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Abstract

In this article, we review the major paradigms for ap-
proximate similarity queries and propose a classification
schema that easily allows existing approaches to be com-
pared along several independent coordinates. Then, we dis-
cuss the impact that scheduling of index nodes can have on
performance and show that, unlike exact similarity queries,
no provable optimal scheduling strategy exists for approxi-
mate queries. On the positive side, we show that optimal-
on-the-average schedules are well-defined. We complete by
critically reviewing methods for evaluating the quality of
approximate results.

1. Introduction

Similarity queries are a search paradigm which is prof-
itably used in a variety of modern applications. In its
essence, the problem is to find objects which are similar,
up to a given degree, to a given query object. In order to
assess the similarity between pair of objects, usually a no-
tion of distance is used, being understood that low values
of distance correspond to high degrees of similarity. More
formally, we are faced with the following problem: Given a
metric space M = (Ω, d), where Ω is a domain (the object
space) and d : Ω×Ω → <+

0 is a non-negative and symmet-
ric binary function that also satisfies the triangle inequal-
ity, and a data set of objects X ⊆ Ω, retrieve the object(s)
in X which are closest according to d to a user-specified
query object q ∈ Ω. Examples of metric spaces include
the D-dimensional vector space <D equipped with the Eu-
clidean distance L2 or the set Σ∗ of (finite length) strings
obtained from an alphabet of symbols Σ equipped with the
edit distance dedit (i.e., the minimum number of symbols
that have to be inserted, deleted or substituted in order to
transform a string into another). Typical similarity queries
include range queries (where all the objects in X whose dis-
tance to q does not exceed a user-specified threshold r are
requested) and k-nearest neighbors (k-NN) queries (where
the k objects in X which are closest to q are requested).

Since k-NN queries represent the most used type of similar-
ity queries (because the user can control the query selectiv-
ity, i.e., the cardinality of the result set), in the following we
will concentrate on this kind of queries.

Several access structures have been proposed to speed
up the resolution of similarity queries: They can be broadly
classified (depending on their field of applicability) as
multi-dimensional (or spatial) and metric access methods
(the former only apply when the feature space is a vector
space). Recent studies, however, have pointed out the fact
that using such access structures is sometimes not very ef-
ficient (e.g., when the feature space is a high-dimensional
vector space [31, 19]): In such cases, the most efficient way
to exactly solve similarity queries is to sequentially scan the
entire data set, comparing each object against the query ob-
ject q. Obviously, such solution is not viable for very large
data sets.

To speed-up the search it is common to offer to the user
a quality/time trade-off: If the user is willing to save search
time, she has to accept a degradation in the quality of the
result, i.e., an error with respect to the exact case. Approx-
imate similarity search, therefore, has the goal to reduce
search times for similarity queries by (possibly but not nec-
essarily) introducing an error in the result.

In this work we review existing approximate similarity
search techniques, proposing a classification schema (Sec-
tion 2) able to characterize them according to different as-
pects. The goal is to present an unified view over the differ-
ent approaches proposed in literature (Section 3). We then
discuss the important problem of scheduling (Section 4),
presenting original results on optimality of schedules. Fi-
nally, we review methods commonly used to evaluate the
quality of approximate results (Section 5) and conclude.

1.1. Why To Approximate?

Approximate similarity search has the goal of reducing
the cost of similarity queries by relaxing the correctness
constraint, i.e., the approximate result might contain ob-
jects which are not among the k NNs of the query object
q. The main rationale for providing the user with approxi-



mate techniques is (at least) threefold:

• First of all, a gap exists between the user-perceived
similarity and the one actually implemented via the
distance function. The “exact” result of a query, in
many cases, might actually be deemed incorrect by the
user, which would rather obtain a (possibly still not
correct) result in much less time; for instance, this is
commonly the case for similarity queries over multi-
media data [25].

• For the same reason, the process of similarity search
is typically iterative, because the user may be search-
ing (using a feedback cycle [3]) for the “correct” query
object or the “perfect” distance function for her current
information needs. In early stages of this process, the
user may just want to have a quick feel of what the data
set contains.

• Finally, even when both the distance function and the
query object are adequate, the user may still prefer
to quickly obtain a (good enough) approximate result
rather than to wait longer for the exact answer; for in-
stance, if the user is driving her car and running out
of fuel, getting as soon as possible information on the
location of a close gas station could be preferred over
waiting more time for the exact 1-NN.

The success of an approximate technique relies in solv-
ing the quality/time trade-off: Costs, measured as number
of computed distance values and/or accessed disk pages for
secondary memory structures, should be reduced as much
as possible, while still keeping a high quality of the result.
In the following, we denote the exact i-th NN of the query
object q in X as nni

X (q) and the i-th NN provided by an
approximate algorithm as ñn

i
X (q) (for simplicity, the algo-

rithm is understood in the notation).

2. A Classification Schema

Based on the observation that exact similarity search is
sometimes “difficult” (linear in the data set size), several
approaches have been proposed to solve the approximate
version of the problem. From an extensive analysis of the
literature, we observed that virtually every approach formu-
lates the approximate search problem in a new way, usually
unrelated to prior techniques. With the aim to help com-
paring existing approaches, in this Section we introduce a
schema able to classify them according to the following co-
ordinates:

1. The type of space the approach applies to.

2. How approximation is obtained.

3. The guarantees on the result quality.

4. The degree of interaction with the user.

The above coordinates have been chosen in order to eval-
uate the field of applicability of existing techniques for ap-
proximate similarity search. In fact, it is understood that if
a technique A is applicable only to a subset of the data to
which another technique B is applicable, then A is less gen-
eral than B. On the other hand, it could be the case that A
is more efficient or leads to lower errors: We are not inter-
ested in overall efficiency or accuracy of existing techniques
here, but only on how they are achieved and how they can
be measured.

