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Abstract

Metric access methods (MAMs), such as the M-tree, are powerful index structures for supporting
similarity queries on metric spaces, which represent a common abstraction for those searching problems
that arise in many modern application areas, such as multimedia, data mining, decision support, pattern
recognition, and genomic databases. As compared to multi-dimensional (spatial) access methods (SAMs),
MAMs are more general, yet they are reputed to lose in flexibility, since it is commonly deemed that
they can only answer queries using the same distance function used to build the index. In this paper we
show that this limitation is only apparent – thus MAMs are far more flexible than believed – and extend
the M-tree so as to be able to support user-defined distance criteria, approximate distance functions to
speed up query evaluation, as well as dissimilarity functions which are not metrics. The so-extended
M-tree, also called QIC-M-tree, can deal with three distinct distances at a time: 1) a query (user-defined)
distance, 2) an index distance (used to build the tree), and 3) a comparison (approximate) distance (used
to quickly discard from the search uninteresting parts of the tree). We develop an analytical cost model
that accurately characterizes the performance of QIC-M-tree and validate such model through extensive
experimentation on real metric data sets. In particular, our analysis is able to predict the best evaluation
strategy (i.e. which distances to use) under a variety of configurations, by properly taking into account
relevant factors such as the distribution of distances, the cost of computing distances, and the actual
index structure. We also prove that the overall saving in CPU search costs when using an approximate
distance can be estimated by using information on the data set only – thus such measure is independent
of the underlying access method – and show that performance results are closely related to a novel
“indexing” error measure. Finally, we show how our results apply to other MAMs and query types.

1 Introduction

In this paper we tackle the problem of evaluating similarity queries in metric spaces. Similarity queries are a
major trend in many modern database applications, such as multimedia, data mining, pattern recognition,
molecular biology, and many others. In its essence, the problem is to find in a given collection of objects
those objects that are most “similar” to a particular query object. In all these scenarios, the similarity of a
pair of objects is typically evaluated by computing their relative distance in a suitably defined space (e.g.
weighted Euclidean distance in a 10-dimensional vector space, edit distance over a string space, etc.), which
depends on both the objects’ nature and the matching criterion. Basic requirements for solving similarity
queries are:

Correctness: All objects satisfying the query should be returned in the result; no false dismissals are
allowed.1

Efficiency: The cost to be paid to solve the query (typically measured as the overall time needed to produce
the results) should be as low as possible.

1Approximate similarity queries [CP01], which allow for missing some qualifying objects, are beyond the scope of this paper.
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In order to efficiently answer similarity queries, many index structures have been proposed in recent years.
Disregarding specific implementation details, they can be broadly classified in two categories, depending on
the type of spaces and distances they support. The first category includes Spatial Access Methods (SAMs),
such as the X-tree [BKK96] and the SR-tree [KS97] (see [GG98] for a survey on SAMs), that have been
designed so as to improve performance when indexed objects are represented as high-dimensional vectors.
This is the case for color histograms [FEF+94] and texture descriptors [MM96] for content-based image
retrieval, Fourier vectors for temporal sequences [AFS93], and information on scientific data, only to name a
few. In such cases, the number of dimensions of the space can vary from a few dozens to several hundreds. The
second category of index structures consists of Metric Access Methods (MAMs), such as the M-tree [CPZ97],
the mvp-tree [BÖ97], and the Slim-tree [TTSF00] (see also [CNBYM] for a recent survey), which aim to
solve similarity queries on generic metric spaces, where the only requirement is that the distance function
is a metric, thus objects need not to be necessarily represented as vectors. Unlike SAMs, a MAM organizes
objects using only their relative distances – thus no geometric operations based on objects’ “positions” are
used – and exploits the triangle inequality to prune unrelevant parts of the search space.

Although MAMs have an intrinsic broader applicability than SAMs (since vector spaces, the only spaces
to which SAMs apply, are a proper subset of metric spaces), a current limit to MAMs utilization originates
from their lack of flexibility in supporting queries with a distance function different from the one used to
build the index structure. A relevant case where these two distance functions may differ stems from the
need to support user-defined distance functions, when the criterion used to assess the (dis)similarity between
objects can be chosen at query time [SK97].

A further limitation to the efficient resolution of similarity queries in metric spaces is the possible high
cost of distance computations, which can sometimes make MAMs CPU-bound. For instance, this is the
case for the comparison of long strings which arise in genomic databases and for “ellipsoid” queries in
high-dimensional vector spaces. Even if some optimizations to alleviate this problem have been already
incorporated into MAMs [CPZ97], they are not sufficient yet to guarantee adequate performance levels on
complex metric spaces [CPZ98a, CNBYM].

In this paper we start by showing that the limitation on the applicability of metric index structures is
only apparent. The keys for adding flexibility to MAMs are the so-called Lower-Bounding property, which is
also commonly used with SAMs, and “distance scaling”, which allow MAMs to be applied in a wider variety
of situations. We then provide an extension of the M-tree (which we take as the reference MAM throughout
the paper) so as to process queries using distance functions based on user preferences. In particular, any
distance function which is lower-bounded by the distance used to build the tree can be used to correctly
query the index without any false dismissal, i.e. without losing any relevant object.

Turning to performance issues, we introduce the concept of comparison (approximate) distance function,
to quickly prune the nodes of the tree that do not contain relevant objects. The so-extended M-tree, also
called QIC-M-tree, can therefore deal with three distinct distances at a time:

1. the query (user-defined) distance (according to which the actual result must be computed),

2. the index distance (used to build the tree), and

3. the comparison distance (used to quickly discard uninteresting index paths).

It is worth pointing out that this enlarged scenario also includes the possibility to have non-metric query
and/or comparison distance functions, a fact which indeed further broadens the scope of applicability of the
QIC-M-tree.

In order to estimate performance of QIC-M-tree when solving similarity (range and k-nearest neighbor)
queries, we present a cost model to analytically predict search costs given statistics about the data set and
the index at hand. Specifically, since in a generic metric space no concept of “position” can be used, the only
information exploited by the cost model is the distance distribution, i.e. the distribution of pairwise objects’
distances. Experiments with real metric data sets clearly demonstrate the high accuracy of the cost model.
Besides being applicable to predict query costs, the cost model can also be used to help with some relevant
query processing issues, such as:
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1. When several comparison distances are available, which one is the most effective for a given query?

2. On the other side, is the use of a comparison distance always effective?

We also show that our results are not peculiar to the QIC-M-tree but can also be applied to other types of
(properly extended) MAMs: In particular, it is demonstrated how the saving that can be obtained by using
a comparison distance is independent of the underlying access method, and can be derived from statistics on
the data set only.

The paper is organized as follows. In Section 2 we give background information on MAMs and on
user-defined distances. Section 3 introduces the basic concepts underlying our approach. In Section 4 we
concentrate on range queries and present the algorithm for correctly solving them with QIC-M-tree. Section
4.1 introduces a cost model for analytically predicting index performance. Section 5 considers k-nearest
neighbor queries. In Section 6 we validate the proposed cost model and provide extensive experimental
results over real metric data sets. Section 7 shows how our results can also be adapted to other metric
index structures. In Section 8 we discuss how to extend MAMs so as to support other query types. Section
9 presents a discussion on related works and Section 10 concludes. Relevant symbols used throughout the
paper are given in Table 1.

