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Abstract. Genomics is opening many interesting practical and theoret-
ical computational problems; one of them is the search for a collection
of genomic regions at given distances from each other, i.e., a pattern of
genomic regions. We designed and implemented an optimized pattern-
search algorithm able to find efficiently, within a large set of genomic
data, genomic region sequences which are similar to a given pattern and
present its applicability to the problem of enhancer detection.

1 Introduction

Thanks to Next Generation Sequencing (NGS), huge repositories of genomic se-
quences are nowadays being collected by large consortia of research laboratories,
e.g., ENCODE [2] and TCGA [9]. So far, bio-informatics has been challenged
by NGS primary analysis (production of sequences in the form of short DNA
segments, or “reads”) and secondary analysis (alignment of reads to a refer-
ence genome and extraction of specific genomic features), yet the most impor-
tant emerging problem is tertiary analysis, concerned with multi-sample process-
ing, annotation and filtering of variants, and genome browser-driven exploratory
analysis [7]. Tertiary analysis targets data produced by secondary analysis and is
responsible of sense making, e.g., how genomic regions interact with each other.

The GenData 2020 project addresses this challenge by enabling queries and
analysis of processed genomic data. Among the project’s results are a Genometric
Data Model (GDM), which encodes genomic data in terms of their regions and
metadata, and a Genometric Query Language (GMQL) [4]. According to GDM,
a genomic (DNA) region is a quadruple 〈chr , left , right , strand〉, in which chr
represents the region chromosome, the strand (either + or −) can be missing,
and the region includes all the DNA nucleotides whose position is between left
and right . Moreover, typically a region is associated by secondary analysis with
a feature vector, where each feature is extracted by suitable processing.

Several tertiary analysis problems consist of searching for patterns of regions,
i.e., co-occurrences of certain region configurations, among which the search for
enhancers (particular regions of the non-coding part of the genome playing the
role of enhancing or repressing gene expressions) and the investigation on 3D
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properties of the genome. Informally, a pattern is a collection of regions that are
present on one or more tracks, where a track is an ordered sequence of regions
produced by a specific NGS experiment. All regions of a pattern are placed within
the same chromosome, but they need not to be contiguous on the original track.

In this paper we introduce an efficient pattern-search algorithm which pro-
vides biologists with the ability, once they identify an interesting genomic region
pattern, to look for similar occurrences of such pattern in the whole genome.3

Each result of our algorithm is a collection of regions with properties similar
to the query pattern, in particular with (approximately) the same spatial con-
figuration (structural similarity) and similar feature values (region similarity).
As Figure 1 suggests, structural similarity ignores absolute coordinate values of
regions, focusing on inter-region distances.

Fig. 1. Example of search result on target tracks with high structural similarity to the
query pattern: inter-region distances of the pattern are (approximately) preserved in
the regions of the result, both along the same target track and across different tracks.

2 The Base Problem

In the base version of our problem, the pattern to be searched is single-track,
regions are reduced to points, and region features are not present. Formally, a
track T is a strictly increasing sequence of N elements, T = 〈t1, . . . , tN 〉, where
each ti ∈ N+ and ti < ti+1. Given a “query” track Q = 〈q1, . . . , qM 〉 and a
“target” track T = 〈t1, . . . , tN 〉, with N ≥M , a matching of Q in T is a strictly
increasing function f : [1,M ] → [1, N ] that assigns to each element qi of Q an
element tf(i) of T . We refer to (qi, tf(i)) as a matched pair, and to ((i, f(i))) as a
matched index pair. Notice that, although a matching only requires N ≥ M , in
practice it will be N �M (typically M ≤ 10, while N = 103 ÷ 106).

In order to search for patterns in the target track that are similar to the query
track, we take a cost-based approach, where lower cost implies high similarity.

Definition 1 (Matching Cost). Given tracks Q and T and a real value τ , the
τ -matching cost of a matching f , Cf (Q,T ; τ), is defined as:

Cf (Q,T ; τ) =

M∑
i=1

(
tf(i) − qi − τ

)2
(1)

3 A stand-alone desktop application available at http://www-db.disi.unibo.it/

research/GenData/ and described in [5] enables biologists to define patterns of in-
terest using the Integrated Genome Browser [6].



and the matching cost of f , Cf (Q,T ), is the minimum τ -matching cost of f over
all τ values, Cf (Q,T ) = minτ Cf (Q,T ; τ).