2.1. Data Type

The first dimension we propose classifies techniques
based on the type of data they can be applied to. In this
light, the following possibilities are considered, in increas-
ing order of generality:

VSLp
(vector spaces, Lp distance) Techniques belonging

to this class can only be applied when the considered
objects are vectors in a D-dimensional space and the
distance used to compare them is an Lp metric (thus
no correlation between coordinates is allowed).1 Spe-
cific classes can be obtained by instantiating p (e.g.,
the class VSL2

contains techniques that only apply to
Euclidean spaces, i.e., when the distance used is the
L2 Euclidean metric). If p is not instantiated, then the
technique is applicable to any vector space with an Lp

metric, independently of the value of p.

VS (vector spaces) In this class fall all those techniques
that explicitly use objects’ coordinates (and are thus
only applicable to vector spaces), but do not make any
assumption on the distance used to compare vectors
(thus arbitrary functions can be chosen, e.g., quadratic
form functions where the distance between vectors is
defined by way of a positive definite symmetric ma-
trix [26]).

MS (metric spaces) Methods in this class are applicable to
the more general case of objects drawn from an arbi-
trary metric space.

As examples of the above classification method, we now
describe three approximations techniques, assigning each of
them to the proper class.

Example 1. Locality-Sensitive Hashing (LSH) [17] trans-
forms a D-dimensional vector p into a sequence of C bits

1We recall that the definition of the Lp distance between two
points x and y in a D-dimensional space is as follows: Lp(x, y) =(∑D

i=1 |x[i] − y[i]|p
)1/p

, 1 ≤ p < ∞, L∞(x, y) = maxD
i=1 |x[i] −

y[i]|.



(binary vector) v(p). Since the L1 distance between vectors
can be approximated by the Hamming (edit) distance be-
tween the corresponding binary vectors, LSH uses an hash-
ing technique to index only the binary vectors v(p). Of
course, both accuracy and efficiency of the technique highly
depend on the number C of bits used for approximating vec-
tors. Since approximation to the Hamming distance only
yields for the L1 metric, this technique is of class VSL1

.

Example 2. Approximate nearest neighbor search tech-
niques based on the VA-file [31] are presented in [30]. The
VA-file is a sequential structure containing approximations
of vectors based on a fixed number b of bits. Exact k-NN
search is performed by first executing a sequential scan of
the structure using the distance on vectors approximations,
which yields a number M > k of candidate bit vectors, and
then applying a refinement step, where the distance is eval-
uated on the corresponding real vectors and only the k clos-
est ones are kept. The techniques in [30] either reduce the
number of candidates by appropriately shrinking the query
radius (VA-BND) or avoid the refinement phase at all, thus
returning the closest k candidates (VA-LOW). Since no re-
striction is put on the distance to be used, both techniques
fall in the VS class.

Example 3. The P-Sphere tree [18] is a 2-level index struc-
ture for approximate 1-NN search. In order to find the near-
est neighbor of the query point, the leaf node closest to the
query point is accessed. The query is solved through a sim-
ple linear scan of objects contained in such node. In this
case, no assumption is made on the query distance to be
used (which, however, should be the same used to build the
tree) and no coordinates are used, thus this technique is clas-
sified as MS.

2.2. Approximation Type

Our second classification dimension concerns how ap-
proximate techniques are able to reduce costs for similarity
searches. The relevant cases to consider are:

CS (changing space) To this class belong approximate
methods that first change the metric space, either by
changing the distance used to compare objects or by
modifying the object space, then solve the exact prob-
lem on the so-obtained approximate space, where the
search is supposedly simpler. Examples of such tech-
niques are those that approximate vectors using a
fixed number of bits, or dimensionality reduction tech-
niques.

RC (reducing comparisons) Techniques in this class use
the exact distance to compare objects but reduce the
number of objects to be compared against the query
in order to obtain a speedup with respect to the exact

search. This can be achieved by exploiting two differ-
ent approaches (possibly both):

RCAP (aggressive pruning) Regions of the metric
spaces that are unlikely to contain results, but
cannot be excluded from an exact search, are
pruned by techniques in this class. Examples are
those techniques that prune regions of the space
using some probabilistic bounds.

RCES (early stopping) In this case, the search algo-
rithm is terminated before correctness of the re-
sult can be proved. This is similar to an aggres-
sive pruning of all the remaining objects/regions,
but is usually performed without considering
whether promising regions remain to be visited.
Early stopping is commonly performed by ex-
pressing a maximum cost to be paid or an accept-
able distance value to be reached.

Example 4. The VA-LOW technique discussed in Exam-
ple 2 belongs to the CS class, since the approximate results
are chosen by considering only their bit vector approxima-
tions.

Example 5. The BBD-tree [2] is a main memory index able
to answer to approximate k-NN queries in a time that is
poly-logarithmic in the number of objects in the data set.2

To reduce the number of tree nodes accessed, during the
search the query radius is reduced by a factor of ε with re-
spect to the radius used for exact search. Therefore, this
method can be classified as RCAP .

