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Abstract. In this paper we introduce a new paradigm for similarity
search, called PAC-NN (probably approzimately correct nearest neigh-
bor) queries, aiming to break the “dimensionality curse” which inhibits
current approaches to be applied in high-dimensional spaces. PAC-NN
queries return, with probability at least 1 —d, a (1 + ¢)-approximate NN
— an object whose distance from the query q is less than (1 + €) times
the distance between ¢ and its NN. We describe how the distance distri-
bution of the query object can be used to determine a suitable stopping
condition with probabilistic guarantees on the quality of the result, and
then analyze performance of both sequential and index-based PAC-NN
algorithms. This shows that PAC-NN queries can be efficiently processed
even on very high-dimensional spaces and that control can be exerted in
order to tradeoff between the accuracy of the result and the cost.

1 Introduction

Similarity queries are a fundamental paradigm for multimedia, data mining, de-
cision support, and medical applications, to list a few. In its essence, the problem
is to determine the object which is most similar to a given query object. This
is usually done by first extracting the relevant features from the objects (e.g.
color histograms from images [FEFT94], Fourier coefficients from time series
[AFS93]), and then measuring the distance between feature values, so that sim-
ilarity search becomes a nearest neighbor (NN) query over the feature space.
Indexing of feature values, which often are high-dimensional (high-D) vectors,
can be done by means of either multi-dimensional trees (e.g. the R-tree [Gut84],
the R*-tree [BKSS90], and the SR-tree [KS97]) or metric trees (e.g. the M-tree
[CPZ97] and the mvp-tree [BO97]), the latter only requiring that the distance
between feature values is a metric, and as such can be used even when no ade-
quate vector representation is possible.

It is nowadays well-known that even for moderately high-D spaces (D > 10)
the NN problem can be very difficult to solve [BGRS99, WSB98]. This phe-
nomenon, traditionally called the “dimensionality curse”, is not peculiar to vec-
tor spaces, but can also affect more generic metric spaces, as recent mathematical
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studies demonstrate [Pes99]. Dimensionality curse is strictly related to the distri-
bution of distances between the indexed objects and the query object [BGRS99].
Intuitively, if these distances are all similar, ie. their variance is low, then search-
ing is difficult.

In order to break the dimensionality curse, in this paper we propose a proba-
bilistic approach, which allows a NN query to specify two parameters: the accu-
racy € allows for a certain relative error in the result, whereas the confidence ¢
guarantees, with probability (1—4), that e will not be exceeded. This generalizes
both correct (C-NN) and approzimately correct (AC-NN) NN queries [AMNT],
where the latter only consider e and are still plagued by the dimensionality curse.

After reviewing the basic logic of C-NN and AC-NN algorithms and high-
lighting their limits (Section 2), in Section 3 we introduce PAC (probably ap-
prozimately correct) NN queries, whose basic idea is to avoid searching “too
close” to the query object. We then describe how information on the distance
distribution can be used to derive a simple and effective stopping condition for
PAC-NN algorithms. Section 4 provides evaluation for sequential datasets and
demonstrates that the complexity of the PAC sequential algorithm is at least
O(nd~Y(1 + €)~P), thus still linear in the dataset size n. In Section 5 we evalu-
ate the performance of a PAC algorithm implemented in the M-tree and show
how performance can improve up to 2 orders of magnitude. Although we use
the M-tree for practical reasons, our results apply to any multi-dimensional or
metric index tree. We also demonstrate that, for any value of €, § can be chosen
so that the actual relative error stays indeed very close to €. This implies that
an user can indeed exert an effective control on the quality of the result, trading
off between accuracy and cost.

2 Preliminaries

We consider that objects’ feature values are points of a metric space M = (U, d),
where U is the domain of values and d is a metric used to measure the distance
of points of Y. For any real value r > 0, B.(c) = {p € U | d(c,p) < r} denotes
the r-ball of point ¢, i.e. the set of points whose distance from ¢ does not exceed
r. The minimum distance between a point ¢ and a region R C U is defined as
dmin(q, R) = inf{d(q,p) | p € R}. Given a set S = {p1,...,pn} of n points, and
a query point ¢ € U, the nearest neighbor (NN) of ¢ in S is a point p(q) € S
such that d(q, p(q)) < d(q,p),Vp € S.