Let δi,j = tj − qi be the absolute offset between elements tj and qi. The
τ parameter in Equation 1 allows us to consider shifted (δi,j − τ) rather than
absolute (δi,j) offsets, and is used to translate Q so as to better match elements
of T . For any given matching f of Q in T , the matching cost Cf (Q,T ) is obtained

for τ =
∑M
i=1 δi,f(i)/M , i.e., the matching cost equals M times the variance of

absolute offsets δi,f(i) of matched elements.
Given tracks Q and T , the best-matching problem (BMP) is to determine

the matching f∗ with minimum matching cost, i.e., Cf∗(Q,T ) ≤ Cf (Q,T ) ∀f .

Example 1. Let Q = 〈1, 7, 10〉 and T = 〈3, 5, 9, 11, 13, 14, 18, 21〉. One of the
possible matchings of Q in T is f = {((1, 1)), ((2, 3)), ((3, 8))} that assigns elements
(3, 9, 21) to corresponding elements of Q. Assuming τ = 7, the τ -matching cost

of f is 66, since Cf (Q,T ; 7) = (3− 1− 7)
2

+ (9− 7− 7)
2

+ (21− 10− 7)
2

= 66.
The matching cost of f is obtained for τ = ((3− 1) + (9− 7) + (21− 10))/3 = 5:
Cf (Q,T ) = 54. The solution to the BMP is f∗ = {((1, 2)), ((2, 4)), ((3, 7))} that
matches Q to elements (5, 11, 14) of T , which yields τ = 4. The matching cost

of f∗ is Cf∗(Q,T ) = (5− 1− 4)
2

+ (11− 7− 4)
2

+ (14− 10− 4)
2

= 0.

The best-matching problem, which amounts to finding a minimum-variance
matching, is a specific case of quadratic assignment problem, which is known
to be NP-hard [1]. Although this does not immediately lead to conclude that
BMP is NP-hard as well, we strongly suspect this is the case, even because
variance-minimization problems are reputed difficult to solve [8].

2.1 The Root-element Approach

An alternative cost definition that leads to a tractable version of the problem is
to consider a fixed value of τ . In particular, we take τ ≡ τ r = tf(1) − q1, i.e., a
zero-cost for the first pair of matched elements of Q and T , which are therefore
called root (reference) elements. The root-element matching cost Crf (Q,T ) is:

Crf (Q,T ) =

M∑
i=1

(
δi,f(i) − τ r

)2
=

M∑
i=1

(
δi,f(i) − δ1,f(1)

)2
(2)

and the root-element BMP (R-BMP) is finding the matching f∗ with minimum
root-element matching cost. Notice that, unlike BMP, in R-BMP the contribu-
tion of a matched pair (qi, tf(i)) to the overall cost is decoupled from that of the
other pairs, since τ r only depends on the root-elements and not on the whole
matched elements. This is the key to develop an efficient dynamic programming
(DP) algorithm, WDP-Rbmp, where the ‘W’ stands for “windowed”.

Lemma 1. A matching f is optimal only if the (partial) matching (f(1), f(2),
. . . , f(`)), ` = 1, . . . ,M − 1, has minimum cost among all (partial) matchings



f ′ = (f ′(1), f ′(2), . . . , f ′(`)) such that f ′(1) = f(1) and f ′(`) = f(`), i.e.,∑`
i=1(δi,f(i) − δ1,f(1))

2 ≤
∑`
i=1(δi,f ′(i) − δ1,f ′(1))

2. The condition is sufficient
when also the last assignment, ` = M , is considered.

The intuition about the proof is that, for given “start” (f(1)) and “end”
(f(`)) positions in T , any partial matching f ′ which also matches q1 to tf(1)
(f ′(1) = f(1)) and q` to tf(`) (f ′(`) = f(`)), yet has a partial cost higher than
that of f cannot be completed to yield a matching with minimum cost.