Symbol Description

U set of objects
O ⊆ U data set
M = ‖O‖ number of objects in the data set
d : U × U → �+ distance function
dQ query distance
dI index distance
dC comparison distance
Q ∈ U query object
ε radius of a range query
k number of objects requested by a k-nearest neighbors query
S1→2 scaling factor of distance d2 wrt d1

d+ finite upper bound on values of d
Fx(·) distribution of the random variable x
fx(·) density of x
E [x] expected value of x
#op number of op operations needed to solve a query
costop time needed for a single op operation
timeop = #op · costop time spent for performing operation op during search
L height of the M-tree
N node of the M-tree

O[N ] ∈ U routing object of node N

r[N ] covering radius of node N
nl number of nodes at level l of the M-tree

n =
∑L

l=1 nl total number of nodes of the M-tree
rl average covering radius for nodes at level l of the M-tree

Table 1: Summary of symbols.

2 Background

A metric space is a pair (U , d), where U is a set of objects and d : U ×U → �+ is a metric, i.e. a non-negative
and symmetric binary function that also satisfies the triangle inequality: d(Oi, Oj) ≤ d(Oi, Ok)+d(Ok, Oj) for
all objects Oi, Oj , Ok ∈ U . Similarity queries are of two basic types: Given a data setO = {O1, . . . , OM} ⊆ U ,
a range query, range(O, Q, ε, d), selects all the objects O in O whose distance d(Q,O) from the query object
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Q ∈ U is not larger than ε. A k-nearest neighbor (k-NN) query, NN(O, Q, k, d), retrieves the k objects in O
that have minimum distance d from Q.

2.1 Searching with Metric Access Methods

Given a set of objects, a MAM organizes them using a distance function dI that measures their mutual
dissimilarities. For the purpose of this paper, we call dI the index distance function.

The unifying model presented in [CNBYM] indeed shows how all existing MAMs organize objects into
a set of disjoint partitions, on top of which an index is built to drive the search to only those partitions
which can contain relevant objects. For the case of metric trees (examples include the M-tree [CPZ97], the
Vantage Point tree (vp-tree) [Yia93, Chi94], the mvp-tree [BÖ97, BÖ99], and the GNAT [Bri95]), partitions
correspond to leaves of the tree and index (internal) nodes correspond to (possibly overlapping) regions of
the metric space. During the search, only those nodes are accessed that may lead to objects satisfying the
query.

The M-tree [CPZ97] has been the first dynamic metric tree to be introduced, in the sense that it supports
random insertions and deletions without the need of costly re-organizations to avoid performance degrada-
tion. The recent Slim-tree [TTSF00] is also a dynamic MAM, which extends the M-tree with a new node
splitting algorithm and a procedure to make the tree more compact. For the sake of definiteness, in the
following we will focus our analysis on the M-tree, postponing discussion about other MAMs to Section 7.

2.1.1 The M-tree

The M-tree is a paged, dynamic, and balanced tree whose fixed-size nodes are mapped to disk pages and
where indexed objects are stored in the leaf nodes.2 Each node N corresponds to a region of the indexed
metric space (U , dI), defined as Reg(N) = {O ∈ U|dI(O[N ], O) ≤ r[N ]}, where O[N ] is called the routing
object of node N and r[N ] is its covering radius. All the objects in the sub-tree rooted at N are then
guaranteed to belong to Reg(N), thus their distance from O[N ] does not exceed r[N ]. Both O[N ] and r[N ]

are stored, together with a pointer to node N , ptr(N), in an entry of the parent node of N . In order to
save distance computations, the M-tree also stores pre-computed distances between a routing object and
its parent. Thus, if Np is the parent node of N , the entry for N in node Np also includes the value of
dI(O[Np], O[N ]).

Figure 1 shows an example of (a part of) an M-tree in the 2-D space equipped with a quadratic (elliptic)
distance function (see also Section 2.2): In particular, it has to be noted that all objects contained in nodes
N3 and N4 are also contained in the region associated with the parent node N1.

N3 N4

... ...

...

N1 N2

N1

N3

N2

N4

...

...

(a)

N4[      ]
O

N4[      ]
r

N3[      ]
O

N3[      ]
r

N2[      ]
r

N2[      ]
O

N1[      ]
r

N1[      ]
O

O

(b)

Figure 1: An example of (a part of) an M-tree (a) and regions associated to each node in the 2-D space with
a quadratic distance function (b). For each node N , the routing object O[N ] and the covering radius r[N ]

are shown.
2The source code of the M-tree is publicly available at URL: http://www-db.deis.unibo.it/Mtree.
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Besides range and k-NN queries (covered in Sections 4 and 5, respectively), the M-tree also supports ap-
proximate NN queries [CP00] and complex similarity queries (where more than one query object is specified)
[CPZ98b] (see also Section 8.2). Performance of the M-tree for the basic query types can also be analytically
predicted [CPZ98a].

2.2 User-Defined Distance Functions

In many situations it is desirable that users can decide at query time which is the “best” distance function to
use. For instance, consider the case of color-based image retrieval [SK97], where it is assumed that objects
are represented as histograms of colors (i.e. vectors). In this case, the (dis)similarity between two histograms
can be computed by multiplying the difference between each couple of histogram bins by the similarity
between respective colors. This leads to a quadratic distance function:

dqf [A](O1, O2) =
√

(O1 −O2)TA(O1 −O2) =
√∑

i

∑
j

aij(O1i −O2i)(O1j −O2j) (1)

where element aij of the symmetric positive definite matrix A is the similarity between colors i and j.3

The fact that each user can specify a different A matrix to compare color histograms can be the rule,
rather than the exception. Indeed, different users could have different query requirements and the same
user should also be given the possibility to change the way to query the system, based on his/her current
preferences. Another common situation where the user distance can change over time is when relevance
feedback is supported: In this case the distance can vary at each iteration of the feedback cycle depending
on the relevance judgments provided by the user [PC99, BCW01].

The following Definition concisely captures cases like these.

Definition 1 (Class of distance functions)
Let d[θ] be a distance function specified by a vector θ of parameter values and let Θ = {θ} be the space of
possible parameter vectors. The set d[Θ] = {d[θ]|θ ∈ Θ} is called a class of distance functions with parameter
θ. �

Example 1
Lp (p = 1, 2, . . . ,∞) norms are the most commonly used distance functions for D-dimensional vector spaces,
and are defined as:

Lp(O1, O2) =


 D∑
j=1

|O1j −O2j |p



1
p

(1 ≤ p <∞)

L∞(O1, O2) =
D

max
j=1

{|O1j −O2j |}

The set P = {1, 2, . . . ,∞} of all possible p values leads to the definition of the dL[P ] class of Lp metrics. �

Example 2
User-adaptable similarity queries based on quadratic form distance functions (see Equation 1) form the
class dqf [A], where A is the space of all symmetric positive definite matrices. Each matrix A ∈ A leads to
“ellipsoid queries” in the D-dimensional vector space, where the shape and the orientation of the ellipsoid
depend on the similarity matrix A. �

Example 3
The family of edit distances dedit[Γ] is commonly used to measure the dissimilarity of strings. In particular,
the “unweighted” edit distance counts the minimum number of atomic edit operations (insertion, deletion,

3The fact that A has to be positive definite is not really necessary, depending on the data distribution, see [HSE+95].

