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Abstract. The proliferation of powerful mobile devices with built-in 
navigational capabilities and the adoption in most metropolitan areas of fast 
wireless communication protocols have recently created unprecedented 
opportunities for location-based advertising. In this work, we provide models 
and investigate the market for location-based sponsored search, where 
advertisers pay the search engine to be displayed in slots alongside the search 
engine’s main results. We distinguish between three cases: (1) advertisers only 
declare bids but not budgets, (2) advertisers declare budgets but not bids, and 
(3) advertisers declare both bids and budgets. We first cast these problems as 
game theoretical market problems, and we subsequently attempt to identify the 
equilibrium strategies for the corresponding games. 
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1 Introduction 

The growing popularity of powerful and ubiquitous mobile devices has recently 
created an immense potential for location-based advertising (LBA) [5]. Smartphone 
use is rapidly increasing in all parts of the world; in the US only, its penetration is 
currently approaching 50% of all mobile subscribers, while around 60 percent of the 
new phones in 2011 were smartphones1. This development has certainly been 
facilitated by the adoption of broadband wireless protocols, e.g., 3G/4G networks, and 
the prevalence of Wi-Fi hotspots. Moreover, modern mobile devices possess built-in 
navigational functionalities using variations of sophisticated technologies such as 
triangulation, GPS, and cell-ID [5]. Advertisers can utilize this positional information 
to send advertising material to relevant consumers, which has in turn created an 
exciting market for LBA with companies such as AdMob (acquired by Google) and 
Quattro Wireless (acquired by Apple) leading the charge. 

Location-based advertising, especially in its mobile form, is poised for tremendous 
growth because of its special characteristics [1]. First, it enables personalization:  

                                                           
1  See http://www.informationweek.com/news/mobility/business/ 
231602163 
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a mobile device is associated with the identity of the user so the advertising material 
can be individually tailored. For example, users can state their preferences, or even 
specify the kind of advertising messages they are interested in. Second, it is context-
aware, i.e., the advertising messages can take into account the context such as time 
and location. Third, mobile devices are portable and allow instant access: users carry 
their device most of the time, and advertisers can target interesting consumers any 
time of the day. Finally, mobile advertising can be interactive since it is possible to 
engage the user to discussions with the advertiser; this can also serve as a means of 
market research. As a result of the aforementioned reasons, marketers can reach their 
audience of interest in a much more targeted, personal and interactive manner, and 
thus increase their advertising campaign’s success. 

On the other hand, currently the most profitable and thriving business model for 
online advertising is sponsored search advertising; Google’s total revenue alone in 
fiscal year 2010 was $29.3 billion and mainly came from advertising2. Sponsored 
search consists of three parties [12]: (i) users pose keyword queries with the goal of 
receiving relevant material; (ii) advertisers aim at promoting their product or service 
through a properly designed ad, and target relevant users by declaring to the search 
engine a set of keywords that capture their interest; (iii) the search engine mediates 
between users and advertisers, and facilitates their interaction. As several advertisers 
may match a given user query, an auction is run by the search engine every time a 
user poses a query to determine the winners as well as the price per click. Concretely, 
each advertiser declares to the engine a priori its bid for a given keyword, so the 
auction assigns ad slots to advertisers based on their bids. 

In this work, inspired both by the success of sponsored search advertising and the 
immense potential for LBA, we study the promising area of location-based sponsored 
search advertising. In particular, we examine how the spatial component can be 
incorporated into the current sponsored search models, and investigate algorithms for 
selling advertising opportunities to advertisers. Similar to prior literature on 
conventional sponsored search advertising [8], in order to model the advertisers we 
distinguish between the three following cases: (1) the advertisers declare a maximum 
amount of money that they are willing to pay per click, but are not bounded by a total 
daily budget, (2) the advertisers have a maximum daily budget at their disposal, but 
do not have an upper bound on the amount of money that they are willing to pay per 
click, and (3) the advertisers have both a total daily budget and a maximum amount of 
money that they are willing to pay per click. We will explicitly show how the 
introduction of the spatial component affects the underlying sponsored search auction 
in each of the cases above by using tools and techniques from game theory. 

The rest of the paper is organized as follows. Section 2 surveys related work. 
Section 3 provides a general model for location-based sponsored search. Sections 4-6 
investigate three interesting settings for location-based sponsored search: (1) 
advertisers declare only bids (Section 4), (2) advertisers declare only budgets (Section 
5), and (3) advertisers declare both bids and budgets (Section 6). Using tools from 
game theory, we analyze the three different cases and provide the Nash equilibrium 
strategies when possible. Finally, Section 7 concludes the paper providing interesting 
directions for future research. 
                                                           
2 See http://investor.google.com/financial/2010/tables.html 
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2 Related Work 

2.1 Location-Based Advertising  

Location-based advertising (LBA) involves delivering advertising material to users 
based on their location. It follows two different modes of operation [3]: pull-based 
(also termed query-based) and push-based. The former provides advertising 
information only upon specific request by the user, e.g., when a car driver asks for the 
nearest gas stations. The latter delivers marketing material to users within a specified 
geographical area, without their explicit request; for instance, shops in a mall seeking 
to promote their new product may target all shoppers by delivering the corresponding 
advertising information. Moreover, push-based advertising is further divided into two 
types: opt-in, where users receive relevant advertising material by determining in 
advance the kind of ads they are interested in, and opt-out, where users receive 
marketing messages until they explicitly declare they do not wish to receive any 
further material.  

LBA presents immense opportunities for higher return on investment compared to 
other traditional advertising avenues because it enables contextually relevant 
advertising [5]. Moreover, the ability to instantaneously connect users to places or 
resources of interest in their immediate vicinity can offer an unrivaled user experience 
and satisfaction. Interestingly, LBA can also serve as a subtle tool for market 
research: consumers constantly provide information about their behavior through their 
mobile activity, which can be subsequently used to increase the effectiveness of a 
marketing campaign. Despite its obvious benefits, consumer’s privacy is still a major 
cause of concern for LBA. Advertisers need to be very clear about how they utilize, 
process, and store user information; data breaches, for instance, can be especially 
detrimental to the advertiser’s reputation and long-term success, since they can reveal 
personal information. A second major concern stems from the intrusive nature of 
some forms of LBA, in particular push-based that occurs without the user’s explicit 
request. Among the two modes, opt-out is associated with a higher intrusion risk and 
is thus used more rarely; opt-in, in contrast, is permission-based advertising and may 
be used to effectively rule out unsolicited marketing messages (i.e., spamming) [18]. 

