this

case it is immediate to see that the right-hand side of Equation 6 is maximized
by setting Hs (v) = H™ (v) and Hs (u) = Ht(u), thus:

p(u) > Py, +1 — H™(v)

uF v A p(v) = Pu,+1—Ht(u)

(Rule 3)

Ezample 1. Table 1 lists the probabilities of the tuples in Figure 1, whose overall
probability is P = 3.2, together with their H~ and H™ bounds. As an example
of how bounds are computed consider tuple t3. Since t3 is dominated only by #;
and to, it is H ™ (t3) = p(t1) + p(t2) = 0.7. The tuples dominated by t5 are t4, t5,
and tg, thus Ht(t3) = P — p(t3) — p(ts) — p(ts) — p(ts) = 1.2. A case to which
Rule 1 applies concerns tuples ¢; and t4, since it is t; = t4 and p(t1) > p(t4),
thus t; >, t4. Rule 2 is used to discard tuple ¢5, which is P-dominated by ¢;
(notice that here it is p(t1) < p(¢s), and IbP(t1,t5) = 0.6). A case in which Rule
3 is satisfied regards tuples t3 and ¢ (notice that ¢o is part of the deterministic
skyline). An exhaustive analysis shows that SKY(R?P) = {t1,ts3,¢7}. O

ltuple ‘t1‘t2‘t3‘t4 ts ta‘t7‘
probability|0.4/0.3]0.6/0.4/0.6]0.4|0.5
H™ 0] 0 |0.7]1.3]1.3|2.3|0.3
HT 0.8(0.4]1.2(2.4|2.2|2.8(2.7

Table 1. Probabilities and bounds for the dataset in Figure 1

5 Algorithms

The skyline of a probabilistic relation RP consisting of n tuples can be computed
in O(n3) time, since checking P-domination between two tuples is in O(n). The
basic idea to reduce the actual running time is to use a 2-phase algorithm, whose
general schema goes as follows. In the first phase, for each tuple u we compute
the bounds H~(u) and H ™ (u), which requires O(n?) time overall. In the second
phase we actually compare tuples, and also compute the in-between probabilities,
IbP(u,v), for all pairs of tuples such that v > v yet p(u) < p(v).

We consider several variants of this basic schema. As a preliminary observa-
tion, it has to be remarked that the pre-processing step of topologically sorting
the input relation RP, so that a tuple v dominating v can never follow v, which
is commonly used in the deterministic case [2,4] (since it leads to a reduction
of the number of comparisons and simplifies the management of the result set,

that can only grow in size), would not provide such guarantees in our scenario.
This is because, as explained in Section 4, it could well be the case that u >, v
even if u ¥ v. However, as detailed below, sorting can be exploited to speed up
the computation of the H~ and H' bounds and of the quantities TbP(u,v).

The baseline algorithm for computing the bounds H~ (u) and H™"(u) pre-
cisely follows their definition, given in Section 4, thus tuples in RP are sequen-
tially accessed and compared with all already encountered tuples. The number
of comparisons is thus n(n — 1) /2. Topologically sorting RP only slightly reduces
the running time, since if v follows u in the order then we can only conclude
that v is not needed to compute H ™ (u).

Once all bounds are computed, the second phase of the algorithm can start,
in which tuples are actually compared. Algorithm 1 resembles the well-known
BNL algorithm for computing the skyline of a (non-probabilistic) relation [3].
Each tuple u of RP is compared to all the tuples v currently in the skyline: for
this, the quantity IbP(u,v) (or IbP(v,w)) is computed at line 5/6 (only if u > v,
or v = u, and Rule 1 of P-domination fails). If u >, v, then v can be dropped
from SkY(RP) (line 7); otherwise, if v =, u, then u cannot be part of the skyline
(line 8) and the loop terminates.

Algorithm 1 Tuple comparison

Input: probabilistic relation R?, each tuple u in R” includes bounds H ™ (u) and H ™ (u)
Output: SKY(RP), the skyline of R?