Based on the above lemma, our WDP-Rbmp algorithm starts by partitioning
the problem into (N −M + 1) subproblems, one for each possible value of f(1)
and, consequently, of τ r.4 Given f(1), we apply the DP technique by constructing
an M × N matrix Zf(1). The value of cell (i, j) of this matrix, also called the
cell cost, Zf(1)(i, j), is computed as the minimum cost obtainable by matching
the first i− 1 elements of Q in the first j − 1 elements of T and qi with tj , i.e.:

Zf(1)(i, j) = min
h:h<j

{
Zf(1)(i− 1, h)

}
+ (δi,j − τ r)2 (3)

Let h′ denote the value of index h yielding the minimum in the above equa-
tion. For each cell (i, j) we also maintain a list, MLf(1)(i, j), of the indices of
the matched elements of T , which is updated as MLf(1)(i, j) = MLf(1)(i −
1, h′) + (j), where ‘+’ denotes list append. The procedure starts by filling a sin-
gle cell, (1, f(1)), in the first row of the matrix, for which it is, by definition,
Zf(1)(1, f(1)) = 0 and MLf(1)(1, f(1)) = (f(1)).

Theorem 1. When cells of each matrix Zf(1), 1 ≤ f(1) ≤ (N −M + 1), are

filled according to Equation 3, it is Crf∗(Q,T ) = minf(1) minj
{
Zf(1)(M, j)

}
.

Because of the constraint f(i) < f(i + 1), several cells of matrix Zf(1) will
remain unfilled (their cell cost is assumed to be ∞). Indeed, it is possible to
considerably reduce the number of matrix cells to be filled, as follows.

The closest match of qi in T (i > 1) is the element of T , with index cm(i),

for which cost(i, j)
def
= (δi,j − τ r)2, that is, the cost of matching qi and tj , is

minimized.5 Since both T and Q are strictly increasing sequences, it is cm(i) ≤
cm(i+1). In absence of “conflicts” among the closest matches, i.e., when cm(i) <
cm(i+ 1), the matching fcm = (f(1), cm(2), . . . , cm(M)) would be the best one
for the given root element tf(1). However, this breaks down in case of conflicts
(cm(i) = cm(i+ 1)), since fcm would not be a matching anymore.

The intuition behind the WDP-Rbmp algorithm is that the optimal match-
ing has to be “close” to fcm, thus for each row i of Zf(1) only a window of cells
of limited size around cm(i) has to be considered.

Theorem 2. In order to find the best possible matching f∗, for each matrix
Zf(1) the only cells to be filled are those in the DP-window defined as W =

4 It has to be f(1) ≤ N −M + 1 in order to respect the constraint f(i) < f(i + 1).
5 We omit here the very particular case when the closest match is tied among two

adjacent elements in T , which would unnecessarily lengthen the description.



{Wi : i > 1}, where Wi = {(i, j) : j ∈ [Li, Hi]}, and

LM = cm(M) Li = min{cm(i), Li+1 − 1} (i = 2, . . . ,M − 1)
H2 = cm(2) Hi = max{cm(i), Hi−1 + 1} (i = 3, . . . ,M)

Notice that, it is Li < Li+1 and Hi < Hi+1. Figure 2 shows a sample DP-
window for the case M = 7 and the worst-case scenario in which all the M − 1
closest matches, cm(i), are in conflict.
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Fig. 2. Examples of DP-windows: closest matches are denoted with a X: A possible
DP-window for the case M = 7 (left) and the worst-case scenario (right).