An optimal correct nearest neighbor (C-NN) algorithm has been described
in BBKK97]. It can be used with any multi-dimensional and metric index tree
which is based on a recursive and conservative decomposition of the space, thus
matching the following generic structure. Each node N (usually mapped to a
disk page) in the tree corresponds to a data region, Reg(N) C U. Node N stores
a set of entries, each pointing to a child node N, and including the description
of Reg(N,.). All indexed feature values are stored in the leaf nodes and those in
the sub-tree rooted at N are guaranteed to stay in Reg(IV).



The C-NN Optimal algorithm in Figure 1 uses a priority queue containing ref-
erences to nodes, which is kept ordered by increasing values of d,,i,(q, Reg(N)),
that is, the minimum distance between ¢ and a point p € Reg(N). This ensures
the algorithm to be optimal, since it only accesses those nodes whose region
intersects the NN ball By p(q))(q) [BBKKIT]. If the first region in the queue
cannot contain any point closer to g than the current nearest neighbor, then the
search is stopped (line 5). This algorithm is effective only when D is low (i.e.
< 10), after which a sequential scan becomes competitive. This is because in
high-D spaces the distance d(g,p(g)) of the NN of ¢ is “large”, and the probabil-
ity that a data region intersects the NN ball By(q p(4))(q) approaches 1 [WSB98].

Algorithm C-NN Optimal

Input: index tree 7, query object g;
Output: object p(q), the nearest neighbor of ¢;

1. Initialize the priority queue PQ with a pointer to the root node of 7;
2. Let r = oo;

3. While PQ # § do:

4. Extract the first entry from PQ, referencing node N;

5. If dmin(q, Reg(N)) > r then exit, else read N;

6. If N is a leaf node then:

7. For each point p; in N do:

8. If d(q,pi) < r then: Let p(q) = pi, r = d(q, pi);

9. else: (N is an internal node)

10. For each child node N, of N do:

11. If dimin(q, Reg(Ne)) < 7 then:

12. Update PQ performing an ordered insertion of the pointer to N.;
13. End.

Fig. 1. Optimal algorithm for correct NN search.

In order to reduce the complexity of C-NN search, several alternatives have
been considered to support approrimate similarity queries, ie. queries which are
not guaranteed to return the NN of the query point. Here we concentrate on the
relevant case of approzimately correct NN (AC-NN) queries, which, given a a
value for the accuracy parameter (relative error) e, can return any point p’ € S
such that:

d(g,p") < (14 €)d(q.p(q))
Point p’ is called a (1+¢€)-approximate NN of ¢. Above algorithm can be adapted
to support AC-NN queries by substituting r/(1 + €) for r at lines 5 and 11.

Example 1. Refer to Figure 2, where the space is (R?, Ls), i.e. the real plane
with the Euclidean distance. We assume that points are indexed by an M-
tree, for which regions are balls, Reg(N) = B, (pn),** and dpnin(q, Reg(N)) =
max{d(q,pn) — 7N, 0}.

14 The actual “shape” of M-tree regions depends on the specific metric space (U, d).



In Figure 2 (a) p’ is the current NN, r = d(q,p’), and the queue contains
pointers to nodes A, B, C, and D. Since nothing changes with node A, the
C-NN algorithm fetches node B from disk and discovers that d(g,p) < r, thus
setting r = d(q,p) (see Figure 2 (b)). At this point, since d,in(g, Reg(C)) =
d(q,pc) — rc > r holds, the C-NN search is stopped. The AC-NN algorithm,
before retrieving node B, discovers that d(q,pg) —rp > /(1 + €) and therefore
stops, thus returning point p’ for which d(g,p") < (1 + €)d(g, p) holds. m|

Fig. 2. C-NN and AC-NN search in R? with L.