Example 6. Three different algorithms to solve approxi-
mate k-NN queries with M-tree [13] are presented in [32].
The first one reduces the current searching radius of the k-
NN query by a factor of ε, thus it applies aggressive prun-
ing (RCAP class). Another technique employs the dis-
tance distribution to stop the search when the probability
of finding a better result does not exceed a user-specified
threshold, while the third technique simply interrupts the
search when the improvement in the distance of the k-th
NN falls below a threshold (the two latter approaches are in
the RCES class).

Example 7. The technique proposed in [16] combines clus-
tering and dimensionality reduction to approximate k-NN
search. During the search, only the clusters which are clos-
est to the query are considered and, for all the points in such
clusters, only a fraction of dimensions is used to assess the
distance to the query. To improve accuracy, the user can
increase the number of visited clusters and/or the fraction
of considered dimensions. This technique, therefore, com-
bines characteristics of both classes CS (since only some

2However, the dependency on the space dimensionality D is exponen-
tial.



dimensions are used) and RCES (since only some clusters
are explored).

2.3. Quality Guarantees

Having determined how approximate techniques are able
to reduce costs, it is worth considering whether each method
is able to bound from below the quality of its results. In
other words, we are asking if an approximate technique can
guarantee that its errors stay below a given value.3 The clas-
sification we give is as follows:

NG (no guarantees) In this class fall all those methods
that only use heuristic conditions to approximate the
search; thus such methods are not able to give any for-
mal bound on the error introduced by the approxima-
tion.

DG (deterministic guarantees) Techniques in this class are
able to deterministically bound from above the error
introduced by approximation.

PG (probabilistic guarantees) Approximate methods fol-
lowing this approach give probabilistic guarantees on
the quality of query result. Usually this means that
quality guarantees are met only for a given percent-
age (< 100%) of the queries. To achieve this goal, in-
formation about distribution of data is needed. In this
light, techniques belonging to this class can be further
divided into two basic types according to how much it
is known about objects’ distribution [23].

PGpar (parametric) Approaches in the parametric
class assume that the data set follows a certain
distribution; the only unknown information con-
cerns a few parameters that need to be estimated
(e.g., through sampling). Of course, when the
considered objects do not follow the modeled
distribution, quality guarantees cannot be met.

PGnpar (non-parametric) In this case, little (or none
at all) assumptions are made on the distribution
of objects, so that such information has to be es-
timated and stored in a suitable way (e.g., using
histograms).

Example 8. The third technique proposed in [32] (see Ex-
ample 6), where the search is stopped when the distance
improvement falls below an user-specified threshold, is in
the NG class, because no guarantees can be given on the
accuracy of the approximate result.

3In Section 5, we make more precise the issue of evaluating errors of
approximate results.

Example 9. The algorithm for approximate search pro-
posed for BBD-trees in [2] (see also Example 5), and
the first technique proposed in [32] both use a value
ε to reduce the query radius during the search. In
both cases, it is guaranteed that the error, measured as

d
(
q, ñn

1
X (q)

)
/d
(
q, nn1

X (q)
)
− 1, cannot exceed ε, thus

both techniques belong to class DG.

Example 10. DBIN is a 2-levels index for solving the k-NN
problem [4]. The method assumes that the data set is com-
posed of K clusters, and that distribution of objects within
each cluster can be modeled by way of a Gaussian distribu-
tion, parameterized by a mean vector and a covariance ma-
trix. At query time, the cluster that best fits the query object
is found, and the result is computed by considering objects
in that cluster. Then, remaining clusters are accessed iff the
probability that the k-NN have not been found yet is higher
than a user-specified threshold. Such probability is com-
puted by relying on the assumption of a Gaussian model,
with parameters estimated at index construction time. Since
the correct result is found only with high probability and a
Gaussian distribution is assumed (where mean and covari-
ance have to be estimated), DBIN is in the PGpar class.

Example 11. The PAC (Probably Approximately Correct)
technique proposed in [12] is a paradigm for approximate
1-NN search with metric access methods, where the error
(computed as in Example 9) is allowed to exceed the user-
specified accuracy threshold ε with a probability limited by
the user-specified confidence value δ. To guarantee this,
the distance between the query objects and its 1-NN is es-
timated from the distance distribution [14] of indexed ob-
jects. Since this is not known at query time, it is estimated
through sampling and stored in a histogram. By above con-
siderations, this technique can be classified in the PGnpar

class.

2.4. User Interaction

The last classification we propose relates to the possibil-
ity given to the user to specify, at query time, the parame-
ters for the search (e.g., the maximum error allowed). Some
techniques, in fact, are inherently static, in the sense that a
structure is built by using a set of parameters to offer some
guarantees: If the user wants to change, for example, the
accuracy of the result, she has to modify the value of the
parameters and to rebuild the structure from scratch. Other
methods, on the other hand, exploit a single structure that is
not bound to any parameter and can be used with different
sets of parameters, according to current user’s needs.

SA (static approach) When using a technique in this class,
the user cannot freely choose the set of parameters for
query approximation, but is bound to those specified



when the (approximate) structure is built. Usually,
to provide several quality of result profiles, different
structures are built, using different sets of parameters,
and the user is given the possibility to choose the struc-
ture that best fits her actual needs.