5



and substitution of one symbol) needed to transform a string into another one. With weighted edit distances,
each atomic operation has its own “cost” (or weight).

Formally, let Σ be a finite alphabet, let Σ∗ be the set of all finite-length strings over Σ, and let λ be the
null symbol. An edit transformation from string X to string Y is a sequence S = S1S2 . . . Sm of elementary
edit operations, i.e. Sj = (Aj → Bj), where Aj , Bj ∈ Σ ∪ {λ}. A weight function γ is used to assign to each
operation A → B a non-negative cost, γ(A → B). The cost of an edit transformation S can be defined as
γ(S) =

∑m
j=1 γ(Sj). The weighted edit distance induced by γ is then:

dedit[γ](X,Y ) = min{γ(S)|S is an edit transformation from X to Y }

The complexity of computing dedit[γ](X,Y ) is O(len(X)× len(Y )), where len(X) and len(Y ) are the length
of strings X and Y , respectively [WF74]. This makes edit distance computation highly CPU demanding for
the case of long strings (e.g. strings corresponding to human chromosomes contain millions of characters,
each representing a nucleic acid type).

It is known that if the two following conditions hold:

1. γ(A→ B) = γ(B → A) > 0 if A �= B, and

2. γ(A→ A) = 0, ∀A,B ∈ Σ ∪ {λ}

then dedit[γ] is a metric over the Σ∗ space, regardless of the specific values of the weights. The unweighted
edit distance, simply denoted dedit from now on, is obtained by setting γ(A → B) = 1 ∀A,B ∈ Σ ∪ {λ}
with A �= B. Also important is the case where no symbol substitutions are permitted. The corresponding
distance is then defined by a weight function γi,d such that γi,d(A → B) = ∞ when A �= B and A,B �= λ,
otherwise it assigns cost 1 to each insertion or deletion of symbols. It is immediate to show that setting
γi,d(A → B) = 2 does not alter at all the distance function, since a symbol substitution can always be
obtained by one deletion followed by an insertion, each of which costs 1. �

3 New Scenarios for Metric Access Methods

Current limits to MAMs applicability are their lack of flexibility in supporting queries with a distance
function different from the one used to build the index and the high distance computation costs to be paid
in complex metric domains.

The basic tool for extending MAMs is the lower-bounding property between distances. Such concept has
been already profitably used by SAMs to support user-adaptable distance functions [SK97, SK98].

Definition 2 (Lower-bounding distance function)
Let d1 and d2 be two distance functions over U , we say that d1 is a lower-bounding distance function of d2
(d1 � d2 for short) if d1 is an underestimate of d2, that is:

d1(Oi, Oj) ≤ d2(Oi, Oj) ∀Oi, Oj ∈ U (2)

�

In order to support queries with user-defined distance functions, it is useful to extend above definition to
classes of distance functions. As a preparatory step, assume d1 �� d2, yet there exists a real value S1→2 > 0
such that ∀Oi, Oj ∈ U it is d1(Oi, Oj) ≤ S1→2 d2(Oi, Oj). In this case, we call S1→2 the scaling factor of d2
with respect to (wrt) d1 and write d1 � S1→2 d2. Clearly, if there exists S1→2 such that d1 � S1→2 d2 holds,
infinitely many other values for the scaling factor exist. It is therefore advisable to consider the minimum
of such values, since it makes d1 a tight lower-bound of S1→2 d2. This concept is captured by the following

Definition 3 (Optimal scaling factor)
Let d1 and d2 be two distance functions over U , and let S1→2 the minimum value such that d1 � S1→2 d2
holds. We call S1→2 the optimal scaling factor of d2 wrt d1. �
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We are now ready to generalize the concept of lower-bounding distance function to a class of distance
functions.

Definition 4 (Lower-bound of a class of distance functions)
If d1 is a distance function and d2[Θ] is a class of distance functions, then d1 is a lower-bounding distance
function for the d2[Θ] class, written d1 � d2[Θ], iff for each θ there exists a scaling S1→2[θ] such that
d1 � S1→2[θ] d2[θ]. �

The following Claim, which will be proved to hold for the M-tree (see Theorem 2 and Corollary 2) as
well as for other specific MAMs (see Section 7), exploits above definitions to support user-defined distance
functions.

Claim 1
Let M be a MAM built on a data set O ⊆ U using the dI metric, and dQ a distance function over U , such
that dI � SI→Q dQ, then M can also correctly process range and k-NN queries based on dQ. �

Although we have not a formal proof that the Claim holds for any MAM, all our results as well as the logic
used to prove them strongly support the opinion that this is likely to be the case.

Next Proposition shows that we can also use approximate (cheap) distances as a pre-test before computing
the actual query distance on data objects. This can be exploited whenever a threshold on query distance
values is available (this is the case for range queries, as well as for k-NN queries where the threshold is
dynamically modified during the search). Note that in this case the presence of a MAM is unrelevant.

Proposition 1
Let dC be a distance function over U , such that dC � SC→Q dQ, then dC , also called a comparison distance,
can be used as a pre-test (so as to avoid computing the actual dQ) when checking whether an object should
be included in the result. �

Proof: If the threshold on query distance values is ε, and the pre-test yields dC(Q,O) > SC→Q ε, then
dQ(Q,O) ≥ dC(Q,O)/SC→Q > ε, thus object O can be safely excluded from the result. �

The use of a comparison distance is not restricted to data objects. Indeed, when a MAM is available, dC
can also be used as a pre-test for the index distance dI .

Claim 2
Let M be a MAM built on a data-set O ⊆ U using the dI distance, and dC a distance function over U ,
such that dC � SC→I dI , then dC can be used as a pre-test (so as to avoid computing the actual dI) when
searching the index. �

Observations made for Claim 1 still apply here. As a remark concerning performance, it is intuitive that a
“good” comparison distance should satisfy two contrasting requirements:

1. dC should be computationally cheap to evaluate with respect to dI and dQ;

2. dC should be a good approximation of both SC→I dI and SC→Q dQ.

Above Claims and Proposition allow for a variety of scenarios, the more general being the one where
three distinct distance functions (dI , dQ, and dC) are used. Overall, this leads to what we call the QIC
(pronounced “quick”) approach to similarity query processing in metric spaces.