Performance of the AC-NN algorithm largely depends on the choice of e. Intu-
itively, the higher € is, the faster the algorithm runs. However, this can have
a negative effect on the quality of the result, that is, on the effective error. If
an approximate (not necessarily AC) NN algorithm returns a point p’ whose
distance from ¢ is 7, the effective (relative) error, € 5, is defined as:

r

I d(g,p(q)

By definition, the AC-NN algorithm guarantees that r < (1 + €)d(q, p(q)), thus
€eff < € holds. Experimental results reported in [AMN™] show that usually it
is €.¢ < €, with ratios typically of the order of 0.01...0.03. This fact is only
apparently positive, since it implies that users cannot directly control the actual
quality of the result, rather only a much-higher upper bound. Furthermore, even
if experimental results show the improvements obtainable from AC-NN search in
low-D spaces, the complexity remains exponential in D [AMNT]. In the case of
indexes which allow the overlap of data regions (e.g. the R-tree and the M-tree),
a lower bound on the cost of an AC-NN query, regardless of the value of €, is
given by the number of data regions which enclose the query point g. Indeed, if
q € Reg(N) then dp,in(q, Reg(N)) = 0 and node N cannot be pruned (see node
A in Figure 2 (a)). Figure 3 confirms that the fraction of such regions grows
with D and soon reaches a limit beyond which a sequential scan would be more
convenient.

For instance, regions are “diamonds” in (%2, L), circles in (§R2, L,), and squares in

(R?, Loo).
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Fig. 3. Percentage of data regions containing the query point ¢ as a function of
space dimensionality. Euclidean distance, n = 10* objects indexed by an M-tree.

3 Probably Approximately Correct Similarity Queries

A basic observation to go beyond limitations of AC-NN queries concerns the
very nature of a similarity search process. According to our view, this can be
conceptually split into two phases:

Locating: This phase just consists in determining the result, that is, retriev-
ing the point which will be eventually returned by the algorithm.

Stopping: This second phase does not change, by definition, the result,
yet it is needed to determine that what discovered so far is indeed a (1 + €)-
approximation of the NN.

Figure 4 (a) shows the total (i.e. “locating” plus “stopping”) cost, expressed
as the number of distance computations executed by the AC-NN algorithm im-
plemented in the M-tree.
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Fig. 4. (a) Total cost (no. of distance computations) of AC-NN search; (b) Ra-
tio of locating cost to total cost. n = 10%, Euclidean distance, uniform data
distribution.

Besides confirming that the performance rapidly deteriorates as D grows
(Figure 4 (a)), in Figure 4 (b), where the ratio of the “locating cost” to the
total cost is graphed, it is shown that locating a (1 + €)-approximate NN is,
in itself, a relatively easy task, whose complexity indeed decreases with space
dimensionality. This is a direct consequence of the reduction of the variance of



the distances to the query object, which is responsible for the dimensionality
curse. We conclude that the hard problem in high-D approximate search is to
determine how to stop, and that most of the time spent in an AC-NN search is
wasted time.

The new approach we propose considers a probabilistic framework, according
to which it is admissible that the result can exceed the error bound € with a
certain probability §. This leads to what we call PAC-NN queries.

Definition 1. Given a dataset S, a query point ¢, an accuracy parameter €, and
a confidence parameter 6 € (0,1), the result of a PAC-NN (probably approxi-
mately correct) query is a point p’ € S such that the probability that p’ is inside
the B(14e)d(q,p(q))(q) ball is at least 1 — J, that is,

Pr{eeff > 6} < 0

The result of a PAC-NN query is said to be a (1 + ¢;d)-approximate nearest
neighbor of q. m|

The confidence parameter § aims to avoid searching “too close” to the query
point. This exploits the facts that d(q,p(q)) is “large” in high-D spaces and
that, nonetheless, stopping an AC-NN search remains a difficult task. A further
advantage is that in principle it is possible to choose ¢ so as to have e.g =~ e,
thus avoiding the mismatch proper of AC-NN algorithms. Finally, since PAC-NN
queries still use €, “locating” is guaranteed to remain a relatively easy task.