2.2 Sponsored Search Advertising 

Sponsored search advertising is the most profitable form of online advertising. It 
constitutes a large and rapidly growing source of revenue for search engines. 
Currently, the most prominent players in the sponsored search market are Google’s 
AdWords [22], and Bing Ads [21]. In sponsored search advertising, advertisers place 
properly designed ads to promote their product or service. They target interesting 
users by declaring to the search engine a list of keywords that a relevant user may 
search for. For each keyword, they additionally specify their maximum cost per click 
(maximum CPC), also known as maximum bid, which corresponds to the maximum 
amount of money they are willing to spend to appear on the results page for a given 
keyword. Note that bidding takes place continuously. Moreover, advertisers may be 
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limited by budget constraints, so they may declare a maximum daily budget as well. 
Every time a user enters a query, a limited number of paid (also, sponsored) links 
appears on top or to the right side of the unpaid (also, organic or algorithmic) search 
results. In order to determine the winning advertisers as well as the price they need to 
pay, an auction occurs in an automated fashion. In practice, large search engines also 
compute a quality score (QS) for every advertiser which measures how relevant the 
keyword, ad text and landing page are to a user. 

Concretely, sponsored search advertising consists of three stages. (i) Ad retrieval 
returns all ads that are relevant to the user’s query, and is usually performed by 
sophisticated machine learning algorithms. An ad’s relevance is measured by several 
metrics, such as ad-query lexical and semantic similarity. To match an ad against a 
query, the search engine needs to take into account all ad information, including the 
bid phrase it is associated with, its title and description, the landing page it leads to, its 
URL, etc. Moreover, query substitution and query rewriting are frequently used to 
find relevant ads. As the ad pool may consist of millions of ads, efficient indexing 
techniques have been proposed to improve the performance of the first stage. (ii) 
After retrieving relevant ads, the search engine performs ad ranking. Ads are sorted in 
decreasing order of their rank, where the ad rank is determined by both the bid placed 
by the advertiser on the keyword, and the quality of the ad. The ad with the highest 
rank appears in the first position, and so on down the page, until all slots have been 
filled. Google AdWords3, for instance, defines the ad rank as the product CPC·QS. 
(iii) The last stage is ad pricing through properly designed auctions to determine the 
price per click that the advertiser will be charged whenever the user clicks on their ad 
(pay per click model). The natural method would be to make bidders pay what they 
bid (i.e., generalized first-price auction), but that leads to several instabilities and 
inefficiencies. Instead, all large search engines currently employ a generalized 
second-price auction (GSP) [7][19]. A GSP auction charges an advertiser the 
minimum amount required to maintain their ad’s position in search results, plus a tiny 
increment. For instance, suppose that ranking is based on Google’s AdRank and that 
K slots are available, and are numbered 1, …, K, starting from the top and going 
down. Moreover, let the advertiser i at position i have a maximum bid bi and a quality 
score QSi. In GSP, the price for a click for advertiser i is determined by the advertiser 
i+1, and given by bi+1·QSi+1/QSi, which is the minimum that i would have to bid to 
attain its position. Note that in this pricing scheme, a bidder’s payment does not take 
into consideration its own bid. Also, prices per click can be computed in linear time in 
the number of advertisers O(N) for a fixed number of slots K. 

Despite its prevalence as the standard auction format, GSP is not truthful (also 
known as incentive-compatible): advertisers have no incentive to declare their true 
valuations to the search engine. Stated equivalently, reporting the true bids may not 
constitute a Nash equilibrium [7]. As a result, advertisers may devote considerable 
resources to manipulate their bids, potentially paying less attention to ad quality and 
other campaign goals. Interestingly, we can alleviate this shortcoming by altering the 

                                                           
3  See https://adwords.google.com/support/aw/bin/answer.py?hl=en& 
answer=6111 
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payment scheme: instead of paying the minimum amount of money required to win its 
position, an advertiser is requested to pay an amount of money equal to the 
externalities that it imposes on the others, i.e., the decreases in the valuations of other 
bidders because of its presence. This payment scheme yields the Vickrey-Clarke-
Groves (VCG) auction, named after William Vickrey [20], Edward H. Clarke [4], and 
Theodore Groves [11]. Contrary to GSP, VCG gives bidders an incentive to bid their 
true value, and is socially optimal, i.e., the bidder with the highest valuation acquires 
the slot at the highest position, the bidder with the second-highest valuation receives 
the slot at the second-highest position, etc. Note that GSP rather than VCG is used in 
practice, even though the latter would (at least theoretically) diminish incentives for 
strategizing and facilitate the advertisers’ task. We believe that the introduction of the 
ad quality score QS has also played a role in the wide adoption of GSP. Indeed, ad 
quality scores are now an integral part of both the ranking and pricing protocols; even 
if advertisers manipulate their bids, it is very difficult to game the system as they have 
no control over the ad quality scores. 

3 Models for Location-Based Sponsored Search 

Assume N advertisers and K slots 1, …, K, where 1 is the top slot, 2 the second, and 
so on. There is ample evidence in the literature that higher slots are associated with 
higher revenues. There are numerous ways to model this; perhaps the easiest way is to 
characterize each slot with the click through rate, which denotes the probability that a 
user will actually click on an ad that is placed in that slot. In this work, we follow the 
same approach by assuming that whenever an ad is displayed in slot l, 1≤l≤K, it has a 
probability cl, 0≤cl≤1, of being clicked. To incorporate the fact that higher slots are 
more valuable, we further assume that cl>cl´ whenever l<l´. Whether a user clicks on 
an ad or not depends on numerous factors including the other ads (ad externalities), 
but for the sake of simplicity we do not consider them here; i.e., an ad located at slot l 
is clicked with probability cl independent of the rest of the slots [15]. To keep the 
model simple, we also do not consider quality scores for advertisers. 

A salient feature of our work is that advertisers value users according to their 
location. To model this, we assume that the space is partitioned with a grid of L cells. 
There are (in expectation) Mj queries per day in cell j, which can be estimated based 
on historical data. Advertisers have different valuations for the different grid cells. 
For instance, a typical advertiser would have high valuations for cells nearby and 
lower valuations for more distant cells. We denote with wi,j the valuation of advertiser 
i per click inside cell j. Calculating the valuation is a difficult marketing/operational 
research problem, beyond the scope of our work. Finally, advertiser i may be bounded 
by a maximum daily budget Bi. We can assume that the advertisers are only aware of 
their own budget and valuations, which they declare to the search engine. Besides the 
budgets and valuations per click, the search engine has knowledge of relevant 
statistical information such as number of queries per cell, or percentage of total clicks 
that a slot receives, etc. We consider that advertisers are interested in exactly the same 
(unique) keyword; how keyword interactions affect our market is an interesting 
research topic in its own right, and can be explored in future work. 
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Finally, note that the valuation of an advertiser for a given cell is fixed for all 
points inside the cell. The grid granularity involves an inherent trade-off between 
valuation expressivity and search engine revenue. On the one hand, small cells allow 
advertisers to better capture their cells of interest, as opposed to coarse grid 
granularities that would force an advertiser to declare interest for the entire cell even 
if they were interested in just a small part. On the other hand, small cells may take a 
serious toll on the search engine’s revenue because the expected number of 
advertisers expressing interest in a given cell decreases as the grid granularity 
becomes finer. In the worst case scenario, a cell could attract interest from just a 
single advertiser and would yield poor income for the search engine. For instance, 
assume a cell that attracts only one advertiser. The commonly used GSP protocol 
when advertisers only declare bids will then assign any query inside the cell to that 
advertiser for a price equal to 0, compromising the search engine’s revenue goals. 
Determining the proper grid granularity is thus a critical factor of success for location-
based sponsored search. 