The complexity of the WDP-Rbmp algorithm is O(MN(logN+M)), which
is O(N logN) when M = o(N): for each of the (N −M +1) matrices we execute
M−1 binary searches to find the closest matches and then fill, in the worst case,
M−1 cells on each row. The cost of filling each cell is O(1), since for determining
h′, i.e., the value of index h which yields the minimum in Equation 3, it is
sufficient to keep track of the minimum cell cost when filling the cells in a row.6

Example 2. Let Q = 〈8, 20, 22, 36〉 and T = 〈10, 15, 17, 27, 35, 39, 45, 50, 62, 70〉,
and consider Z2 (see Figure 3), one of the (N −M + 1) = 7 matrices generated
by WDP-Rbmp, for which it is τ r = 15 − 8 = 7. It is cm(2) = 4, since the
closest match for q2 + τ r = 20 + 7 is t4 = 27. The same value is obtained for
cm(3), whereas q4 +τ r = 36+7 = 43 yields cm(4) = 7. Based on Theorem 2 it is
W2 = [3, 4], W3 = [4, 5], and W4 = [7, 7]. To see how cells are filled consider cell
(3, 5), for which Equation 3 yields Z2(3, 5) = minh:h<5{Z2(2, h)}+(δ3,5−τ r)2 =
0+((35−22)−7)2 = 36. It is h′ = 4, thus ML2(3, 5) = ML2(2, 4)+(5) = (2, 4, 5).
The best matching f for Z2 is obtained in cell (4, 7), that is, f = (((1, 2)), ((2, 4)),
((3, 5)), ((4, 7))) that assigns (15, 27, 35, 45) to (8, 20, 22, 36), with cost 40.

Z2 1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8)
0

(2)

2 (20)
100

(2, 3)
0

(2,4)

3 (22)
104

(2,3,4)
36

(2, 4, 5)

4 (36)
40

(2,4,5,7)

Fig. 3. WDP-Rbmp algorithm: the matrix Z2 of Example 2. Closest matches, cm(i),
are in boldface.

6 Here we apply the identity min{a1, . . . , an−1, an} = min{min{a1, . . . , an−1}, an}.



3 Extending the Base Model

In this section we provide some intuition on how the base model can be extended
so as to consider the following aspects:

Interval regions: In actual genomic applications elements ti and qj are inter-
vals rather than points. Our solution is to reduce each interval to its centroid,
which implies no changes to the WDP-Rbmp algorithm. If regions’ lengths
are deemed to be relevant for the specific problem at hand, they can be
modeled as region features (see below).

Multi-track patterns: When a query pattern is defined onNT different tracks,
i.e., Q = (Q1, . . . , QNT ), where Qx =

〈
qx1 , . . . , q

x
Mx

〉
, each pattern track Qx

is searched in a different target track T x =
〈
tx1 , . . . , t

x
Nx

〉
. In order to give

the same importance to all the tracks, we use as root-elements the couple
(qy1 , t

y
fy(1)) that introduces the minimal overall cost (defined as the sum of

matching costs for each pattern track). WDP-Rbmp can be extended by
using NT matrices Zxfy(1), x = 1, . . . , NT , when the root-element tyfy(1) is

chosen from T y. For each of the Ny −My + 1 possible values of the root-
element, we fill matrix Zyfy(1) as in the single-track case, whereas for each

other matrix Zxfy(1), x 6= y, we also fill the 1st row, since there is no root-
element defined for T x.

Negative matchings: Negative matching tracks are target tracks in which
there must be no regions in the area of a result, thus they are used to limit
the space of the solutions. The matrix columns of each element of a target
track corresponding to regions in a negative track can therefore be dropped
before starting the search process (such cells are given cost = ∞).

Partial matchings: The rationale behind partial matchings is that, in some
cases, requiring to match all pattern elements might lead to a poor solu-
tion. In such cases, it might be preferable to “skip” one or more pattern
elements, assigning them a cost c(⊥). In order to apply WDP-Rbmp to the
partial matching case, a matrix ZPx

f(1) for each partial matching track TPx

is needed. The cost of cell (i, j) of ZPx
f(1) must now consider also the null

(⊥) case, and matrix ZPx
f(1) needs to be extended with an additional “0”

column, corresponding to an unmatched first element.

Region features: Region features are used to determine the region distance of
each couple of matched regions, which becomes part of the cost function.
Since the region distance is not monotone, it is not possible to limit the
search only to a neighborhood of the closest matches of qi elements.