IA (interactive approach) Methods in this class are not
bound to a specific set of parameters, but can be in-
teractively used by varying such parameters at query
time. Usually, interactive techniques are obtained as
modifications of the exact similarity search method,
which can be obtained by requesting a maximum er-
ror of 0%.

Example 12. In the P-Sphere technique presented in [18]
(see Example 3), the size of leaf nodes, i.e., the number of
objects in each data page, is estimated by taking into ac-
count a user-specified accuracy. Of course, if the accuracy
parameter is changed, the P-Sphere tree has to be rebuilt
from scratch. Therefore, this method is static and belongs
to the SA class.

Example 13. The generalized NN search proposed in [19]
is a new approach for high-dimensional NN search. The
key idea here is to find (at query time) a suitable projection
to reduce the space dimensionality; then, the NN search is
performed on the reduced space using the original distance
function and projected points. Of course, the higher the
value of the dimensionality D′ of the reduced space, the
better accuracy is obtained by this technique. Since the user
can specify, at query time, the value of D′, this method can
be classified as IA.

3. Some Relevant Cases

In Table 1, the schema introduced in Section 2 is used
to classify approaches for approximate similarity search
presented in recent years. In order to appreciate how the
schema can contribute to synthetically characterize existing
approaches, in the following we discuss a few of them in
more detail.

FastMap [15]: (MS,CS,NG,SA) The FastMap tech-
nique [15] has been proposed as a tool for mining and vi-
sualizing metric data sets. In its essence, the FastMap algo-
rithm is able to map a set of objects drawn from a generic
metric space to a D′-dimensional Euclidean space, where
D′ is a user-specified value, such that distances between
objects are preserved as much as possible. Of course, this
approach can also be used for approximate searching, since
performing a similarity search in the target D′-dimensional
space can be viewed as an approximate search in the origi-
nal metric space. Since the method applies to general met-
ric spaces, it belongs to the MS class; the transformation

of the space leads to a transformation of the distance used
to compare objects, thus this technique is in the CS class;
in the paper, the authors give no guarantee on the error in-
troduced for distance in the target space,4 hence the quality
guarantee class is NG; finally, as for user interaction, the
mapping in the D′-dimensional space has to be performed
before any index structure is built on the transformed ob-
jects, thus FastMap falls in the SA class.

DBIN [4]: (VS,RCES ,PGpar, IA) The DBIN (den-
sity based indexing) method was presented in [4] as an
approach to solve approximate similarity queries in high-
dimensional spaces. The basic assumption is that the distri-
bution of objects in the space can be modeled as a mixture
of Gaussian distributions. Each point, therefore, can be as-
sociated to a cluster, parameterized with a mean vector and
a covariance matrix, by using an expectation-maximization
algorithm. When searching for the NN of a query point,
the clusters obtained in the building phase are ranked ac-
cording to the probability that the query point belongs to
them; then, each cluster is accessed (and points in that clus-
ter compared to the query) until the probability that the NN
has not been found falls below an user-specified tolerance.
Since no assumption is made on the distance used to com-
pare vectors (even if analytical results are given only in the
case of quadratic form distance functions), this method falls
in class VS; the search is early terminated by using data
distribution, thus the class of this technique is RCES ; as
for quality guarantees, this technique assumes that indexed
objects are distributed in clusters according to a Gaussian
distribution, for which the mean and the covariance are es-
timated in the building phase, hence this method belongs to
class PGpar; since the user can specify the tolerance pa-
rameter, used when stopping the search, this method is in
class IA.

PAC [12]: (MS,RC,PGnpar, IA) PAC (probably ap-
proximately correct) nearest neighbor queries, introduced
in [12], represent a probabilistic approach to approximate
1-NN search in metric spaces, where the error in the result
can exceed a specified accuracy threshold ε with a prob-
ability that is limited by a confidence parameter δ. The
PAC paradigm can be applied to any distance-based (either
multi-dimensional or metric) index tree that is based on a re-
cursive and conservative decomposition of the space (thus,
it is in MS class). The only information that is needed by
the algorithm to prune index nodes from the search is the
value of rδ(q), the maximum value of distance from the
query object q for which the probability that the exact NN

4The error between exact distances and distances between transformed
objects can be limited, for the relevant case of vector spaces, by exploiting
the Johnson-Lindenstrauss lemma. However, for the general case of metric
spaces, no general rule has been proposed so far.



name
data
type

approximation
type

quality
guarantees

user in-
teraction

LSH [17] VSL1
CS PGnpar SA

Clustering+Precision [6] VSL2
RCAP PGnpar SA

AB-tree [24] VSL2
RCAP PGpar IA

BBD-tree [2] VSLp
RCAP DG IA

VA-LOW [30] VS CS DG SA

DBIN [4] VS RCES PGpar IA

Generalized Search [19] VS CS DG IA

VA-BND [30] VS RCAP PGnpar IA

Integrated Progressive Search [16] VS CS, RCES NG IA

Clindex [22] VS RCES NG IA

VQ-index [27] VS CS, RCES NG IA

Buoy indexing [28] VS RCES NG IA

CSVD [9] VS CS NG IA

FastMap [15] MS CS NG SA

MetricMap [29] MS CS NG SA

P-Sphere tree [18] MS RCAP PGnpar SA

M-tree: Relative Error [32] MS RCAP DG IA

M-tree: Good Fraction [32] MS RCES NG IA

M-tree: Improvement Slowdown [32] MS RCES NG IA

PAC [12] MS RC PGnpar IA

Distinctive NN [21] MS RCES PGnpar IA

Probabilistic Proximity Search [10, 11] MS RCAP PGnpar IA

Proximity-based [1] MS RCAP DG IA

Probabilistic Incremental Search [8] MS RCES NG IA

Genetic Search [7] MS RC NG IA

Table 1. Classification of approaches for approximate similarity search.