In the following sections, we discuss location-based sponsored search advertising 
focusing on three cases [8], depending on the advertiser input and constraints. In the 
first bids-only case, each advertiser i is not bounded by a daily budget, i.e., Bi=∞, and 
is willing to pay up to its valuation per click wi,j in cell j, i.e., its maximum bid per 
click for cell j is equal to wi,j. In the second budgets-only case, each advertiser i is 
bounded by a finite daily budget Bi, but is indifferent to the price per click that it is 
asked to pay, i.e., its maximum bid per click for any cell is unbounded. Finally, in the 
third bids-and-budgets case, each advertiser i is bounded by a finite daily budget Bi, 
and is willing to pay up to its valuation per click wi,j in cell j. We first cast all three 
cases as game theoretical problems, and we subsequently attempt to identify the 
equilibrium strategies for the corresponding games. Table 1 illustrates common 
symbols used in the rest of the paper. 

Table 1. Frequent symbols 

Symbol Meaning 

N, L, K Number of advertisers, grid cells, and ad slots 

Bi Total daily budget of advertiser i 

Bi,j Part of total budget Bi that advertiser i allocates into cell j 
wi,j Valuation per click of advertiser i for cell j 
Mj Expected number of queries per day for cell j 
cl Probability that an ad located at slot l will get clicked 

Ui,j / Ui Total daily utility of advertiser i from cell j / from all cells 
Ci Set of cells where advertiser i has the highest valuation per click ෩ܷ Upper concave envelope of U 
Yj Sum of budgets that have been allocated to cell j by all advertisers 

pj Price per click in cell j (for case 3) 

sj Permutation of advertisers such that ݓ௦ೕሺሻ, is decreasing in i ݓሺଶሻ Second-highest valuation per click in cell j (for case 3) 
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4 Bids-Only Case 

Bids-only is the simplest case, as it constitutes a straightforward generalization of the 
conventional sponsored search framework. Whenever the search engine receives a 
query from a cell, it runs an auction where each advertiser is assumed to bid an 
amount of money equal to its valuation per click for that particular cell. We can 
utilize any auction format, such as the GSP or the VCG (see Section 2.2), to 
determine the K winners that will fill the slots, as well as the prices per click that they 
have to pay. These two auctions have been extensively studied in the literature, and as 
mentioned earlier truthfully reporting the bids constitutes a Nash equilibrium for the 
VCG auction, but is in general not an equilibrium for the GSP procedure. Note that 
the actual number of queries per cell does not matter: every single time a user issues a 
query, a new auction will play out in an automated way; cells with high workload will 
simply involve more auctions compared to cells with lower traffic. 

Next, we discuss some useful metrics focusing on the GSP framework. A very 
interesting notion in auction theory concerns an advertiser’s payoff, which refers to the 
net utility the advertiser receives from being advertised. In sponsored search auctions, 
an advertiser’s payoff is defined in terms of a quasi-linear model: the payoff per click 
is equal to the valuation/utility vi per click the advertiser i gets minus the price per click 
pi that it must pay, i.e., vi – pi = vi – bi+1, where the bids bi are in descending order. We 
can also define the expected payoff per day if we know the average number of queries 
per day M. Since slot l receives a cl percentage of the total clicks, the expected payoff 
per day for slot l is M·cl·(vi – bi+1). Non-winning advertisers get a payoff equal to 0. 
Finally, we define the search engine’s (cumulative) profit per click simply as p1 + … + 
pK = b2 + … + bK+1 (similarly for the cumulative profit per day). It is now 
straightforward to generalize the above metrics in the location-based framework. For 
instance, the expected payoff per day that advertiser i gets in cell j if it gets assigned to 
slot l is Mj·cl·(wi,j – wi+1,j) (where wi,j are in decreasing order for cell j). 

5 Budgets-Only Case 

In case 2, advertiser i declares a maximum daily budget Bi, as well as its valuations 
per click wi,j for each cell j. As opposed to case 1, where wi,j is the maximum amount 
that i is willing to pay per click, for case 2 the payments per click are bounded only by 
Bi, and the cell valuations are used just to determine the relative importance of cells. 
For simplicity, we initially consider a single slot (K=1) with probability of being 
clicked c1=1, and deal with more slots later. Since case 2 only involves budget 
constraints, it is convenient to assume a Fisher market model [2]: under this model, 
money does not bear any intrinsic value and every advertiser is willing to burn their 
entire budget; note that this is different from the quasi-linear model that we assumed 
in Section 4. Our goal is to assign to every advertiser a probability that their ad will be 
displayed in any given cell, whenever a user in that cell issues a relevant query. 
Therefore, no auction takes place and we do not have a winner selection and price 
determination phase. 

Based on the declared budgets and cell valuations, the system computes for each 
cell the probability that any advertiser will be chosen as a response to user query.  
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In conventional sponsored search with only one slot, the optimal solution to this 
problem displays an advertiser with a probability that is proportional to its budget 
[8][14][13]. So, the advertiser with the highest budget has the highest probability of 
being displayed, which is equal to its budget divided over the sum of all budgets; and 
so on for the rest of the advertisers. This rule is called proportional sharing, and, 
intuitively, it guarantees fairness. 

In location-based sponsored search, on the other hand, advertisers declare a total 
daily budget for all cells, but do not specify how this budget should be allocated 
among the various cells. Now, assume that the advertiser (somehow) decides how to 
allocate its budget into the cells, so that each cell has a non-negative budget and the 
sum of budgets over all cells does not exceed the advertiser’s total budget. If such an 
allocation were known for every advertiser, then we could simply apply the 
proportional sharing rule: in a given cell, an advertiser is advertised with a probability 
proportional to its budget for this specific cell. But then a natural question arises: how 
should every advertiser allocate its budget? 