It has also to be remarked that in Claims 1 and 2 and Proposition 1 no metric assumption is made on
distances dQ and dC , thus MAMs can also be used to answer queries where the user similarity criterion is
not a metric one.
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3.1 Remarks on SAMs and the Filter & Refine Approach

As said, the lower-bounding property is also used by SAMs to deal with user-defined distance functions. As
an example, consider the case when the query function dQ is a quadratic form and a SAM using rectilinear
regions (like the R-tree family [Gut84, BKSS90, BKK96]) is used: Since, particularly in high-dimensional
spaces, computing whether an elliptic region and a box intersect is a very expensive task, the query region is
approximated using its minimum bounding box or sphere, thus defining a new distance function that lower-
bounds dQ [ABKS98]. The same approach is also used when the user metric on the object domain is replaced
with an approximate lower-bounding distance function on the feature domain, where features are vectors
of suitable dimensionality that provide a simplified representation of objects’ content (this is the technique
used in the GEMINI approach [ZCF+97, Chapter 12]); then a SAM is used to index objects features. Both
techniques lead to a two-steps filter & refine (F&R) query processing strategy, where the filter step uses the
SAM with the approximate distance function and the refine step discards, using the actual object distance,
the false drops, i.e. objects included in the approximate result but that do not satisfy the original query.

Unlike above strategies, in the QIC approach a query is completely solved within the MAM, thus no
objects transformations or refinement steps are needed. Nonetheless, when reputed convenient from a per-
formance point of view, a MAM-based F&R strategy can still be adopted, as we discuss in Section 6.2.4.

3.2 Some Relevant Cases

In the following we enumerate some relevant cases to which the QIC approach applies.

Lp Norms: The following corollary is based on well-known results on Lp norms.

Corollary 1
Every Lp′ norm is a lower-bounding distance function for the class of Lp norms, Lp′ � dL[P ]. The

optimal scaling factor equals 1 if p′ > p, and D1/p′−1/p if p′ < p, where D is the dimensionality of the
vector space. �

Proof: The result follows immediately from the inequalities Lp′ � Lp, if p′ > p, and Lp′ � D1/p′−1/pLp,
if p′ < p. �

Quadratic Form Distance Functions: In [HSE+95] it is proved that L2 is a lower-bounding distance
function for the class of quadratic form distance functions, L2 � dqf [A], and that the optimal scaling
factor SL2→qf [A] is given by the inverse of the square root of the minimum eigenvalue ofA, SL2→qf [A] =
1/

√
minj{λj}.4

Weighted Edit Distances: The following Theorem proves that any weighted edit distance is a lower-
bounding distance function for its class.

Theorem 1
Let Γ be the set of all weight functions γ such that dedit[γ] is a weighted edit distance over Σ∗, the set
of all finite-length strings over a finite alphabet Σ, and let γI ∈ Γ. Then, dedit[γI ] � dedit[Γ] and the
optimal scaling for dedit[γ] is given by SγI→γ = 1/minA,B,A �=B{γ(A→ B)/γI(A→ B)}. �

Proof: Given in Appendix B. �

The Multiset Distance: Given a string X, let x = ms(X) denote the multiset (bag) of symbols in X. For
instance, ms("tree") = {{t, r, e, e}}. The following can be easily proved to be a metric on multisets:

dms(x, y) = max{|x− y|, |y − x|} (3)

4An alternative formulation of this result can be found in Appendix A.
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where the difference has a bag semantics (e.g. {{a, a, a, b}} − {{a, a, b, c, c}} = {{a}}), and | · | counts
the number of elements in a multiset (e.g. |{{a, a}}| = 2). In practice, dms(x, y) first “drops” common
elements, then takes the maximum considering the number of “residual” elements. For instance:

dms({{a, a, a, b}} − {{a, a, b, c, c}}) = max{|{{a}}|, |{{c, c}}|} = 2

It is immediate to observe that dms(x, y) is a lower-bounding distance for the unweighted edit distance,
i.e. dms(x, y) ≤ dedit(X,Y ) ∀X,Y ∈ Σ∗, thus dms � dedit. It then easily follows from Theorem 1 that
dms � dedit[Γ], and the scaling factor of dedit[γ] wrt dms is 1/minA,B,A �=B{γ(A→ B)}.

As a specific example, if a metric index is built using the Euclidean distance, i.e. dI ≡ L2, it also supports
queries with the “city-block” distance, dQ ≡ L1 (with scaling factor 1), with the “max metric”, dQ ≡ L∞
(with scaling factor D1/2−1/∞ =

√
D), as well as with any quadratic form distance function. As another

example, one could have an index built with a weighted edit distance that, say, reflects the typing error proba-
bilities due to a “default” keyboard layout, and then issue queries using any other weighted distance, e.g. con-
sidering user’s own keyboard. Further, since computing dms(ms(X),ms(Y )) is in O(len(X)+ len(Y )+ |Σ|),
dms can indeed be effectively used as a comparison distance for edit distances.5

3.2.1 Non-Metric Distances

Following are two deliberately simple examples aiming to illustrate how a MAM can be also used in the case
when dQ is not a metric. For this assume that one wants to support both “subset” and “superset” queries
on strings. Namely, for subset queries the distance function is:

d⊆(X,Y ) =

{
len(Y )− len(X) if X is a substring of Y
∞ otherwise

Similarly, for superset queries it is:

d⊇(X,Y ) =

{
len(X)− len(Y ) if Y is a substring of X
∞ otherwise

Clearly, since neither d⊆ nor d⊇ are symmetric, they are not metrics. However it is easy to see that both
dedit � d⊆ and dedit � d⊇ hold. Thus, a MAM built using dI ≡ dedit would be able to answer queries based
on both d⊆ and d⊇.

Another relevant case to consider concerns the Earth Mover’s Distance (EMD), which has been proved to
be an effective way to compare distributions of values [RTG98]. The EMD extends quadratic form distance
functions based on histograms and as such it has been successfully applied for image retrieval. In general,
the EMD is not a metric, yet [RTG98] shows how under particular circumstances it is indeed possible to
find a metric dEMD such that dEMD � EMD holds. Again, this would make it possible to build an index
using dI ≡ dEMD for answering queries with dQ ≡ EMD.

4 Range Queries

To show how the M-tree, which, we recall, we take as the reference MAM, can correctly process range queries
expressed with a distance function dQ which is different from the dI used to build the tree, it is first useful
to review the basic logic of the search algorithm for the basic case dC ≡ dI ≡ dQ (see also [CPZ97]).

Given the range query range(O, Q, ε, dI), the M-tree is recursively descended and sub-trees are accessed
iff the region associated with their root node overlaps the query region (see Figure 2). For a given node N
with routing object O[N ] and covering radius r[N ], this amounts to check if dI(Q,O[N ]) > ε + r[N ] holds,
since from the triangle inequality it follows:

dI(Q,O[N ]) > ε+ r[N ] =⇒ dI(Q,O) > ε ∀O ∈ Reg(N) (4)

9
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Figure 2: Searching in an M-tree. N2 and N4 are pruned since their regions do not overlap the query region.