of q has a distance lower than r is not greater than δ:

rδ(q) = sup{r|Pr{d
(
q, nn1

X (q)
)
≤ r} ≤ δ} (1)

In the paper, this value is estimated by using the distance
distribution of indexed objects with respect to the query
object (obtained through sampling and stored as an his-
togram); it is therefore clear that this approach is proba-
bilistic and non-parametric (PGnpar class). The distance
used to query the distance-based index structure is the exact
one, the approximation is introduced by reducing the num-
ber of object to be compared against the query object q by
means of rδ(q) and of the ε parameter, thus the class of this
approach is RC (actually, both RCAP and RCES); finally,
since the accuracy and the confidence parameters (ε and δ,
respectively) can be specified at query time, this technique
belongs to the IA class.

VA-BND [30]: (VS,RCAP ,PGnpar, IA) Two approx-
imate query evaluation techniques are presented in [30] for
the VA-File. The VA-File structure [31] approximates vec-
tors using a fixed number of bits, and stores such approxi-

mations in a file. For exact k-NN search, the approximation
file is sequentially scanned to exclude vectors that cannot be
in the result set through the computation of bounds on exact
distances (such scan is very fast since the computation of
bounds between approximations has to consider only a few
bits); finally, exact vectors corresponding to approximations
included in the result of the previous scan (the “candidate bit
vectors”) are compared against the query point to compute
the final result. Since the approximations of the VA-File
are only applicable to vector spaces and any distance can be
used to compare vectors (even if computation of bounds can
be a difficult task if complex metrics are used), all approxi-
mate techniques developed for this structure fall in the VS

class.

The first approach to reduce the complexity of similarity
searching in the VA-File through approximation proposes
to adapt the computation of distance between approximate
vectors. The user is given the possibility to specify a value α
to adapt computed bounds: Higher values of α correspond
to higher errors in the result, but the candidate set will con-
sist in a lower number of vectors. Since the approximation



is introduced in the computation of bounds and not on the
exact distance, this technique can be classified as RCAP .
The number of vectors missed can be computed as a func-
tion of the distance distribution between objects, thus this
technique can give probabilistic guarantees as a function
of the parameter α; therefore, the class for this method is
PGnpar. Finally, since the parameter α can be specified at
query time, the VA-BND technique is in class IA.

VA-LOW [30]: (VS,CS,DG,SA) The second approx-
imate technique for the VA-file (also presented in [30])
completely omits the refinement phase and returns, as the
approximate result, the k vectors corresponding to the best
candidate bit vectors. Since in this case errors in the re-
sult arise from using the approximate vectors instead of the
exact ones, this method can be classified as CS. The er-
ror can be controlled by means of the quantity of bits used
for the approximations: The more bits are used, the better
the approximation but the slower the sequential scan. Since
a bound on the error between the distance on approximate
vectors and the exact distance can be easily computed, this
technique falls in the DG class. As for the interaction with
the user, it is clear that the only parameter used, i.e., the
number of bits used for vectors’ approximation, has to be
specified before the actual VA-File is built, so that the class
for this technique is SA.

Probabilistic Proximity Search [11]:
(MS,RCAP ,PGnpar, IA) The technique described
in [10, 11] is basically an adaptation of search radius
reduction to pivot-based searching algorithms.5 The
novelty here is that the reduction of the search radius is not
specified by the user, but calculated by using the (inverse
of the) distance distribution so as to provide a probabilistic
guarantee on the approximate result. This can be classified
as follows: MS (because pivot-based algorithms are
applicable to generic metric spaces), RCAP (aggressive
pruning is used by reducing the search radius), PGnpar

(guarantees on the result quality are probabilistic and non
parametric), and IA (a regular pivot-based index is used
and the confidence level can be expressed by the user at
query time).

3.1. Comments and Extensions

We believe that the proposed classification schema can
be very fruitful for the analysis of approximate techniques
for similarity search. By using such schema interesting rela-
tions and similarities between techniques can be found that
may not be evident at a first sight. As an example, consider

5Although only the range search algorithm is given by the authors, the
technique can be easily extended to k-NN queries.

the PAC and the VA-BND techniques: Both are classified
as belonging to the RC, PGnpar, and IA classes, the only
difference being in the fact that VA-BND only applies to
vector spaces. Indeed, at a closer look, these two method
share several analogies:

• In both cases the approach requests for an additional
parameter (ε and α, respectively) representing the
quality of the result the user is willing to obtain. The
lower the value of the parameter, the lower the error
and the higher the search costs.

• Both methods use information about the distance dis-
tribution in order to estimate the distance between the
query object and its nearest neighbor.

• In both cases the distance distribution and the parame-
ter are jointly used to derive bounds to stop the search.

In the same way, one could discover that similarities exist
between these two approaches and Probabilistic Proximity
Search.