To answer this question, we will resort to the proportional-share allocation market by 
Feldman et al. [10]. Concretely, assume a budget allocation for advertiser i such that it 
assigns Bi,j≥0 to cell j and the sum of its allocations over all cells does not exceed Bi. 
The probability that i will be displayed in cell j is Bi,j/Yj, where Yj is the sum of budgets 
that have been allocated to cell j by all advertisers. The utility for advertiser i in cell j is 
then Ui,j= wi,j·Mj·Bi,j/Yj, since it gets a value wi,j for every query in j when displayed with 
a probability Bi,j/Yj, and there are Mj queries in total in cell j. We assume additive 
utilities, so i’s total utility Ui is the sum of its utilities Ui,j over all cells: ܷ ൌ ∑ ܯ,ݓ ,ೕ∑ ೖ,ೕೖ . Note that the payoff of advertiser i is equal to its utility, because of 

the Fisher market model assumption (money bears no intrinsic value to the advertiser). 
A given set of budget allocations will give rise to different corresponding utilities 

for the advertisers. So, how should advertisers allocate their budget? Ideally, we 
would like to allocate every individual budget in a way that maximizes the 
advertiser’s utility. But since the advertisers compete against each other, one’s gain 
may translate into another’s loss. To come up with proper budget allocations, we thus 
utilize the notion of Nash equilibrium. The set of agents consists of the advertisers, 
while the strategy space for advertiser i is the convex, bounded and closed set  
{(Bi,1, …, Bi,L) | Bi,j ≥ 0 and ∑1≤j≤LBi,j = Bi}, i.e., the set of all valid budget allocations. 
From advertiser’s i perspective, a best response strategy is simply a strategy  
Bi = (Bi,1, …, Bi,L) that maximizes its utility given the other advertisers’ budget 
allocations, i.e., the solution to the following optimization problem: 

maximize Ui(B1,1, …, B1,L, …, BN,1, …, BN,L) 
subject to ∑1≤j≤LBi,j = Bi and Bi,j ≥ 0. 

A Nash equilibrium then corresponds to the stable state where no advertiser has an 
incentive to deviate from their strategy given that the other advertisers stick to their 
strategy as well. Stated equivalently, every advertiser plays a best response strategy to 
the rest of the advertisers. Formally, a set of valid strategies כ כࡺ ,… ,  form a Nash 
equilibrium if for any other valid strategy Bi, 1≤i≤N, we have: 

Ui(כ כࡺ ,… ,כ ,… , )≥ Ui(כ , …, Bi, …, כࡺ ). 
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It turns out that the above game does not always accept a Nash equilibrium. To 
demonstrate this, consider two advertisers 1 and 2 with budgets B1, B2 > 0, and two cells 
1 and 2 with expected number of queries per day M1, M2 > 0. Advertiser 1 is interested 
in both cells, whereas advertiser 2 is only interested in cell 1. For player 2, the best 
strategy would obviously be to allocate its entire budget B2 to cell 1 to gain the 
maximum possible proportion of ads. For advertiser 1, on the other hand, the best 
strategy would be to allocate a tiny amount ε > 0 to cell 2 (and win all advertising 
opportunities in 2) and spend the rest B1 – ε on cell 1 (and maximize its share in cell 1 as 
well). Unfortunately, there is no optimal value of ε, since (1) it must be positive to 
ensure 1 gets all ads in cell 2, and (2) as small as possible so that 1 wins the largest 
possible share in cell 1. Alternatively, consider the simpler case with a single player 1 
with B1 > 0, interested in a single cell 1 with M1 > 0. As before, player 1 should allocate 
the smallest possible positive ε > 0 on cell 1, but such an ε does not exist. 

The root of the non-existence of a Nash Equilibrium in the examples above is due 
to the discontinuity of the utility functions at point 0. This problem can be 
circumvented in two different ways. First, we can enforce a reserve price, which is 
defined as the minimum possible price that an advertiser must pay per click. Indeed, a 
reserve price means that the advertiser cannot buy any click with an arbitrarily small 
budget, and the discontinuity at 0 ceases to exist. Second, we can restrict our attention 
to so called strongly competitive games [10], i.e., games where for a given cell there 
are at least two advertisers with positive valuations. Indeed, strong competition 
implies that if only one advertiser would allocate a tiny budget on a given cell, then 
any other advertiser who has non-zero valuation for that cell will have an incentive to 
also allocate (a tiny) budget in that cell to guarantee a percentage of ads [10].  

Computing the Nash equilibrium is the next source of concern. There are 2 classes 
of algorithms for this purpose. The best response algorithm iteratively updates the 
budget allocations of every player to reflect the other players’ current strategies. This 
algorithm simulates the best response dynamics of the game and thus has a very 
natural interpretation. We describe it in Figure 1; the interested reader is referred to 
[10] for further details. Note that its time complexity is dominated by the sorting 
procedure, so it is O(NlogN). Theoretically, the best-response dynamics does not 
necessarily converge to a Nash equilibrium of the game; nevertheless, in practice the 
algorithm performs very well. 

Repeat for each advertiser i, 1≤i≤N 
1. Sort the cells according to 

௪,ೕ∑ ᇲ,ೕᇲಯ  in decreasing order, where 1≤j≤L 

2. Compute the largest k such that ඥݓ,ܯ ∑ ∑ᇲ,ᇲஷܤ ܯ,ݓ ∑ ᇲ,ᇲஷୀଵܤ ቆܤ    ᇲ,ᇲஷୀଵܤ ቇ െ  ᇲ,ᇲஷܤ  0 

3. Set Bi,j=0 for j>k, and for 1≤j≤k set  ܤ, ൌ ඥݓ,ܯ ∑ ∑ᇲ,ᇲஷܤ ܯ,ݓ ∑ ᇲ,ᇲஷୀଵܤ ቆܤ    ᇲ,ᇲஷୀଵܤ ቇ െ  ᇲ,ᇲஷܤ  

until convergence. 

Fig. 1. Best-response dynamics for K=1 and strong competition 
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The alternative to best response dynamics is the local greedy adjustment method 
[10]. Under this algorithm, we first identify for every advertiser the two cells that 
provide the highest and lowest marginal utilities. We then move a fixed small amount 
of money from the cell with the lowest marginal utility to the cell with the highest 
one. This strategy aims to adjust the budget allocations so that the marginal values in 
each cell are the same. For concave utility functions (as ours), this is a sufficient 
condition for an optimal allocation. However, the method suffers from lower 
convergence rates. 

As a last remark, note that contrary to case 1, the actual query distribution is now 
important. To understand why, assume the advertiser has a high valuation for cell 1 
and a low valuation for cell 2. However, a small number of queries are issued in cell 
1, whereas several queries are issued in cell 2. In bids-only sponsored search, a 
separate auction occurs every time a query is issued, so the advertiser can bid high for 
cell 1 and low for cell 2; since there are far more queries in cell 2 the advertiser will 
obviously participate in the auction for cell 2 far more times, but has no reason not to 
bid high for cell 1 and low for cell 2. In the budgets-only setting, however, query 
distribution has a profound effect on the budget allocation. In the above example, the 
advertiser may have to allocate a large part of its budget to cell 2 just because there 
are far too many queries in that cell. 