The recursive RangeSearch M-tree algorithm is shown in Figure 3. It is assumed that the search starts
from the root node. Lines 4. and 9. both exploit the triangle inequality so as to avoid to compute unnecessary
distances (since the involved distance values either have been already computed, dI(Q,O[N ]), or are stored in
the considered node, dI(O[N ], Oi), see Lemma 3.2 in [CPZ97]). In particular, consider line 4.: If |dI(Q,O[N ])−
dI(O[N ], Oi)| > ε, then from the triangle inequality it is derived dI(Q,Oi) > ε, thus object Oi does not belong
to the result.

Algorithm RangeSearch (node N , query object Q, threshold ε)

1. Let O[N ] be the routing object of node N ;
2. If N is a leaf node then:
3. For each object Oi in N do:

4. If |dI(Q,O[N ]) − dI(O
[N ], Oi)| ≤ ε then:

5. Compute dI(Q,Oi);
6. If dI(Q,Oi) ≤ ε then add Oi to the result set;
7. else: // N is an internal node
8. For each child node Nc of N do:

9. If |dI(Q,O[N ]) − dI(O
[N ], O[Nc])| ≤ ε + r[Nc] then:

10. Compute dI(Q,O[Nc]);

11. If dI(Q,O[Nc]) ≤ ε + r[Nc] then:
12. Fetch node Nc and call RangeSearch(Nc, Q, ε);
13. End.

Figure 3: Algorithm for processing range queries with M-tree.

The QIC-RangeSearch algorithm, shown in Figure 4, applies when both a query distance dQ and an
approximate distance dC are used to answer the query range(O, Q, ε, dQ). With respect to RangeSearch,
the following modifications are needed:

• On internal nodes, the index distance dI is used together with a “scaled threshold” SI→Q ε (see line
15.). Indeed, since covering radii are computed using dI , the index distance has to be used to check
whether a node could be pruned from the search.

• The same applies at lines 4. and 11. where, as in RangeSearch, already available distances are used to

5Other distances can be used to approximate the edit distance [KS01]; the multiset distance dms has, however, the advantage
that it does not require further processing of strings and is very fast to compute.
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prune objects from the result. In particular, |dI(Q,O[N ])−dI(O[N ], Oi)| > SI→Q ε implies dI(Q,Oi) >
SI→Q ε, thus dQ(Q,Oi) > ε.

• At line 6. the pre-test based on the comparison distance dC is executed.

• dC is also used in line 13. to save dI computations (note that in this case, the SC→I scaling factor has
to be used).

Algorithm QIC-RangeSearch (node N , query object Q, distances dQ, dC , threshold ε, scaling factors SC→I , SC→Q, SI→Q)

1. Let O[N ] be the routing object of node N ;
2. If N is a leaf node then:
3. For each object Oi in N do:

4. If |dI(Q,O[N ]) − dI(O
[N ], Oi)| ≤ SI→Q ε then:

5. Compute dC(Q,Oi);
6. If dC(Q,Oi) ≤ SC→Q ε then:
7. Compute dQ(Q,Oi);
8. If dQ(Q,Oi) ≤ ε then add Oi to the result set;
9. else: // N is an internal node
10. For each child node Nc of N do:

11. If |dI(Q,O[N ]) − dI(O
[N ], O[Nc])| ≤ SI→Q ε + r[Nc] then:

12. Compute dC(Q,O[Nc]);

13. If dC(Q,O[Nc]) ≤ SC→I(SI→Q ε + r[Nc]) then:

14. Compute dI(Q,O[Nc]);

15. If dI(Q,O[Nc]) ≤ SI→Q ε + r[Nc] then:
16. Fetch node Nc and call QIC-RangeSearch(Nc, Q, dQ, dC , ε, SC→I , SC→Q, SI→Q);
17. End.

Figure 4: The QIC-RangeSearch algorithm.

Theorem 2 (The QIC Theorem)
The QIC-RangeSearch algorithm returns the correct answer to the query range(O, Q, ε, dQ). �

Proof: Given in Appendix B. �

4.1 Cost Model

Here we present an analytical cost model to evaluate the performance of the QIC-RangeSearch algorithm.
The cost model exploits statistical information about the data set and the index tree built on it:6

Data Set Statistics: We use the distance distribution of objects, which, since its introduction in [CPZ98a],
has been successfully adopted to predict performance of metric structures [TTF00, TTSF00, CNBYM].
Formally, let Fd(·) be the distance distribution corresponding to distance d, that is:

Fd(x) = Pr{d(Oi,Oj) ≤ x} = Pr{d ≤ x} x ∈ [0, d+]

where Oi and Oj are randomly chosen objects of O, d+ is a finite upper bound on distance values,
and d = d(Oi,Oj) is a random variable with distribution Fd(·). With fd(x) = d

dxFd(x) we denote the
probability density function (pdf) of Fd(x).

6A tree independent cost model would necessarily rely on optimality assumptions (e.g. the fact that node regions do not
overlap) that are completely unrealistic given the state-of-the-art for MAM construction algorithms [TTSF00]. In the following,
therefore, we will assume that costs are estimated given an M-tree built over the considered data set using a particular
construction algorithm (which is completely uninfluential to our purposes).
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Index Statistics: For each level l of the tree (l = 1, 2, . . . , L, where L is the tree height), the number of
nodes nl and the average covering radius rl are maintained. This is the same approximation considered
in the Level-based cost model of [CPZ98a] and leads to a negligible O(L) = O(logM) storage overhead.

In general, the time needed for solving the query range(O, Q, ε, dQ) is composed by two terms: The I/O
time, needed for fetching index nodes into main memory, and the CPU time, which can be further split
into the time needed for computing distances and the overhead time spent by the algorithm for recursion
and management of structures. Since the latter is orders of magnitude lower than the distance computation
cost [CNBYM], in the following we will only consider the I/O time and the CPU time due to distance
computations.

The time spent in performing each operation is obtained by multiplying the expected number of operations
by the average cost of a single operation:

timetotal = timeI/O + timeCPU � timeI/O + timedQ
+ timedI

+ timedC

timeI/O(ε; dI ;SI→Q) = #I/O(ε; dI ;SI→Q) · costI/O
timedC

(ε; dI , dC ;SI→Q) = #dC
(ε; dI ;SI→Q) · costdC

(5)
timedI

(ε; dI , dC ;SI→Q, SC→I) = #dI
(ε; dI , dC ;SI→Q, SC→I) · costdI

timedQ
(ε; dQ, dI , dC ;SI→Q, SC→Q) = #dQ

(ε; dI , dC ;SI→Q, SC→Q) · costdQ

Since average costs for each single operation can be easily computed by sampling the data set, we
concentrate on the estimation of the number of atomic operations needed to solve a query. The dependencies
of cost components on the parameters are explicited in Equations 5. It is important to note that:

• No number (#) directly depends on (the distribution of) the query distance dQ; this can also be argued
by looking at the QIC-RangeSearch algorithm, since computing dQ only serves to check whether an
object has to be inserted in the result set.

• The number of I/Os, #I/O, only depends on the query radius ε, on the index distance dI , and on
the scaling factor SI→Q. In particular, it is independent of the specific dC (and on scaling factors
SC→Q and SC→I), since the use of a comparison distance can only affect the number of distances to
be computed but not the number of nodes to be retrieved. Same arguments apply to #dC

, the number
of dC computations.