It is clear that, by using the proposed classification
schema, we are able to immediately understand the field
of applicability of a particular approximate technique. In
this way, we can conceive whether, for example, a method
is more general, i.e., it applies to a superset of scenarios
with respect to another, or how its quality measures relate to
those proposed for other techniques. In search for the “best”
approximate technique for a specific scenario at hand, in
fact, different aspects are to be considered, in particular the
generality/efficiency trade-off: A more general method is
expected to have a lower efficiency (i.e., to lead to higher
search costs or to worse quality) with respect to a method
that applies to a lower number of cases; for example, this
could apply when considering methods for metric spaces
or just for vector spaces. The same considerations can be
made when dealing with quality guarantees: Parametric ap-
proaches usually attain better performance with respect to
non-parametric ones, yet they are only applicable to particu-
lar distributions of objects. On the other hand, deterministic
techniques provide stronger quality guarantees than proba-
bilistic ones, yet they usually incur higher costs [12]. Fi-
nally, it is clear that interactive approaches are more gen-
eral than static ones, since the user is given the possibility
to choose at query time the desired quality of the result,
which is inversely related to search costs needed to obtain
the approximate result.

4. Optimal Approximate Similarity Search

Having discussed how several coordinates can help in
better understanding the scope of an approximate similar-
ity technique, now we turn back to the basic problem that



any technique has to face, i.e., optimizing the quality/time
trade-off. As seen, this ultimate goal can be approached
in several ways. To start simple, here we concentrate on
RCES techniques, thus assuming that cost reduction is ob-
tained by stopping earlier with respect to an exact search.
Further, we assume that early stopping is the only difference
with respect to exact search (i.e., the original object space is
considered and no aggressive pruning technique is applied).
As a consequence, we view the problem as an on-line pro-
cess, in which the exact result is eventually reachable if
enough time is allocated. Besides the intrinsic attractive-
ness of an on-line scenario, in which the quality of results
can be improved over time, this allows approximate search
to be viewed as a generalization of exact one. Indeed, the
user has the possibility to suspend the search process by
means of a specific stopping condition (e.g., minimum dis-
tance or maximum cost), and to resume it (without starting
from scratch) if she is unsatisfied with the current result.

Given the above, it is therefore natural to ask whether,
given a stopping condition, an approach is able to provide
the best possible result, i.e., the least cost for reaching a
certain distance threshold θ or the minimum distance after
a given cost c has been paid. Surprisingly enough, very few
approaches consider this important problem. In the follow-
ing, we provide optimality results for on-line approximate
queries, i.e., we show how it is possible to obtain the best
results as early as possible.

We consider an 1-NN search over a 2-levels index that
organizes objects in X as a collection of n nodes (nodes
can contain just 1 object, so flat structures are included in
this description), since this is the scenario more amenable
to be formally characterized. For each node Ni, a compact
representation of Ni is provided by the tree (for example,
the center xi and the radius ri for a ball-partitioning index,
like M-tree [13]). The search algorithm accesses the nodes
according to a scheduling policy Π until the stopping con-
dition is met or all nodes have been accessed (or pruned).
The schedule Π can thus be viewed as a permutation of the
set {1, . . . , n}:

Π = (Π1,Π2, . . . ,Πi, . . . ,Πn)

where NΠi
is the leaf that schedule Π will fetch at step i.

In order to build Π, information about the query q and the
compact representation of each node Ni provided by the
tree are used: For example, the MINDIST policy [5, 20]
orders nodes for increasing values of the lower bound of
the distance between q and any object in Ni (this equals
max{d (q, xi) − ri, 0} for a ball-partitioning index). We
suppose, as is commonly the case, that the position of each
node Ni in the schedule Π depends on the query and on
the statistics of Ni provided by the tree, thus Π does not
change during the search. In the case scheduling of nodes
also depends on the current approximate result, the order

of nodes should be dynamically adjusted each time a better
approximate result is found.6

To start with, we precisely define what an optimal sched-
ule for approximate search is. In order to compare two
schedules one can either fix the maximum distance, θ, and
look at the costs paid to get such quality, or, going the other
way, compare the results obtained when a certain cost c is
paid.

Definition 1 (Optimal Schedule for Query q). Let T be an
index tree over a data set X ⊂ Ω, and q ∈ Ω a query point.

We say that schedule Π cost-dominates at distance level
θ schedule Π′ iff Cost(q; Π, θ) < Cost(q; Π′, θ), where
Cost(q; Π, θ) measures the (minimum) cost paid for query
q to return a result with distance ≤ θ adopting Π. Schedule
Π is cost-optimal for q at distance level θ iff there exists no
schedule Π′ that cost-dominates Π for that query at level
θ and is cost-optimal for q iff it is cost-optimal for q at all
distance levels.

Similarly, schedule Π distance-dominates at cost level c
schedule Π′ iff d(q; Π, c) < d(q; Π′, c), where d(q; Π, c) is
the distance of the 1-NN for query q when the search pays
a cost ≤ c adopting Π. Schedule Π is distance-optimal for
q at cost level c iff there exists no schedule Π′ that distance-
dominates Π for that query at level c and is distance-optimal
for q iff it is distance-optimal for q at all cost levels.

Example 14. Consider the two schedules in Figure 1:
Schedule Π1 cost-dominates Π2 at distance level θ1,
whereas the opposite is true at distance level θ2; also, Π1

distance-dominates Π2 at cost level c1 and is dominated by
Π2 at cost level c2.

cost

distance

c1 c2

Π1

Π2

 θ1

θ2

Figure 1. Comparing two schedules.