PAC-NN algorithms need some information about d(g, p(q)) in order to pro-
vide a probabilistic guarantee on the quality of the result. Our solution exploits
results from [CPZ98a, CNP99] where random metric spaces, M = (U, d, j1), are
considered, p being a measure of probability over /. To help intuition, we slightly
abuse terminology and also call u the data distribution over /. The models in
[CPZ98a, CNP99] show that costs for determining the NN of ¢ can be accurately
predicted if one knows the relative distance distribution of q, formally defined
as:

Fy(z) = Pr{d(g,p) <z} (1)

where p is distributed according to p. In [CPZ98a] it is also demonstrated that
the distribution of the nearest neighbor of ¢ with respect to a dataset of size n
is given by

Gy(x) = Pr{d(.p(q) < 2} =1 (1 = Fy()" (2)
Exzample 2. Consider the metric spaces ZQ)’U = ([0,1]P, L, U), where points
are uniformly (U) distributed over the D-dimensional unit hypercube, and the
distance is the “max” metric, Lo (pi, pj) = maxg{| p;[k] —p;[k] |} < 1. When the
query point coincides with the “center” of the space, ¢°*™ = (0.5,...,0.5), it is
immediate to derive that Fyeen (z) = (22)P, thus Gyeen (z) = 1—(1—(22)P)". On
the other hand, when the query point is one of the 2 corners of the hypercube,
it is Fyeor () = 2P and Gyeor(z) =1 — (1 — 2P, O



3.1 Stopping the Search in PAC-NN Algorithms

The basic idea of PAC-NN search is to avoid to search in a region which, ac-
cording to Gg4(+), is reputed to be “too small” to contain at least a point. How
the ¢ confidence parameter is related to the volume of this region is formalized
by the following definition.

Definition 2. Given a dataset S of n points, a query point ¢ with distance
distribution Fy(-), and a confidence parameter 6 € (0,1), the d-radius of ¢,
denoted r{, is the maximum value of distance from ¢ for which the probability
that exists at least a point p € S with d(q,p) < r{ is not greater than ¢, that is,
rd =sup{r | Pr{3p € S : d(q,p) <r} < d}. If Gy(-) is invertible, r{ can also be
more conveniently expressed as:

def ~_
ri = G0 (3)
O
For instance, for the metric spaces lo%U, when the query point is ¢°*™ = (0.5,...,0.5)
it can be derived (see Example 2) that
cen 1 1/D
=) =5 (1- -9 (4)

When D = 50, n = 10%, and § = 0.01, then rg?;; ~ 0.346 results. This means
that there is a probability of 99% that the hypercube centered on ¢°°" with side
2 x 0.346 is empty.

The following lemma establishes the stopping condition for PAC-NN search.

Lemma 3. Given a dataset S of n points, a query point q with distance distribu-
tion Fy(-), an accuracy parameter €, and a confidence parameter 6, let p’ be the
closest point to q discovered so far by a PAC-NN algorithm, and let r = d(q,p’).
If

r< (14 e)rf (5)

then p' is a (1 + €;9)-approzimate nearest neighbor of q.

Proof: By definition of PAC-NN queries, it has to be shown that Pr{e.;; >
e} <9, that is, Pr{r/d(q,p(q)) —1 > €} = Pr{d(¢,p(q)) < r/(1+¢€)} <. Since
the last probability equals Go(r/(14€)) and r/(14¢€) < r{ = G;1(6), it follows
that Go(r/(1+€)) < Go(G;1(8)) = 6. O

Figure 5 provides a graphical intuition on how PAC-NN algorithms work.
The figure shows graphs of both F,(-) and G,(-), together with values of 6 and
e. Given a value of 4, the algorithm first determines the d-radius 7§, then stops
the search as soon as it finds a point p’ such that d(q,p’)/(1+¢€) does not exceed
r{ (see Eq. 5). This corresponds to avoid searching points within the B,s (q) ball,
which, according to the information conveyed by the distance distribution, is
empty with probability at least 1 — §. It is indeed this phenomenon, typical
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Fig. 5. How F,(-), G4(-), €, and ¢ interact in PAC-NN search.

of high-dimensional spaces, that is not exploited at all by C-NN and AC-NN
algorithms.