• On the other hand, the number of computed index and query distances, #dI
and #dQ

respectively,
depend also on dC and the corresponding scaling factor.

In order to predict the number of I/O accesses, we consider the probability that a node N of the M-tree,
with routing object O[N ] and covering radius r[N ], has to be accessed by the query range(O, Q, ε, dQ). This
is the case iff dI(Q,O[N ]) ≤ SI→Q ε+ r[N ] (line 15. of QIC-RangeSearch algorithm). Hence, it is

Pr {node N is accessed} = Pr
{
dI(Q,O[N]) ≤ SI→Q ε+ r[N ]

}
= FdI

(SI→Q ε+ r[N ])

which, considering the level-based index statistics, leads to

#I/O(ε; dI ;SI→Q) =
L∑
l=1

nl · FdI
(SI→Q ε+ rl) (6)

For each accessed node, the test at line 4. (for a leaf) or 11. (for an internal node) has to be performed
on all its entries; therefore, for each level, the number of such tests is

nl+1 · FdI
(SI→Q ε+ rl)

where nL+1
def= M is the number of indexed objects. Since dC is computed only when the test fails, in order

to estimate #dC
we need the probability that |dI(Q,O[N ])− dI(O[N ], O[Nc])| ≤ SI→Q ε+ r[Nc], where node

Nc is a child of node N (obviously, for leaf nodes it is r[Nc] = 0). This can be obtained from the distance
distribution of the random variable z = |dI(Q,O[N])− dI(O[N],O[Nc])|.
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Lemma 1
The probability that the test at line 11. fails is

Fz(SI→Q ε+ rl+1) =

=
∫ rl−rl+1

0

fdI
(y)

FdI
(rl − rl+1)FdI

(SI→Q ε+ rl)
(FdI

(y + SI→Q ε+ rl+1)− FdI
(y − SI→Q ε− rl+1)) dy (7)

�

Proof: Given in Appendix B. �
Above Lemma immediately leads to

#dC
(ε; dI ;SI→Q) =

L∑
l=1

nl+1 · FdI
(SI→Q ε+ rl) · Fz(SI→Q ε+ rl+1) (8)

where rL+1 = 0 and Fz(SI→Q ε+ rl+1) is obtained from Equation 7.
The probability that dI(Q,O[Nc]) is computed equals the probability that the test at line 13. fails:

Pr
{
dI(Q,O[Nc]) is computed

}
=

= Pr
{
dC(Q,O[Nc]) ≤ SC→I(SI→Q ε+ r[Nc])

}
= FdC

(SC→I(SI→Q ε+ r[Nc]))

Therefore, the total number of dI computations can be estimated as

#dI
(ε; dI , dC ;SI→Q, SC→I) =

=
L−1∑
l=1

nl+1 · FdI
(SI→Q ε+ rl) · Fz(SI→Q ε+ rl+1) · FdC

(SC→I(SI→Q ε+ rl+1))
(9)

Likewise, the number of computed query distances dQ (line 6.) is estimated as

#dQ
(ε; dI , dC ;SI→Q, SC→Q) =M · FdI

(SI→Q ε+ rL) · Fz(SI→Q ε) · FdC
(SC→Q ε) (10)

Of course, when no comparison distance is used, it is FdC
(x) = 1 and costdC

= 0, thus we obtain

#dI
(ε; dI , , ;SI→Q, 1) =

L−1∑
l=1

nl+1 · FdI
(SI→Q ε+ rl+1) · Fz(SI→Q ε+ rl+1) (11)

#dQ
(ε; dI , ;SI→Q, 1) =M · FdI

(SI→Q ε+ rL) · Fz(SI→Q ε) (12)

As anticipated, the overall cost for a range query does not depend on the distance distribution of the
query distance FdQ

, but only on the scaling factors. In Equations 6, 8, 9, and 10, the values of the scaling
factors appear as multiplicative factors for the query radius ε. Therefore, in order to reduce costs, the scaling
factors should be taken as low as possible, which confirms the need for optimal scaling factors advocated in
Section 3.

5 Nearest Neighbor Queries

The basic principles of the k-NN search algorithm for the case when dC ≡ dI ≡ dQ are summarized as
follows (see also [CPZ97]). The algorithm, described in Figure 5, uses a priority queue, PQ, of point-
ers to nodes of the tree. These are kept ordered by increasing values of dminI (Q,Reg(N)), which is the
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minimum distance between the query point Q and the region of node N , computed as dminI (Q,Reg(N)) =
max

{
0, dI(Q,O[N ])− r[N ]

}
. As proved in [BBKK97], accessing nodes in increasing order of dminI (Q,Reg(N))

leads to minimal I/O costs, as compared to other scheduling criteria (e.g. the one proposed in [RKV95]).
The RL (Result List) array, with k entries of type [Oj , dI(Q,Oj)], is used to store the k closest objects

found so far by the algorithm. At the beginning of the search, when less than k objects have been retrieved,
missing entries are set to [ ,∞]. The largest of the k distances in RL, denoted εk, is used as a dynamic search
threshold for the pruning criterion of Equation 4. This means that if dminI (Q,Reg(N)) ≥ εk holds for node
N , then N can be pruned from the search, since it cannot contain any object closer to Q than the current
k-th NN in RL. In particular, when this is verified for the first node in the PQ queue the search is interrupted
(line 5. of the algorithm). Also note that because exactly k objects are to be returned, nodes can also be
pruned even when their minimum distance from Q equals εk (whereas for range queries this would not be
correct). Clearly, the same holds for objects (see lines 8. and 10.).

Algorithm k-NNSearch (query object Q, integer k)

1. Initialize PQ with a pointer to the root node of the M-tree;
2. Let RL[j] = [ ,∞], j = 1, . . . , k; Let εk = ∞;
3. While PQ �= ∅ do:
4. Extract the first entry from PQ, referencing node N ;
5. If dmin

I (Q,Reg(N)) ≥ εk then exit, else read N ;
6. If N is a leaf node then:
7. For each object Oi in N do:

8. If |dI(Q,O[N ]) − dI(O
[N ], Oi)| < εk then:

9. Compute dI(Q,Oi);
10. If dI(Q,Oi) < εk then:
11. Update RL performing an ordered insertion of [Oi, dI(Q,Oi)];
12. Update εk;
13. else: // N is an internal node
14. For each child node Nc of N do:

15. If |dI(Q,O[N ]) − dI(O
[N ], O[Nc])| < εk + r[Nc] then:

16. Compute dI(Q,O[Nc]);

17. If dI(Q,O[Nc]) < εk + r[Nc] then:
18. Update PQ performing an ordered insertion of [ptr(Nc), d

min
I (Q,Reg(Nc))];

19. End.

Figure 5: Optimal algorithm for k-NN search.

Application of the QIC Theorem to k-NN search leads to the QIC-k-NNSearch algorithm shown in Figure
6. The major differences with the basic case are:

• The RL array keeps actual (i.e. query) distance values from Q. Consequently, the εk threshold is set
using query/user distances.