Multiple Slots: We can generalize the above discussion in the case of several slots, 
by assuming for simplicity that a given advertiser may appear with non-zero 
probability in more than one slots (as opposed to the bids-only case). This assumption 
is necessary for a straightforward and simple generalization. Indeed, the idea is that 
every advertiser allocates part of its budget into all slots in every cell. The utility that 
advertiser i extracts from being advertised at slot l in cell j is ݓ,ܿܯ ,ೕ,∑ ೖ,ೕ,ೖ , where 

Bi,j,l the amount of money that i allocates in slot l of cell j. Similar to before, we can 
assume additive utilities, so that the total utility of advertiser i the sum of its utilities 
over all slots and over all cells. Using the above techniques, we can then find budget 
allocations that constitute a Nash equilibrium. 

6 Bids-and-Budgets Case 

In this setting, advertiser i declares a maximum daily budget Bi as before, but contrary 
to case 2, i is now not willing to spend more than wi,j per click in cell j. Stated 
equivalently, the price that advertiser i pays per click in a given cell j cannot exceed 
its declared valuation wi,j for that cell. The valuations thus act as maximum bids per 
click, and we also refer to case 3 as bids-and-budgets case. We only deal with the case 
of a single slot, i.e., K=1 with c1=1, and we assume again that money bears no 
intrinsic value to the advertisers (Fisher market model). The case of several slots is 
more complex, and can be investigated in future work. 

Before dealing with the location-based setting, we first explore how conventional 
sponsored search addresses the case where both budgets and maximum bids per click 
are declared. In particular, we will attempt to highlight how this setting is inherently 
more complex than the budgets-only case. We focus on cell j with Mj queries per day 
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and budget allocations in it B1,j, …, BN,j. First, assume that every advertiser receives a 
share of the total ads proportional to its budget. Then, the price per click would be 
equal to pj = (B1,j + … + BN,j)/Mj. As long as this quantity is not greater than all 
valuations per click w1,j, …, wN,j, no problem occurs. But if an advertiser i exists with 
wi,j < pj, this advertiser would not be willing to pay as much as pj per click, so the 
proportional allocation framework of Section 5 cannot be directly applied. To 
alleviate this problem, we need to come up with a price כ such that all advertisers 
who can afford that price have sufficient budgets to purchase all the advertising 
opportunities. Figure 2 presents the price-setting mechanism by Feldman et al. [9][8] 
that determines that price כ. It is essentially a price-descending mechanism: the price 
keeps falling until כ is reached. Moreover, it has the desired property of being 
truthful. 

 

1. Assume w.l.o.g. that w1,j>w2,j> … >wN,j ≥ 0. 

2. Let k* be the first bidder such that ݓכାଵ,  ∑ ,ೕೖכసభ݆ܯ . Set price כ ൌ min ൜∑ ,ೕೖכసభெೕ ,  .ൠ,כݓ
3. Allocate Bi,j/כ ads to each advertiser i ≤ k* − 1. Allocate Mj − ∑ ୀଵכ,ܤ  ads to advertiser כ/

k*. Allocate 0 ads to the rest of the bidders. 

Fig. 2. The price-setting mechanism in cell j for K=1 slot in the bids-and-budgets case 

Now, recall that in the case where only budgets are available, the price per query in 

cell j would be equal to  ൌ ∑ ,ೕಿసభெೕ . Obviously, pj is linear in its arguments  

Bi,j (1≤i≤N) and continuous. On the other hand, the price-setting mechanism in Figure 
2 yields prices that are clearly more complex. First, we notice the price pj for a  
given cell j will again be an argument of only the budget allocations for that cell  
B1,j, …, BN,j. However, it does not have the simple linear form as in the case of only 
budgets. To get a flavor of the price function, consider a setting with only 2 
advertisers 1 and 2 with maximum bids w1,j and w2,j (with w1,j>w2,j) for cell j that has 
Mj queries per day. Figure 3 depicts how the price varies according to the budgets B1,j 
and B2,j that the advertisers allocate in cell j. In particular, if B1,j≥Mj·w2,j, then k*=1 and 
the price is determined as the minimum of B1,j/Mj and w1,j. When B1,j≥Mj·w1,j then the 
price is equal to w1,j (region I), while when B1,j<Mj·w1,j, the price is equal to B1,j/Mj 
(region II). On the other hand, when B1,j<Mj·w2,j, then k*=2 and the price is the 
minimum of w2,j and (B1,j+B2,j)/Mj; for B1,j+B2,j≥Mj·w2,j the price is w2,j (region III), 
while for B1,j+B2,j<Mj·w2,j, the price is (B1,j+B2,j)/Mj (region IV). Inside a region, the 
price can be either constant or linear. We first observe that the price function is 
everywhere continuous; the boundaries of the regions are carefully chosen so that the 
price is continuous as we move from one region to the other. Note also that the price 
function for the price-setting mechanism is bounded: it achieves a minimum value of 
0 at the origin (0,0), and it can never get larger than w1,j. On the contrary, the price per 
click in the budgets-only case is unbounded: it can get arbitrarily large as the budgets 
that the advertisers allocate grow larger. 
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Fig. 3. Price pj and utilities U1,j and U2,j in cell j when the number of advertisers is N=2 

The above example captures some important properties of the price function in the 
case of both maximum bids and budgets. The price setting mechanism decomposes 
the budget space into N regions (one for each of the N possible k*), and then further 
divides that region into two subregions: the price is constant inside one of them and 
linear in the other. In the following, we state several results. The proofs of all results 
are available in our technical report [17]. For every cell j, we consider the permutation 
sj that reorders the bids in decreasing order, i.e., ݓ௦ೕሺଵሻ,  ௦ೕሺଶሻ,ݓ  ڮ  ௦ೕሺேሻ,ݓ  0 

for every cell j. Moreover, all budget allocations Bi,j are non-negative: Bi,j≥0. 

Lemma 1: The price function pj(B1,j, …, BN,j) is continuous in (B1,j, …, BN,j). 

Let’s now try to formalize the location-based setting where advertisers have 
valuations over the various cells. Similar to the previous case, we will be looking for a 
budget allocation Bi = (Bi,1, …, Bi,L) for every advertiser i, 1≤i≤N. For a given 
allocation, denote zi,j the share of ads that advertiser i gets in cell j. Then, its utility 
from cell j is wi,j·zi,j; its total utility from all cells simply is ܷ ൌ ∑ ,ݖ,ݓ . In order to 
compute the share zi,j, we will exploit the price-setting mechanism, assuming that ݓ௦ೕሺଵሻ,  ௦ೕሺଶሻ,ݓ  ڮ  ௦ೕሺேሻ,ݓ  0. If ݆ݏݓሺ2ሻ,݆   כ and the price 1=כthen ݇ ,݆ܯ/݆,ሺ1ሻ݆ݏܤ

is min{ܤ௦ೕሺଵሻ,/ܯ, ݓ௦ೕሺଵሻ,}. On the other hand, if ݆ݏݓሺ2ሻ,݆   we continue by ,݆ܯ/݆,ሺ1ሻ݆ݏܤ
checking whether ݓ௦ೕሺଷሻ,  ሺܤ௦ೕሺଵሻ,   and 2=כ. If the latter is true, then ݇ܯ/௦ೕሺଶሻ,ሻܤ
the price כ = min{ሺܤ௦ೕሺଵሻ,   ௦ೕሺଶሻ,}. If it is false, we proceed in exactlyݓ ,ܯ/௦ೕሺଶሻ,ሻܤ

the same way, until we come up with the proper ݆݇כ, and subsequently compute the 
price כ݆. Figure 3 depicts the utility functions in cell j in the case of N=2 advertisers. 