Top-k queries: The Top-K version of R-BMP aims to discover the K match-
ings F = {f1, . . . , fK} with the smallest overall cost. We further require that
resulting patterns have no regions in common, so as to increase the diver-
sity of the result. This is obtained by comparing results produced by all the
matrices and keeping the best K disjoint results; note that each matrix can
produce at most one result, as all the matchings associated with a matrix
share the same root element.



4 Experiments

We applied the WDP-Rbmp algorithm to solve the relevant biological problem
of finding enhancer regions. This involves the search for DNA regions outside of
the genes, at a certain distance from a gene’s transcription start site (TSS), and
associated with the presence or absence of specific regions, where given molecules
bound to the DNA, that can be measured through NGS ChIP-seq experiments.

In particular, biologists believe that an active putative enhancer (APE) re-
gion should be not closer than 20K bases to the closest TSS, and have presence
of overlapping peaks of the H3K4me1 and H3K27ac signals, and absence of
H3K4me3 signal peaks. Furthermore, an APE could optionally include overlap-
ping peaks of the DHS, CTCF, P300, and/or Pol2 signals. Thus, the search for
APE regions can be expressed as a multi-track, interval region matching prob-
lem where peak regions of the H3K4me1 and H3K27ac signals constitute two
positive matching tracks, TSS regions and peak regions of the H3K4me3 signal
constitute two negative matching tracks, and peak regions of the DHS, CTCF,
P300 and Pol2 signals constitute four partial matching tracks, respectively.

For TSS regions we used public data from SwitchGear Genomics, provided by
the UCSC annotation database. For all other signals, we considered ChIP-seq ex-
periments on specimens of the K562 cell line (Chronic Myeloid Leukemia), which
are publicly available in the ENCODE project repository; thus, we extracted all
H3K4me1, H3K27ac, H3K4me3, DHS, CTCF, P300 and Pol2 samples of ChIP-
seq peaks of the K562 cell line, we merged sample replicates, and created a single
dataset with a single sample (track) for each signal, all samples with the same
region features. The number of regions in each track is listed in Table 1.

The Top-100 results found by WDP-Rbmp were visually inspected by an
expert, who evaluated all of them correct. Automatic evaluation of all the 1,651
results found by WDP-Rbmp (in less than one minute) is difficult, since there
is neither consolidated knowledge of enhancers, nor a consensus on the compu-
tational method specifically designed for their discovery. Therefore, we used for
comparison a different set of data, about chromatin7 state segmentation, gen-
erated by the Broad Institute for a few cell lines, including K562, and made
publicly available also in the ENCODE repository. These data, denoted as EN-
CODE HMM, describe a set of chromatin states of the genome using a Hidden
Markov Model (HMM); in particular, each 200 base pair (i.e., nucleotide) in-
terval is assigned to its most likely state under the model; one of such state
is associated with enhancers.8 Although ENCODE HMM data were obtained
considering a different set of epigenomic signals (with only 3 out of 9 signals
overlapping with the signals considered by us), we found a very good matching
between the regions denoted as enhancers by ENCODE HMM and the regions
determined by WDP-Rbmp, as shown in Table 1. This evaluation demonstrates
both the correctness of the pattern-matching method and its ability to find in-
teresting regions.

7 Chromatin is a complex of molecules consisting of DNA, proteins, and RNA.
8 Detailed information about the method and model parameters can be found in [3].



Table 1. Considered tracks and number of genomic regions, left. Precision of WDP-
Rbmp wrt. ENCODE HMM dataset (EH), right.

sample regions

TSS 131,780
H3K4me1 116,503
H3K27ac 45,796
H3K4me3 142,738

DHS 360,648
CTCF 318,982
P300 69,370
Pol2 177,900

top-K results EH overlapping results precision

10 9 90.00%
50 45 90.00%
100 86 86.00%
250 215 86.00%
500 415 83.00%

1,000 837 83.70%
(all) 1,651 1,411 85.46%

5 Conclusions

We presented an efficient method to find patterns in genomic region sequences;
it has practical applications in revealing interesting and unknown regions of the
genome, and therefore it is an important ingredient in supporting biological re-
search. In our future work, we plan to use the method for biological research, in
strong connection with biologists of the GenData 2020 project, by using experi-
mental data produced at IEO or by connecting to public data sources.
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