• Lines 10. and 19. both perform a cheap filter test using the comparison distance dC , as much as done
in the QIC-RangeSearch algorithm.

Corollary 2
The QIC-k-NNSearch algorithm returns the correct answer to the query NN(O, Q, k, dQ). �

Proof: Correctness directly follows from the QIC Theorem, which applies here with ε = εk. �

5.1 Cost Model

Results presented in Section 4.1 can also be exploited for predicting search performance of k-NN queries.
The number of each operation type is obtained by integrating the values given by Equations 6, 8, 9, and 10
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Algorithm QIC-k-NNSearch (query object Q, distances dQ, dC , integer k, scaling factors SC→I , SC→Q, SI→Q)

1. Initialize PQ with a pointer to the root node of the M-tree;
2. Let RL[j] = [ ,∞], j = 1, . . . , k; Let εk = ∞;
3. While PQ �= ∅ do:
4. Extract the first entry from PQ, referencing node N ;
5. If dmin

I (Q,Reg(N)) ≥ SI→Q εk then exit, else read N ;
6. If N is a leaf node then:
7. For each object Oi in N do:

8. If |dI(Q,O[N ]) − dI(O
[N ], Oi)| < SI→Q εk then:

9. Compute dC(Q,Oi);
10. If dC(Q,Oi) < SC→Q εk then:
11. Compute dQ(Q,Oi);
12. If dQ(Q,Oi) < εk then:
13. Update RL performing an ordered insertion of [Oi, dQ(Q,Oi)];
14. Update εk;
15. else: // N is an internal node
16. For each child node Nc of N do:

17. If |dI(Q,O[N ]) − dI(O
[N ], O[Nc])| < SI→Q εk + r[Nc] then:

18. Compute dC(Q,O[Nc]);

19. If dC(Q,O[Nc]) < SC→I(SI→Q εk + r[Nc]) then:

20. Compute dI(Q,O[Nc]);

21. If dI(Q,O[Nc]) < SI→Q εk + r[Nc] then:
22. Update PQ performing an ordered insertion of [ptr(Nc), d

min
I (Q,Reg(Nc))];

23. End.

Figure 6: The QIC-k-NNSearch algorithm.

over all possible values of ε, each weighted by the probability pk(ε) that the distance of the k-th NN is equal
to ε. The probability Pk(ε) that such distance is lower than ε is given in [CPZ98a] as

Pk(ε) = 1−
k−1∑
i=0

(
M

i

)
FdQ

(ε)i(1− FdQ
(ε))M−i (13)

The density function can be obtained by taking the derivative of Equation 13:

pk(ε) =
d

dε
Pk(ε) =

k−1∑
i=0

(
M

i

)
FdQ

(ε)i−1fdQ
(ε)(1− FdQ

(ε))M−i−1(M · FdQ
(ε)− i) (14)

In order to simplify the evaluation of cost formulae, we can consider a k-NN query as a range query with
radius E [εk] equal to the expected distance between Q and its k-th nearest neighbor. This can be estimated
by taking into account the pdf pk(ε) given in Equation 14. Therefore, it is

E [εk] =
∫ d+Q

0

ε · pk(ε) dε = |ε Pk(ε)|
d+Q
0 −

∫ d+Q

0

Pk(ε) dε = d+Q −
∫ d+Q

0

Pk(ε) dε =

= d+Q −
∫ d+Q

0

(
1−

k−1∑
i=0

(
M

i

)
FdQ

(ε)i(1− FdQ
(ε))M−i

)
dε =

= d+Q − d+Q +
∫ d+Q

0

k−1∑
i=0

(
M

i

)
FdQ

(ε)i(1− FdQ
(ε))M−idε =

=
∫ d+Q

0

k−1∑
i=0

(
M

i

)
FdQ

(ε)i(1− FdQ
(ε))M−idε

(15)
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Then, formulae obtained for range queries can be directly applied by using ε = E [εk]. Of course, in this
case, the cost for a k-NN query does depend on the distance distribution of dQ over the considered data set
O, since such distribution influences the value of E [εk].

6 Performance Evaluation

The purpose of this Section is to investigate the actual performance of QIC-M-tree as well as to validate the
proposed cost models. The experimental results we provide are all obtained from real data sets, which are
also synthetically described in Table 2, together with the distances used in the experiments:

Airphoto60: This data set consists of 274, 424 60-dimensional vectors. Each vector contains texture infor-
mation extracted from a tile of size 64 × 64 that is part of a large aerial photograph (there are 40
airphotos in the data set). Each tile is analyzed by means of 30 Gabor filters, and for each filter the
mean and the standard deviation of the output are stored in the feature vector. This data set was
given us by B.S. Manjunath [Man] and was also used in [CP00].

Airphoto8: This is obtained from the previous data set by projecting vectors on the first 8 coordinates.

BibleWords: It consists of all the 12, 569 distinct words occurring in the English King James version of the
Holy Bible (as provided by [Gut]).

BibleLines: The 74, 645 variable-length lines of the Holy Bible.

BibleLines20: We took the Holy Bible and segmented it into lines of length 20, which resulted in a total
of 161, 212 lines.

Corel: This data set contains 68, 040 32-dimensional color histograms extracted from a collection of Corel
images. The value for each dimension in the histogram represents the density of the relative color in
the entire image. This data set was first used in [ORC+98] and we downloaded it from [KDD].

Name No. of objects Dimensionality dQ dI dC

Airphoto60 274, 141 60 Lp L2, Lp L2[D
′]

Airphoto8 274, 141 8 Lp, dqf [A] L2, Lp −
BibleWords 12, 569 − dedit[γ] dedit dms

BibleLines 74, 645 − dedit[γ] dedit dms

BibleLines20 161, 212 − dedit[γ] dedit dms

Corel 67, 358 32 dqf [A] L2, dqf [A] −

Table 2: Data sets.

We ran all the experiments on a Linux PC with a Pentium III 450 MHz processor, 256 MB of main
memory, and a 9 GB disk. The node size of the QIC-M-trees was always set to 8 Kbytes. For each experiment
we average results obtained over all executed queries. The performance measures we are interested in are
those in Equations 5 (I/O and CPU costs, and number of corresponding operations). From these, other
performance measures are derived:

• The number of computed query distances, normalized with respect to the overall number of indexed
objects M , is called query distance selectivity, seldQ

:

seldQ
=

#dQ
(ε; dI , dC ;SI→Q, SC→Q)

M
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• In a similar way, the index distance selectivity, seldI
, and the I/O selectivity, selI/O, are defined as the

number of computed dIs and fetched nodes, respectively, divided by the total number of nodes, i.e.

seldI
=

#dI
(ε; dI , dC ;SI→Q, SC→I)

n

selI/O =
#I/O(ε; dI ;SI→Q)

n

• When dQ �= dI we expect that performance deteriorates with respect to the case dQ ≡ dI . The (percent)
cost overhead, ohpm, measures such degradation of performance, where pm is any of the performance
indicators in Equations 5:

ohpm =
pm(〈dQ �= dI〉)− pm(〈dQ ≡ dI〉)

pm(〈dQ ≡ dI〉)
(∗100) (16)