Next, we compare the above utility function with the simpler utility function in the 
case where only budgets are declared: ܷ, ൌ ܯ,ݓ ,ೕ∑ ೖ,ೕೖ . Clearly, the latter function is 

concave in Bi,j, gets a minimum value of 0 for Bi,j=0, and asymptotically converges to 

B1,j

B2,j

Mjw2,j

Mjw2,j Mjw1,j

pj=w1,j

U1,j=w1,jMj

U2,j=0

pj=w2,j

U1,j=w1,j(B1,j/w2,j)
U2,j=w2,j(Mj-B1,j/w2,j)

pj=B1,j/Mj

U1,j=w1,jMj

U2,j=0

pj=(B1,j+B2,j)/Mj

U1,j=w1,jMjB1,j/(B1,j+B2,j)
U2,j=w2,jMjB2,j/(B1,j+B2,j)

0
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wi,j·Mj as Bi,j tends to infinity. In other words, the advertiser will get allocated all ads 
in cell j as its budget gets infinitely large, given that the other advertisers’ budgets for 
this cell are fixed. But can we say something similar for the utility function in the 
more complex setting when both budgets and maximum bids per click are declared? It 
turns out that the answer to that question is negative: the utility function Ui,j for the 
price-setting mechanism is not concave in Bi,j anymore, as we later show (e.g., see 
Figure 4). However, Ui,j is monotonically increasing in Bi,j: 

Lemma 2: Ui,j(Bi,j) is monotonically increasing in Bi,j. 

Since Ui,j is monotonically increasing in Bi,j, it will also be quasi-concave in Bi,j. On 
the other hand, ܷ ൌ ∑ ܷ,ୀଵ . It turns out that when Ui,j are quasi-concave, but not 
concave in Bi,j, then their sum is not quasi-concave in (Bi,1, …, Bi,L) [6]. This is a 
worrisome result, in the sense that existence theorems for Nash equilibria usually 
assume concave or, at least, quasi-concave utility functions. 

There are, however, two special cases where we can easily show that a Nash 
equilibrium exists. First, assume that the sum of the advertisers’ budgets is 
sufficiently small, i.e., ∑ ேୀଵܤ   ே,, for every cell j. In this case, independent ofݓܯ
the budget allocation, we have in any cell j that ∑ ൌ1݆݅ܰ,݅ܤ   so the price setting ,݆,ܰݓ݆ܯ
mechanism will allocate to every advertiser a percentage of advertising opportunities 
proportional to the budget that they allocate in every cell. But this is identical to case 
2, and it thus always admits a Nash equilibrium if 1) there is a reserve price, or 2) 
there is strong competition. Second, assume that every advertiser has sufficiently 
large budget, and that there is strong competition in every cell. For any advertiser i, 
consider the set of cells Ci where i has the highest valuation per click among all 
advertisers, i.e., Ci = {j|wi,j=max1≤i´≤N{wi´,j}} (for some advertisers this set may be 
empty). For advertiser i, we then define the following budget allocation strategy: 
allocate 0 to cell j if j∈Ci, else allocate an amount of money equal to or greater than 
Mjݓሺଶሻ, where ݓሺଶሻ  0 the second highest valuation per click in cell j (it is positive 

because of the strong competition assumption). This is always possible if ܤ ∑ ሺଶሻ∈ݓܯ , for every advertiser i. It is easy to verify that the above sets of budget 
allocations correspond to Nash equilibria, since any advertiser cannot increase its 
utility by deviating to a different budget allocation. Indeed, with the previous budget 
allocation every advertiser i wins all ads for the cells that belong to Ci. Obviously, i 
cannot gain a higher utility by changing its budget allocation for cells j∈Ci. On the 
other hand, even if i allocates a positive budget in cells j∉Ci, it will still gain 0 
advertising opportunities, since the first advertiser has adequate budget and valuation 
to buy all ads in that cell. In fact, a Nash equilibrium in the case of sufficiently large 
budgets can be given by the following rule: in every cell the advertiser with the 
highest valuation per click pays a price per click equal to the valuation per click of the 
second highest advertiser, and wins all ads for that cell. But what we have just 
described is the GSP procedure. Stated equivalently, the GSP auction for sufficiently 
large budgets results in a Nash equilibrium. 

We have thus observed how the bids-and-budgets case encompasses the simpler 
bids-only and budgets-only cases for sufficiently small or large budgets, respectively. 
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On the other hand, when only one advertiser has a positive valuation for a cell j, then 
using the same line of arguments as in Section 5 we can see that its utility function is 
discontinuous at 0, and the game accepts no Nash equilibrium. It is however possible 
to slightly modify the game in a way that makes the discontinuity at 0 disappear, 
similar to [10][13]. In this direction, we will introduce a fictitious advertiser N+1 who 
allocates a tiny budget Bε > 0 in every cell, but has an arbitrarily large valuation per 
click for every cell. We call the perturbed game with the additional player G. So, what 
is the impact of the additional player N+1 on the game structure? Essentially, the 
arbitrarily large valuation per click for every cell implies that advertiser N+1 will have 
the highest valuation per click in every cell and will thus be able to pay any price that 
the price mechanism sets. On the other hand, we set Bε to be very small so that player 
N+1 has a negligible impact. Note that the introduction of the fictitious player serves 
the same purpose as the reserve price of the budgets-only case, namely to smooth out 
the utility function and tackle the discontinuity at 0. 

In the general case, we are currently not aware whether game G always accepts a 
Nash equilibrium since each advertiser’s utility function is not quasi-concave. 
Although we cannot answer whether a Nash equilibrium exists, we can nevertheless 
find a budget allocation such that the maximum utility that an advertiser can gain by 
deviating is known. 

In this direction, we will consider the upper concave envelope ෩ܷ, of the utility Ui,j, 
for any advertiser i and any cell j. Formally, we will be looking for the infimum of all 
functions that are concave and are greater than or equal to Ui,j for any Bi,j. This is, in 
general, not an easy task, but as we shall see the upper concave envelope for the 
utility functions that arise in the bids-and-budgets setting has a relatively simple form. 