Our first result states that the two notions of optimality
in Definition 1 coincide.

Lemma 1. A schedule Π is cost-optimal for q iff it is
distance-optimal for q.

6This happens with the scheduling proposed in [1], which however in-
curs high costs for managing the queue of nodes and yields almost the
same results as a fixed schedule (G. Amato: personal communication).



Proof. Let Π be distance-optimal for q. Assume by contra-
diction that Π is not cost-optimal, i.e., there exists a distance
level θ′ and a schedule Π′ such that c′ = Cost(q; Π′, θ′) <
c = Cost(q; Π, θ′). By definition of cost, for any value
less than c the distance obtainable from Π is higher than
θ′. It follows that the distance of Π at cost level c′ < c
is larger than θ′. This contradicts the hypothesis that Π
is distance-optimal. Proving that cost-optimality implies
distance-optimality follows similar arguments.

Because of the above lemma, it is possible to just say
that a schedule is optimal for q. Unfortunately, we have the
following negative result.

Lemma 2. For any query q there exists no optimal schedule
for q.

Proof. First observe that in no case we can completely de-
termine the content of a node Ni (and, in particular, the
distance value of the closest point to q in Ni) before access-
ing Ni. Consider now two distinct data sets, XA and XB ,
leading respectively to index trees TA and TB , each having
just two leaf nodes (NA1 and NA2, NB1 and NB2, respec-
tively). The NN of q is in NA1 for XA and in NB2 for XB .
Assume also that, from the query q point of view, the statis-
tics of NA1 equal those of NB1 and the statistics of NA2

equal those of NB2, i.e., q in both cases would “see” the
same tree. Then, any scheduling policy will act the same
on both trees. Assume Π is an optimal schedule for q and,
without loss of generality, that Π first fetches node NA1 in
TA and NB1 in TB . Consider now Π′ that orders nodes in
the opposite way. Since Π′ performs better than Π on TB ,
this contradicts the hypothesis that Π is optimal.

Arguments used in the proof of above lemma can also be
applied to show that neither cost-optimality nor distance-
optimality can be obtained for any distance/cost level. It
is also interesting to observe that this holds even for the
0 error case, in spite of the I/O-optimality (proved in [5,
20]) of the MINDIST policy that orders nodes by increasing
values of the lower bound on distances between the query
q and objects in each node Ni. Indeed, although MINDIST

minimizes the number of I/Os of any provable exact search,
this does not imply that MINDIST is the schedule that can
return earlier the exact result in an online search. As also
observed in [12], the hard problem in exact k-NN search
is not locating the nearest neighbors, but reaching the stop
condition that guarantees correctness of the result.

4.1. Optimal-on-the-Average Schedules

Because of above results, one needs to somewhat relax
the optimality requirements. Therefore, here we consider
schedules that, although not necessarily optimal for a query,
are optimal-on-the-average. A schedule Π that is either

cost- or distance-optimal-on-the-average has the property
that no other schedule Π′ performs better than it when a
random query is considered.

Theorem 1. The cost- and distance-optimal-on-the-
average schedules are incrementally obtained by choosing
at each step j the node that, among the unread nodes Ni,
maximizes the quantities listed in Table 2 (where Gi (r)
is the distance distribution of the 1-NN of q in node Ni,
Gi (r) = Pr{d

(
q, nn1

Ni
(q)
)
≤ r}, and d+ denotes the

maximum distance value for d).

Type of
optimality

cost-optimal distance-optimal

Scenario
given θ, minimize
avg. cost

given c, minimize
avg. distance

Quantity to
maximize
at each step

Gi (θ)
∫ d+

0
Gi (r) dr

Table 2. Deriving optimal-on-the-average-
schedules.

Proof. The formal proof requires the precise definition of
a cost model for on-line approximate search. Due to space
limitation, we only offer an intuitive sketch: A cost-optimal
schedule should choose, at each step, the node maximiz-
ing the probability of finding a point whose distance to q is
not higher than θ, i.e., the one maximizing Gi (θ). On the
other hand, a distance-optimal schedule has to minimize the
distance to the 1-NN at each step, thus one should choose
the node that minimizes the expected 1-NN distance to the
query, which can be expressed as [14]:

E
[
d
(
q, nn1

Ni
(q)
)]

= d+ −

∫ d+

0

Gi (r) dr

To conclude, we discuss approaches that take into ac-
count the node scheduling, showing how they can be viewed
as a special case of our results. We first consider the
MINDIST schedule which, as we saw, is optimal for exact
k-NN search [5, 20]: If we take the optimistic case, where
all the mass probability Gi () of node Ni is concentrated
in the MINDIST value between Ni and q, then ordering on
MINDIST values indeed coincides with minimizing the ex-
pected 1-NN distance. In the DBIN approach [4], nodes
are ordered for decreasing values of the probability to find
a better result: This is the same as maximizing the value
of Gi (r), where r is the distance between q and its current
1-NN (note that DBIN is not an on-line algorithm). Finally,



we note that the importance of node scheduling has been
first addressed in [8], where an on-line algorithm is pro-
posed. However, no formal result is given and used strate-
gies are only based on heuristic considerations.