It is clear that the NN problem loses of interest when the distance from ¢ to
its NN is comparable to the distance from ¢ to all other points, as it happens in
(very) high-D Euclidean spaces with uniformly distributed points [WSB98]. The
scenarios we consider are those for which approximate NN search is meaningful,
yet C-NN and AC-NN algorithms would fail. This holds, say, for the metric
spaces ZPD’U = ([0,1]P, L,,U) with D € [20,~ 100]. If the two distributions in
Figure 5 are well separated (as it happens in the cases we focus on), € and § can
be chosen so that (1+ ¢€)r{ stays well on the left of the zone where Fy(-) sharply
increases, i.e. where most distance values are concentrated. This is also to say
that the PAC-NN query is indeed meaningful.

4 The PAC-NN Sequential Algorithhm

We first consider the case where the dataset S is stored as a sequential file, thus
an AC-NN search would necessarily scan the whole file. The PAC-NN algorithm
reads the records one by one, and stops when it finds a point p’ such that
d(g,p’) < (14 €)r{. The expected cost, measured as the number of distance
computations, can be estimated by considering a random sampling process with
repetitions (ie. a point can be examined more than once). This is adequate as
long as there is no correlation between the distances of the points to ¢ and their
positions in the file, n is large, and the estimated cost is (much) lower than n.
On the other hand, when the analysis derives that the cost is comparable to n,
then predictions only provide a (non-tight) upper bound of cost.

Since the cost M is a geometric random variable, where the probability of
success of a trial is F,,((14€)rd), it is Pr{M = m} = (1—F,((14-€)rd))™ 1 F,((1+
e)rf), and the expected value of M is simply the inverse of the trial success
probability:

1 1

BIM) =2 mPr(M =m} = o o = m s R 0= (1= 57




As an example, by substituting the value of rgcm given by Eq. 4 into Eq. 6, it
is obtained:
1

1+~ (1-04")

Table 1 shows estimates and actual results for E[M] when the number of points

is n = 10% and D = 100.'% It can be observed that the € parameter has a strong
influence on the performance. Also the effects of the § confidence parameter are
in line with expectation, even if at this point it is not clear yet which is its
influence on the effective error. As expected, the analysis breaks down below a
certain value of €, whereas estimates are quite good in the other cases. When
€ > 0.2, PAC-NN reduces to randomly sampling a single object, this is to say that
in this case NN search is indeed meaningless. Asymptotic analysis of Equation
7 reveals that E[M] grows like O(né~!(1 + €)~7), thus linearly with n. From
this we conclude that the sequential algorithm is not suitable for (very) large
datasets, especially when € and § have both small values.

E[M] = (7)

el 6] 0.01 | 0.05 | 0.1 \ 0.2 | 0.5
0.01]  10° (982869)]  10° (952869)] 10° (843738)] 10° (663542)[533381 (391212)
0.05|756640 (470758)|148255 (154617)|72176 (71741)|34079 (33479)| 10971 (11944)
0.10] 7221 (7138)| 1415 (1410)] 689  (683)| 326  (327)] 105  (107)
0.20 2 (2) 1 (1) 1 (1) 1 (1) 1 (1)

Table 1. Expected costs and (in parentheses) actual results of the PAC-NN
sequential algorithm.

5 Experimenting the Index-based PAC-NN Algorithm

The PAC-NN algorithm for index-based search is described in Figure 6. As with
the AC-NN algorithm, lines 5 and 11 consider r/(1 + €) in place of r, whereas
the stopping condition based on r{ is at line 8. No other changes to the logic of
C-NN Optimal are needed.

In the experiments we present, each dataset is indexed by an M-tree and
results are averaged over 100 queries. We concentrate on uniform datasets, since
with clustered datasets both costs and effective errors are (much) lower, as ex-
pected. For simplicity, we approximate the query distance distribution, Fy(-),
with the overall distance distribution, F'(-), obtained by sampling the dataset at
hand. From a practical point of view estimation errors are minimal, as demon-
strated in [CPZ98a].1® The sample size is between 1% (for larger datasets) and

15 The table simply reports n if E[M] > n results from the analysis.
6 Alternatively, a better approximation of Fy(-) can be obtained by using the tech-
niques described in [CNP99].