We focus on advertiser i and cell j, 1≤i≤N and 1≤j≤L. Assume the rest of the 
advertisers’ budgets for cell j are fixed and equal to B1,j, ..., Bi−1,j, Bi+1,j, …, BN,j. Also, 
w.l.o.g. assume that w1,j>…>wN,j. We are interested in the first advertiser k* such 

that כ݇ݓ1,݆  ∑ ݆ܯൌ1݅כ݆݇,݅ܤ  as Bi,j varies. Let k*=k0 when Bi,j = 0. If k0 < i, then no matter how 

much budget i allocates, the price setting mechanism allocates no advertising 
opportunities to them, because advertisers 1, …, k0 have sufficient budget to buy all 
ads at a price that is higher than what i can afford; thus Ui,j = 0 and, subsequently,  ෩ܷ, ൌ ܷ, ൌ 0. If, on the other hand, k0≥i, then the utility function Ui,j will have the 
form that we depict in Figure 4. In particular, we can form the i−k0+1  
regions Rk, i≤k≤k0, such that that the first advertiser in region Rk with the property that ݓାଵ,  ∑ ,ೕೖసభெೕ  is k. In particular, when Bi,j=0 then k*=k0 and we get the leftmost 

region ܴబ; as Bi,j grows larger k* eventually becomes i and remains so thereafter. 
Points P, P1, P2, and P3 in Figure 4 correspond to budget allocations Bi,j equal to B, 
B1=wk+1,j·Mj−Sk,j−Bk,j, B2=wk,j·Mj−Sk,j−Bk,j, and B3=wk,j·Mj−Sk,j, respectively. 

We will now determine the upper concave envelope of Ui,j by focusing on regions 
Rk, with i≤k≤k0. Define Sk,j = ∑ ,ିଵ´ୀଵܤ  ∑ ,ିଵ´ୀାଵܤ  (for k=i this expression gives  
Si,j = ∑ ,ିଵ´ୀଵܤ ). Region Ri (rightmost region in Figure 4) consists of a concave part 

which corresponds to the utility function ܷ,ሺܤ,ሻ ൌ ܯ,ݓ ,ೕ∑ ´,ೕ´సభ  for 

Bi,j∈[wi+1,j·Mj−Si,j−Bi, wi,j·Mj−Si,j], followed by a constant part for Bi,j ≥ wi,j·Mj−Si,j 
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(the constant part corresponds to the maximum possible advertising opportunities that 
advertiser i may get); the utility function in region Ri is thus already concave so we do 
not need to focus more on it. Every other region Rk, i<k≤k0, will consist of the 
concave part ݓ,ܯ ,ೕ∑ ´,ೕೖ´సభ  for Bi,j∈[wk+1,j·Mj−Sk,j−Bk,j, wk,j·Mj−Sk,j−Bk,j], followed by 

the linear part ݓ, ,ೕ௪ೖ,ೕ for Bi,j∈[wk,j·Mj−Sk,j−Bk,j,, wk,j·Mj−Sk,j]. Of course Bi,j≥0, so if any 

of the endpoints of the aforementioned intervals is negative we simply replace it with 
0. From Lemma 1, we can easily derive that Ui,j(Bi,j) is continuous in the domain 
Bi,j≥0. It is also differentiable everywhere except for the points where the utility 
function transitions from the concave part to the linear part, and vice versa. 

 

 

Fig. 4. Utility function Ui,j when k0≥i and its upper concave envelope 

We now examine the derivatives in regions Rk, i≤k≤k0. For region Ri, i.e., when 
k=i, the derivative in (wi+1,j·Mj−Si,j−Bi,j, wi,j·Mj−Si,j) is ݓ,ܯ ௌ,ೕሺௌ,ೕା,ೕሻమ, while it is 0 for 

Bi,j>wi,j·Mj−Si,j. For region Rk, with i≤k≤k0,the derivative in (wk+1,j·Mj−Sk,j−Bk,j, 
wk,j·Mj−Sk,j−Bk,j) is ݓ,ܯ ௌೖ,ೕାೖ,ೕሺௌೖ,ೕାೖ,ೕା,ೕሻమ, while the derivative in (wk,j·Mj−Sk,j−Bk,j,, 

wk,j·Mj−Sk,j) is wi,j/wk,j. Although Ui,j is not differentiable at the transition points, the 
left ߲ି ܷ, and right ߲ା ܷ, derivatives obviously exist. We now state the following two 
results. 

Lemma 3: ߲ି ܷ,൫ݓାଵ,ܯ െ ܵ, െ ,൯ܤ  ߲ା ܷ,൫ݓାଵ,ܯ െ ܵ, െ  .,൯, for i≤k<k0ܤ

Lemma 4: ߲ି ܷ,൫ݓ,ܯ െ ܵ, െ ,൯ܤ ൏ ߲ା ܷ,൫ݓ,ܯ െ ܵ, െ  .,൯, for i<k≤k0ܤ

Lemma 3 implies that whenever we make a transition from the linear to the concave 
part (e.g., point P1 in Figure 4) the first derivative gets lower, and concavity is 
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maintained. In contrast, Lemma 4 suggests that when we move from the concave to 
the linear part (e.g., point P2), the first derivative gets higher; this in turn violates 
concavity. We will show how to tackle this by considering region Rk, i≤k≤k0, in 
Figure 4. The idea is to draw a line ε1 from P3 to the point P in the concave part of 
region Rk so that the line ε1 is tangent to the curve. Based on our previous discussion, 

the derivative at P is ݆ܯ݆,݅ݓ ܵ݇,݆݇ܤ,݆ሺܵ݇,݆݇ܤ,݆ܤሻ2. On the other hand, the slope of ε1 is 

,ೕሺయሻି,ೕሺሻయି ൌ ,ݓ ಳయೢೖ,ೕିெೕ ಳೄೖ,ೕశಳೖ,ೕశಳయି . Thus, we are looking for a B such that ݓ,ܯ ௌೖ,ೕାೖ,ೕሺௌೖ,ೕାೖ,ೕାሻమ ൌ ,ݓ ಳయೢೖ,ೕିெೕ ಳೄೖ,ೕశಳೖ,ೕశಳయି . But B3 = wk,j·Mj−Sk,j, so the previous equation 

becomes after some algebraic manipulations: ܵ,ܤଶ െ 2൫ܯݓ, െ ܵ,൯൫ܵ,  ܤ,൯ܤ െ ൫ܯݓ, െ ܵ,൯൫ܵ,  ,൯൫ܵ,ܤ  ,ܤ െ ,൯ݓܯ ൌ 0 (1) 

Equation (1) is a quadratic equation, which accepts the two solutions ൫ெೕ௪ೖ,ೕିௌೖ,ೕ൯൫ௌೖ,ೕାೖ,ೕ൯േට൫ெೕ௪ೖ,ೕିௌೖ,ೕ൯൫ௌೖ,ೕାೖ,ೕ൯ௌೖ,ೕெೕ௪ೖ,ೕௌೖ,ೕ . First, note that Mj·wk,j > Sk,j (since 