1: SKY(RP) + 0

2: for all tuples u € R? do

3: insert < true

4 for all tuples v € SKY(R?) do

5 if u=vAp(u) < p(v) then IbP(u,v) + computeIbP(RP u,v)

6: else if v > u A p(v) < p(u) then IbP(v,u) computeIbP(RP v, u)

T: if u >, v then SKY(RP) + SkY(RP) \ {v}

8: else if v >, u then insert « false, continue (goto 9)

9 if insert then SKY(RP) < SKY(RP) U {u}

Again, a topological sort of RP guarantees that the test at line 5 in Algo-
rithm 1 is never satisfied, thus we could obtain a faster execution of the algo-
rithm. The computation of the value IbP(u,v) can be performed in a trivial
way by following the definition in Section 4, i.e., by checking if any tuple ¢ in
RP satisfies u > t = v. If RP is topologically sorted, then all such tuples can
only be found between u and v, i.e., if ¢ and k, respectively, are the indices of
u and v in the sorted RP, then we need only to check those tuples ¢; such that
i < j < k. As an alternative implementation, we could also exploit a spatial
index, able to efficiently solve window queries, i.e., to find all tuples included
in a hyper-rectangular region of the attribute space A. In particular, we use an
R-tree [7] for retrieving all tuples in a window whose opposite vertices consist of

the coordinates of tuples v and u, respectively: TbP(u,v) can then be computed
by simply summing up probabilities of result tuples.”

6 Experimental Evaluation

In this section we experimentally analyze the efficiency of the proposed algo-
rithms for the computation of the skyline of a probabilistic relation. For this,
we synthetically generated 100,000 4-D tuples with uniformly distributed coor-
dinates and probability. We then contrasted the performance of the algorithms
described in Section 5 when varying the data dimensionality d (only the first
2-4 coordinates are used for checking domination) and/or the data cardinality n
(only a fraction of the dataset is used).

As a first result, we show in Table 2 the size of SKY(RP) for different values of
d and n: this demonstrates the fact that, at least for these datasets, the skyline
has always a reasonable size, thus it makes sense to actually investigate the
efficiency of alternative algorithms for computing it.

d \ n|20K 40K 60K 80K 100K
2 (24 29 29 32 30
3 |126 154 173 186 172
4 |435 619 666 781 792

Table 2. The size of SKY(RP) for different values of d and n

In our next experiment, we evaluate the effect of topologically sorting the
dataset in the first phase of the algorithm, when the H~ and the HT bounds are
computed. As expected, sorting RP only leads to a minor time saving: on average,
the sort-based version of the algorithm is only 4% faster, with a maximum time
saving of 10% (for d = 3 and n = 40K)).

We then compare the performance of three variants of Algorithm 1. The vari-
ants we tested are as follows: the naive variant uses a simple loop for computing
IbP(u,v), sorted exploits a topological sort of RP, so that only tuples between u
and v are checked, and index uses an R-tree built on R?. Figure 3 shows elapsed
times for the three algorithms. As a first observation, we note that the index algo-
rithm is consistently better than naive, saving around 70% of time, and that this
does not depend on the data cardinality: such saving is the one provided by the
index in computing the IbP(u,v) values. A second, more interesting, evidence is
that performance of the sorted algorithm actually improves when incrementing
the dataset size: this behavior is likely due to the use of cache memory, since
the comparison of consecutive tuples with a same skyline tuple requires checking
almost the same sets of tuples, thus likely producing several cache hits.

Our final experiment investigates the effect of the three rules for checking
P-domination between tuples. In Figure 4 (a) we show effectiveness of each rule

" Using a spatial index for the computation of the H~ and H' bounds would not
be efficient, since it would require solving window queries with very low selectivity,
unless A has a high dimensionality; in that case, however, the curse of dimensionality
would hinder index performance.

350 400
300 —A—naive 350 —A—naive
—&-sorted —&-sorted
250 —e—index 300 —e—index
250
@ 200 @
o o 200
£ 150 £
150
100 100
50 50
0 0 T
2 3 4 20 40 60 80 100
d nx 1000
(a) (b)

Fig. 3. Execution times for the three variants of Algorithm 1 vs. (a) dataset dimen-
sionality (n = 40K) and (b) dataset cardinality (d = 3)

for the naive algorithm (according to our experiments, this is basically indepen-
dent of the specific algorithm variant): P-domination tests linearly increase with
n, as in the case of BNL-like algorithms; moreover, the most effective rule is
the cheapest Rule 1 (about 40% of cases are solved with this rule), while the
effectiveness of Rule 2 is less than 0.1%, so low that the graph is unable to show
it. In about 40% of cases, finally, the compared tuples are indifferent. Figure 4
(b) shows the average number of IbP(u,v) values that should be computed for a
tuple u: clearly, this happens whenever both Rules 1 and 3 fail, as already noted
in Section 5. As the figure suggests, sorting RP has almost no effect on reduc-
ing the number of times IbP(u,v) should be computed, but only, as previously
observed, on the average number of tuples to be checked in each calculation.