Algorithm PAC-NN
Input: index tree 7, query object g, €, J, Fy(-);
Output: object p’, a (1 + €; §)-approximate nearest neighbor of g;

1. Initialize the priority queue PQ with a pointer to the root node of T;

2. Compute 7{; Let r = o0;

3. While PQ # 0 do:

4. Extract the first entry from PQ, referencing node N;

5. If dmin(g, Reg(N)) > r/(1 4 €) then exit, else read N;

6. If N is a leaf node then:

7. For each point p; in N do:

8. If d(q,p;) < r then: Let p’ = p;, r = d(g,p:); If r < (14 €)r then exit;
9. else: (N is an internal node)

10. For each child node N, of N do:

11. If dimin(gq, Reg(Ne)) < r/(1+¢€):

12. Update PQ performing an ordered insertion of the pointer to N.;
13. End.

Fig. 6. The index-based PAC-NN algorithm.

10% of the dataset size, and F(-) is represented by a 100-bins equi-width his-
togram. We only present results where the “cost” is measured as the number of
distance computations, since I/O costs (page reads) follow a similar trend.

PAC-NN Versus AC-NN Search. Figure 7 (a) contrasts PAC-NN and AC-
NN search costs in high-D spaces. It is clear that AC-NN queries (§ = 0) cannot
be issued at such high dimensionalities, whereas the cost of PAC-NN queries
remains quite low. Figure 7 (b) presents a more detailed analysis for the case
D = 40, which confirms that e alone is uneffective. On the other hand the cost
becomes highly dependent on € when § > 0 is used.
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Fig. 7. Cost of AC-NN and PAC-NN queries in high-D spaces. n = 10°. (a) As
a function of space dimensionality when € = 0.1; (b) As a function of € when
D = 40.

In low-D spaces both PAC-NN and AC-NN algorithms can be profitably



used. Figure 8 (a) shows that ¢ alone has a minimal influence on the cost,'”
and Figure 8 (b) confirms that PAC-NN search can exceed the error bound, the
average amount depending on the choice of §. The conclusion we can draw from
our experience is that in low-D spaces the two algorithms can be made to run
so as to obtain a similar tradeoff between cost and accuracy of the result.
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Fig. 8. Low-D spaces. (a) Cost; (b) Effective error.

Tuning PAC-NN Search. The following graphs aim to provide some guidelines
on how parameters of PAC-NN queries can be chosen in order to achieve a certain
tradeoff between the actual quality of the result, i.e. €.g, and the cost. In Figure
9 we plot “iso-cost” lines, each line joining pairs of (e,0) values that lead to
approximately the same cost, which provide a first intuition on how parameters
have to be chosen in order to obtain a given performance level. Figure 10 (a)
relates the effective error to the cost, with each curve referring to a different 0
value. The most important observation is that e.g is almost insensitive to the
specific choice of € and 0 values, provided the two parameters are chosen so as
to yield the desired cost (i.e. they belong to the given “iso-cost” curve). For
convenience, the values of § which guarantee to have €. ~ € are given in Figure
10 (b), for several values of the e parameter.
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Fig. 9. “Iso-cost” curves. D = 40.

' This does not contradict results in [AMNT], where much higher values of ¢ are
considered, up to € = 10.
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Fig. 10. (a) Effective error vs. cost; (b) 0 vs. €. In both cases it is D = 40.

A realistic scenario for an user issuing PAC-NN queries on a dataset for which
are available statistics of above kind is depicted in Figure 11. The user can either
specify a value for the effective relative error or limit the cost to be paid. In the
first case the system can first choose € =~ €. and then, from Figure 10 (b),
the appropriate value for §. In the second case these steps have to be preceded
by an estimate of €. based on Figure 10 (a). As an example, in order to have
€eff = 0.2, Figure 10 (a) predicts a cost in the range 800..1400, and Figure 10
(b) suggests to use ¢ ~ 0.1.

cost ——————= E¢ff
estimate the set the set the
effective error accuracy confidence
(Fig. 10 (a)) (e = € &ff) (Fig. 10 (b))

Fig.11. Flow diagram showimg how € and § values can be chosen to yield a
given performance level (effective error or cost).