5. Evaluating the Quality of Results

A fundamental problem regarding the evaluation of ap-
proximate searching algorithms is how the quality of at-
tained results is assessed. This is commonly obtained by
comparing the results of approximate and exact algorithms.
In this particular aspect, the lack of a common frame-
work for the definition of approximate search techniques
is plainly manifest, especially for the case of k-NN queries
with k > 1. In this case, in fact, virtually every technique
published in literature proposes its own definition of result
quality. All such measures, however, conform to one of the
following general families:

Ranking-based This class contains those measures that use
comparisons in ranking of objects between approx-
imate and exact results. To this end, the function
rank(p) is used to return the rank of object p in the
exact result, i.e., if p is the i-th NN of q in X , it is
rank(p) = i.

Distance-based In this case, the quality of result is defined
by comparing the distance to the query of exact and
approximate results.

Clearly, in order to compute the rank of a point the cor-
rect ranked list of all the objects of X has to be provided,
thus ranking-based measures are usually very expensive to
compute. Examples of performance measures are included
in Table 3.

Limits of above-described quality measures are high-
lighted by the following example.

Example 15. In Table 4 we consider the result provided by
an approximate algorithm for four different queries over a
data set X of cardinality N , where the distance between the
queries and its 1-NN is constant, d

(
qi, nn1

X (qi)
)

= 1,∀i.

q1 q2 q3 q4

d
(
qi, ñn

1
X (qi)

)
2 2 100 100

rank(ñn
1
X (qi)) 2 100 2 100

Table 4. Results provided by an approximate
algorithm for four different queries.

By comparing results over the different queries, it is clear
that the highest quality is obtained for q1, since the error on

distance is low, as is the difference in ranking. The worst re-
sult is obtained for q4, having highest errors in both distance
and ranking, whereas the quality for q2 and q3 is similar and
lies in between such extreme values. However, if we only
consider a ranking-based measure, q3 has the same quality
(the best) as q1, whereas, with a distance-based measure, q3

shares the worst quality value with q4. In a similar way, with
ranking-based (respectively, distance-based) measures, q2

has the worst (resp. best) result.

Considerations included in Example 15 show that a
“good” definition for the quality of an approximate result
should take into account both the ranking and the distance
criteria. A natural choice is to combine the two measures
in order to obtain a value in the interval [0, 1], with values
close to 1 indicating a result close to the exact one. A pos-
sible definition of quality for a 1-NN approximate query is
therefore the following:

Q =

(
1 −

rank(ñn
1
X (q)) − 1

|X|

)
·

d
(
q, nn1

X (q)
)

d
(
q, ñn

1
X (q)

) (2)

Using such definition it is immediate to compute the quality
for the four data sets considered in Example 15. By refer-
ring to values included in Table 4, it is:

q1 q2 q3 q4

Q N−1
N

· 1
2

N−99
N

· 1
2

N−1
N

· 1
100

N−99
N

· 1
100

Equation 2 can be generalized to Qi =(
1 −

rank(ñni
X(q))−i

|X|

)
·

d(q,nni
X(q))

d(q,ñni
X(q))

for the i-th NN.

The overall quality for an approximate algorithm over a
k-NN query can then be assessed by combining the Qi

values, e.g., by averaging them: Q = 1
k

∑k

i=1 Qi.
As a final observation, it is important to bear in mind that

specific application requirements might favor a quality mea-
sure over other ones. For instance, in the simple example in
Section 1.1 in which the problem is to obtain as soon as
possible information on a close enough gas station, it is ev-
ident that ranking-based measures are inappropriate, since
the user is only concerned with the distance to be traveled.

6. Conclusions

In this paper we have introduced a schema for classify-
ing approaches to the approximate similarity search prob-
lem and have shown how many techniques that appeared in
the literature can be consequently organized. In perspec-
tive, we believe that such schema can be profitably used by
other researchers. We have also discussed the relevance of
two, often underestimated, facets of the approximate search
problem, namely scheduling of index nodes and measures



measure definition type
range
(worst,best)

used in notes

Precision/recall p = 1
k
·
∑k

i=1

{
0 if rank(ñni

X (q)) > k

1 otherwise
ranking (0,1) [2, 28, 9, 1, 8, 29]

Normalized rank sum nrs =
k(k+1)

2·
∑

k
i=1

rank(ñni
X

(q))
ranking (0,1) [30]

Ratio of false dismissals rfd = 1
k
·
∑k

i=1

{
1 if rank(ñni

X (q)) > k

0 otherwise
ranking (1,0) [4, 30, 6] rfd = 1 − p

Error on position EP =
∑k

i=1 rank(ñni
X (q))−i

k·|X|
ranking (1,0) [1]

Effective error εeff =
d(q,ñn1

X (q))
d(q,nn1

X
(q))

− 1 distance (∞,0) [2, 17, 12, 24, 11]

Relative distance error ε = 1
k
·
∑k

i=1

(
d(q,ñni

X (q))
d(q,nni

X
(q))

− 1

)
distance (∞,0) [32] avg. of εeff

Total distance ratio DR =
∑k

i=1 d(q,nni
X (q))∑

k
i=1

d(q,ñni
X

(q))
distance (0,1) [16, 27]

Table 3. Performance measures for approximate similarity search.

for assessing the quality of the results. Even if limited to
a specific class of approximation techniques, our formal re-
sult on optimality of schedules has to be viewed as starting
point upon which more general theories could be built in the
future. Finally, we would like to stress the importance of us-
ing significant quality measures when comparing different
approximate techniques; in particular, specific needs of the
domain at hand should be the guide in the quest towards the
best quality measure.
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