16 - 70
O~ O3 @2 W1
60 1
2 50 /
2
B g 40 ¢
x o
3 2 30 4
g 3
y 3 201 v
—&—naive
101 —=&-—sorted
0
20 40 60 80 100 20 40 60 80 100
nx 1000 nx 1000
(a) (b)

Fig. 4. Effectiveness of P-domination rules (a) and average number of IbP calculations
per tuple (b) vs. dataset cardinality (d = 3)

7 Conclusions

In this paper we have presented a new definition of skyline for probabilistic
relations, based on an appropriate definition of P-domination, i.e., domination
between tuples having a confidence/probability value. We have also proved that,
unlike previous definitions, ours maintains all the nice properties that skylines
have in the deterministic scenario. We have provided alternative algorithms for
the efficient computation of the skyline and evaluated their performance through
some preliminary experiments over synthetically generated datasets.

Although we elaborated our analysis for the case of independent tuples, the
definition of P-domination can be smoothly extended to the correlated case,
i.e., where possible worlds are generated through a set of generation rules. This
requires opportunely adapting domination rules in Section 4.1 and algorithms in
Section 5, the latter maintaining the same time complexity of the independent
case.

Besides a thorough experimentation with other datasets (either with different
distributions of coordinates and probabilities or real ones, if available), our cur-
rent and future work includes considering alternative formulations of resolution
algorithms. As a matter of fact, all our algorithms share the same 2-phase struc-
ture: we expect to attain even better performance by comparing some tuples as
early as possible.

References

1. Atallah, M.J., Qi, Y.: Computing all Skyline Probabilities for Uncertain Data. In:
PODS 2009. pp. 279-287. Providence, RI (Jun 2009)
2. Bartolini, I., Ciaccia, P., Patella, M.: Efficient Sort-Based Skyline Evaluation. ACM
TODS 33(4), 1-45 (2008)
3. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE 2001.
pp. 421-430. Heidelberg, Germany (Apr 2001)
4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE
2003. Bangalore, India (Mar 2003)
5. Cormode, G., Li, F., Yi, K.: Semantics of Ranking Queries for Probabilistic Data
and Expected Ranks. In: ICDE 2009. pp. 305-316. Shanghai, China (Apr 2009)
6. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: PODS 2001. pp. 216-226. Santa Barbara, CA (May 2001)
7. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In: SIG-
MOD 1984. pp. 47-57. Boston, MA (Jun 1984)
8. Li, J., Saha, B., Deshpande, A.: A Unified Approach to Ranking in Probabilistic
Databases. In: VLDB 2009. pp. 502-513. Lyon, France (Aug 2009)
9. Lin, X., Zhang, Y., Zhang, W., Cheema, M.A.: Stochastic Skyline Operator. In:
ICDE 2009. Hannover, Germany (Apr 2011)
10. Pei, J., Jiang, B., Li, X., Yuan, Y.: Probabilistic Skylines on Uncertain Data. In:
VLDB 2007. pp. 15-26. Vienna, Austria (Sep 2007)
11. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Widom, J.: Working Models for Un-
certain Data. In: ICDE 2006. Atlanta, GA (Apr 2006)
12. Soliman, M.A., Ilyas, I.LF., Chang, K.C.C.: Top-k Query Processing in Uncertain
Databases. In: ICDE 2007. pp. 896-905. Istanbul, Turkey (Apr 2007)
13. Szpilrajn, E.: Sur ’Extension de I’Ordre Partiel. Fundamenta Mathematicae 16,
386-389 (1930)
14. Zhang, W., Lin, X., Zhang, Y., Wang, W., Yu, J.X.: Probabilistic Skyline Operator
over Sliding Windows. In: ICDE 2009. pp. 1060-1071. Shanghai, China (Mar 2009)
15. Zhang, X., Chomicki, J.: On the Semantics and Evaluation of Top-k Queries in
Probabilistic Databases. In: DBRank 2008. pp. 556-563. Cancun, Mexico (Apr
2008)