Searching an Image Database. We have experimented the PAC-NN algo-
rithm on a real-world collection of 11,648 color images, represented as 45-
dimensional vectors obtained using the method described in [SO95] and com-
pared using the Euclidean distance. In general, for all the queries we tried, costs
were reduced up to 50% by using the PAC-NN algorithm. As to the quality of
the result, the general trend was that, even using quite high values of € and 9,
the correct NN was retrieved also by the PAC-NN algorithm. Figure 12 presents
two sample cases, with the query image shown in the left column and the NN in
the middle column. For the fox query the NN is also retrieved by the PAC-NN
algorithm as long as ¢ < 1 and § < 0.5. For higher values of the parameters
the PAC-NN search retrieves the image shown on the right, which however is
still semantically related to the query image. This is not the case for the turtle



query, even if now the correct result is more “stable”, staying unchanged up to
(e,0) = (1.5,0.5).

Fig. 12. (a) Query image; (b) C-NN and “good” PAC-NN; (c¢) “Bad” PAC-NN
obtained with (e,d) = (1,0.5) (fox query) and (1.5,0.5) (turtle query).

Sequential vs Index-based PAC-NN Search. We conclude by exhibiting
some results which contrast sequential and index-based PAC-NN algorithms.
Since, as discussed at the beginning of this Section, the index uses the overall
distance distribution (rather than the one specific of the query point at hand) to
determine the d-radius, the same procedure was used for the sequential search,
in order to guarantee fairness of comparison. Table 2 presents results for a 40-
dimensional dataset with 10° uniformly distributed points. The improvement
obtainable through indexing is always between 1-2 orders of magnitude, and
only reduces when the search becomes easier (i.e. for higher values of € and/or
4, not shown in the table), in which case however NN queries lose of interest, as
discussed in Sections 3.1 and 4.

el 6—] 001 | 005 | 01 | 05 |
0.113498 (93726)[5494 (69704)[3614 (66667)[849 (24741)
0.2| 3474 (67548)(1307 (31021)| 898 (20741){108 (4598)
0.3] 898 (21232)| 257 (4058)| 118 (2752)| 13 (555)

Table 2. Costs of index-based and (sequential) PAC-NN algorithms. n = 105,
D = 40.

6 Conclusions

In this work we have introduced a new paradigm for approzrimate similarity
queries, in which the error bound € can be exceeded with a certain probability



0, where both € and ¢ can be chosen on a per-query basis. We have shown that
PAC-NN queries can lead to remarkable performance improvements in high-D
spaces, where other algorithms would fail because of the “dimensionality curse”.
Our algorithms necessitate of some prior information on the distance distribution
of the query point, which, using results in [CPZ98a], can be however reliably
approximated by the overall distance distribution of the dataset. We have also
shown that it is indeed possible to exert an effective control on the quality of the
result, thus trading off between accuracy and cost. This is an important issue
which has gained full relevance in recent years [SGMC98].

Other approaches, besides the one proposed in [AMN™] and that we have
somewhat taken as a starting point, exist to support approximate NN search.
Indik and Motwani [IM98] consider a hash-based technique able to return a
(1 + e)-approximate NN with constant probability. Although interesting, this
technique is limited to vector spaces and L, norms, its preprocessing costs are
exponential in 1/e, and e needs to be known in advance. Also, no possibility to
control at query time the probability of exceeding the error bound is given. This
is also the case for the solution in [Cla97], which applies to exact NN search
over generic metric spaces, but whose space requirements depend on the error
probability.

We have argued and experimentally shown that, even if the “dimensionality
curse” can make NN queries meaningless when the distances between the in-
dexed objects and the query objects are all similar [BGRS99], there are indeed
relevant cases where this is not the case and, at the same time, known algorithms
show poor performance. PAC-NN queries and algorithms are best suited to these
situations, even if they can be profitably applied also to low-dimensional spaces.

We plan to extend our approach to k-nearest neighbors queries and to de-
velop a cost model for predicting the performance of PAC-NN queries. Another
interesting research issue would be to extend our results to the case of complex
NN queries, where more than one similarity criterion has to be applied in order
to determine the overall similarity of an object [Fag96, CPZ98b].
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