B4>0), so the solutions are real numbers. Second, we keep the solutions with the 
minus because it is lower than B3=Mj·wk,j−Sk,j and even B2=Mj·wk,j−Sk,j−Bk,j. Indeed, 
after performing some algebraic manipulations we get  ൫݇ݓ݆ܯ,݆െܵ݇,݆൯൫ܵ݇,݆݇ܤ,݆൯െට൫݇ݓ݆ܯ,݆െܵ݇,݆൯൫ܵ݇,݆݇ܤ,݆൯ܵ݇,݆݇ݓ݆ܯ,݆ܵ݇,݆ ൏ ݆,݇ݓ݆ܯ െ ܵ݇,݆ െ ݆,݇ܤ  ݆,݇ݓ݆ܯ  ܵ݇,݆ ݇ܤ,݆, which is true. Now, there are 2 cases. If the solution is greater than ݓାଵ,ܯ െܵ, െ  , (see point P1 in Figure 4), then we draw the line ε1 from P to P3 as we showܤ
in Figure 4. Else, we draw the line from P1 to P3 (we illustrate such a scenario with line 
ε2 in region ܴ݇0 in Figure 4). We summarize the two cases by writing ܤ ൌ max ቐ൫ெೕ௪ೖ,ೕିௌೖ,ೕ൯൫ௌೖ,ೕାೖ,ೕ൯ିට൫ெೕ௪ೖ,ೕିௌೖ,ೕ൯൫ௌೖ,ೕାೖ,ೕ൯ௌೖ,ೕெೕ௪ೖ,ೕௌೖ,ೕ , ܯାଵ,ݓ െ ܵ, െ  .,ቑܤ

We will now prove that the slope of ε1 is greater than the right derivative at  

P3. Indeed, the slope of ε1 is ݆ܯ݆,݅ݓ ܵ݇,݆݇ܤ,݆൫ܵ݇,݆݇ܤ,݆ܤ൯2. The right derivative at P3, on the other 

hand, is ݆ܯ݆,݅ݓ ܵ݇,݆൫݆ܯ݆,݇ݓ൯2. But then ݓ,ܯ ௌೖ,ೕାೖ,ೕ൫ௌೖ,ೕାೖ,ೕା൯మ  ܯ,ݓ ௌೖ,ೕ൫ௌೖ,ೕାೖ,ೕା൯మ  ݓ,ܯ ௌೖ,ೕሺௌೖ,ೕାೖ,ೕାሺெೕ௪ೖ,ೕିௌೖ,ೕିೖ,ೕሻሻమ ൌ ܯ,ݓ ௌೖ,ೕሺெೕ௪ೖ,ೕሻమ, which proves our claim. Moreover, it 

is easy to see that the slope of ε1 is lower than the left derivative at P1, since the 
opposite would imply that the line segment P2-P3 has a slope wi,j/wk,j that is greater 
than the left derivative at P1 wi,j/wk+1,j, which is untrue given that wk,j>wk+1,j. 

We repeat the process described above in all regions. At the end of this process, we 
derive a utility function ෩ܷ, that is continuous everywhere, differentiable everywhere 
except for the points where it changes slope, and the left and right derivatives (which 
exist for all Bi,j≥0) are monotonically non-increasing in the allocated budget Bi,j. But 
then ܷ݅,݆ will be concave in terms of Bi,j. Now, recall that ܷ݅ ൌ ∑ ൌ1ܮ݆݆,ܷ݅ . If we repeat 
the above process for every Ui,j, 1≤j≤L, we can eventually form the function ෩ܷሺ; ሻି ൌ ∑ ෩ܷ,ሺܤ,; ,ሻୀଵିܤ  (where ି denotes the vector of budget allocations 
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of all advertisers but i). The function ෩ܷሺ;  ሻ is the sum of concave functions, so itି
is also concave in i’s strategy Bi. In the end, the new utility functions ܷ݅ሺ݅;  ,െ݅ሻ
1≤i≤N, possess two important properties: (1) each ෩ܷሺ;  ሻ is continuousି
in ሺ݅; ;െ݅ሻ, and (2) each ෩ܷሺ  .െ݅ ሻ is concave in Bi for any fixed value ofି
Moreover, the strategy space of every advertiser is convex, closed and bounded. 
Consequently, based on Rosen’s theorem [16] we can immediately derive that a Nash 
equilibrium exists. We denote that equilibrium by  ൌ ሺ1, … ,  ෨ the new game when the utility functions are replaced by their upper-concaveܩ ܰሻ. Moreover, we call
envelopes. 

Note that ෩ may not be an equilibrium of game G. This means that there may be 
players in game G who have an incentive to deviate if the strategy vector ෩ is chosen. 
However, the following lemma shows that we can bound the maximum utility that a 
player can gain by deviating. 

Lemma 5: Let the strategy vector ෩ be a Nash equilibrium of game ܩ෨. Then the 
maximum utility that player i can gain by deviating from ෩ in game G is ܷ݅ሺ݅; െ݅ሻ െܷ݅ሺ݅;  .െ݅ሻ

Essentially, the above result says that we can find a set of budget allocations such 
that we can know exactly the maximum utility that an advertiser may gain by 
deviating. Note that in the special case where the Nash equilibrium of game ܩ෨ falls 
into the parts of ෩ܷ that are equal to ܷ݅, then the Nash equilibria of game ܩ෨ are also 
Nash equilibria of game G. 

7 Conclusion 

The market for location-based advertising is set to witness an unprecedented growth 
over the next years. The massive proliferation of modern mobile phones with 
embedded geo-positioning functionality and the development of fast wireless 
communication protocols have created exciting opportunities for advertisers to reach 
the user base that is most relevant to them. On the other hand, sponsored search 
advertising has been a thriving market in the last decade for advertisers who want to 
advertise their product or service to online users posing relevant queries. Inspired by 
the enormous success of sponsored search and the immense potential for LBA, we 
address the market for location-based sponsored search advertising. We provide 
models that build on prior work in sponsored search advertising, but we additionally 
consider that advertisers are characterized by location-dependent valuations. We 
distinguish between three cases: (1) bids-only case, (2) budgets-only case, and (3) 
bids-and-budgets case, and analyzed the equilibrium strategies in the corresponding 
markets using game theoretical tools. 

There are several research directions that we would like to pursue with regard to 
the market for location-based sponsored search advertising. First, we would like to 
extend our model so that it takes into account the more subtle issues that are involved 
in the sponsored search market such as the externalities between the displayed ads, or 
the more realistic scenario of advertisers who are interested in several keywords. 



 Location-Based Sponsored Search Advertising 365 

 

Second, our model assumed offline ad slot scheduling [9], where we estimate the 
number of queries in every cell, and then allocate to every advertiser a percentage of 
the ads in every cell. It would be interesting to deal with the more challenging 
problem of online ad slot scheduling, where the number of expected queries per cell is 
not available in advance. Finally, we would like to fully explore the equilibrium 
strategies in the bids-and-budgets case, as our current work provides equilibrium 
strategies only for the case where advertisers have sufficiently small or large budgets. 
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