• When using a cheap comparison distance dC , we expect that index performance would improve with
respect to the case where dC is not used. The (percent) cost saving, savpm, measures performance
improvement:

savpm =
pm(〈dC is not used〉)− pm(〈dC is used〉)

pm(〈dC is not used〉) (∗100) (17)

6.1 Validation of the Model

Our first experiments aim to verify the accuracy of the cost model proposed in Section 4.1. To this end,
we provide comparison between predicted and real costs for range queries with increasing search radius on
three data sets: The AirPhoto8 data set with dI ≡ L2 and dQ ≡ L1, the Corel data set with dI ≡ L2

and a quadratic query distance function, and the BibleWords data set with dI ≡ dedit and with a weighted
edit query distance.7 Graphs in Figures 7, 8, and 9 show estimated and actual costs as a function of the
query selectivity (i.e. the fraction of indexed objects retrieved by the query) and demonstrate that the cost
model indeed succeeds in predicting search costs, with errors that rarely exceeds 10%-20%. These values are
particularly good, especially if one considers the minimal amount of statistics on the tree structure needed
by the cost model.
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Figure 7: Real and predicted I/O selectivity for the AirPhoto8 (a), the Corel (b), and the BibleWords (c)
data sets.

To show the accuracy of the model also when a comparison distance is used, we consider dQ ≡ dI ≡ dedit
and dC ≡ dms for the three Bible data sets. Figure 10 shows predicted and actual values of seldQ

, plotted
against the query selectivity. Regardless of whether or not dC is used, errors are minimal along all the range
of considered query selectivities.

7Experiments on k-NN queries exhibit similar results and are omitted here for brevity.
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Figure 8: Real and predicted index distance selectivity for the AirPhoto8 (a), the Corel (b), and the
BibleWords (c) data sets.
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Figure 9: Real and predicted query distance selectivity for the AirPhoto8 (a), the Corel (b), and the
BibleWords (c) data sets.

6.1.1 Predicting the Effectiveness of a Comparison Distance

Our last experiment suggests that the cost model can also be used to predict the saving in search costs that
can be achieved when using a comparison distance dC . Indeed, from Equations 10 and 12, it follows

savdQ
=

#dQ
(ε; dI , ;SI→Q, 1)−#dQ

(ε; dI , dC ;SI→Q, SC→Q)
#dQ

(ε; dI , ;SI→Q, 1)
=

=
M · FdI

(SI→Q ε+ rL) · Fz(SI→Q ε)−M · FdI
(SI→Q ε+ rL) · Fz(SI→Q ε) · FdC

(SC→Q ε)
M · FdI

(SI→Q ε+ rL) · Fz(SI→Q ε)
=

=
M · FdI

(SI→Q ε+ rL) · Fz(SI→Q ε) (1− FdC
(SC→Q ε))

M · FdI
(SI→Q ε+ rL) · Fz(SI→Q ε)

which leads to

savdQ
= 1− FdC

(SC→Q ε) (18)

Considering CPU costs, an easy-to-evaluate formula based on Equation 18 can be obtained on the as-
sumptions that costdI

≈ costdQ
and #dI

� #dQ
(i.e. the number of distance computed at higher levels of

the tree is negligible with respect to the number of distance computations performed at leaf level). It then
follows that timeCPU ≈ timedQ

+ timedC
, and the saving in CPU time, savCPU , can be estimated from
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Figure 10: Real and predicted query distance selectivity with and without dms for the BibleWords (a),
BibleLines20 (b), and BibleLines (c) data sets.

Equations 8, 10, and 12 as

savCPU =
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)− timeCPU (ε; dQ, dI , dC ;SI→Q, SC→Q, SC→I)

timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)
≈

≈ 1−
timedQ

(ε; dQ, dI , dC ;SI→Q, SC→Q) + timedC
(ε; dI , dC ;SI→Q)

timedQ
(ε; dQ, dI , ;SI→Q, 1)

=

= 1−
#dQ

(ε; dI , dC ;SI→Q, SC→Q) · costdQ
+ #dC

(ε; dI ;SI→Q) · costdC

#dQ
(ε; dI , ;SI→Q, 1) · costdQ

=

= 1−
M · FdI

(SI→Q ε+ rL) · Fz(SI→Q ε) · FdC
(SC→Q ε) · costdQ

M · FdI
(SI→Q ε+ rL) · Fz(SI→Q ε) · costdQ

− M · FdI
(SI→Q ε+ rL) · Fz(SI→Q ε) · costdC

M · FdI
(SI→Q ε+ rL) · Fz(SI→Q ε) · costdQ

Thus

savCPU ≈ 1− FdC
(SC→Q ε)−

costdC

costdQ

(when #dI
� #dQ

) (19)

from which we obtain that, in order to reduce search costs, the comparison distance dC should be cheap (in
order to minimize the ratio costdC

/costdQ
), but also selective enough for the considered query radius ε to

reduce the term FdC
(SC→Q ε) in Equation 19. These two requirements are often contrasting, thus reducing

the time complexity of dC will lead to a “looser” approximation of dQ (see also Section 6.1.2).
From Equation 19 we can also easily compute the maximum search radius, εmax, for which it is convenient

to use the dC comparison distance: Such value can be obtained when the saving equals 0. Supposing for
simplicity that FdC

is invertible, it is:

εmax ≈
F−1

dC
(1− costdC

/costdQ
)

SC→Q
(20)

Finally, since I/O costs do not change when using dC , the saving in overall time will have the same
behavior of the CPU saving, although scaled by a factor equal to

β =
timeCPU

timeCPU + timeI/O

where timeCPU refers to the case where dC is not used, that is timeCPU (ε; dI , ;SI→Q, 1, 1):

savtotal = β · savCPU (21)
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It could be argued that since in Equations 18, 19, and 20 no tree statistics are used, above results do not
depend on the actual tree, but only on the considered data set.

Theorem 3
For any metric access method, whenever it is timedI

� timedQ
, the saving in CPU time for solving a range

query range(O, Q, ε, dQ) when using a comparison distance dC is given by Equation 19. On the other hand,
the saving in overall time can be computed from Equation 21, with the β parameter depending on the specific
MAM. �

Proof: Given in Appendix B. �
To evaluate the accuracy of these approximations of the model, we consider the Bible data sets with

dQ ≡ dI ≡ dedit and dC ≡ dms (Table 3 reports the average cost for computing such distances).

Data set costdms (s) costdedit (s)

BibleWords 7.78 × 10−6 26.1 × 10−6

BibleLines20 17.7 × 10−6 231.6 × 10−6

BibleLines 66.1 × 10−6 1300 × 10−6

Table 3: Distance computation times for the Bible data sets.

Graphs in Figure 11 show predicted and real values of the CPU saving, along with the value obtained from
Equation 19, where the cost due to the index distance dI is ignored. Besides demonstrating the accuracy of
the cost model, the graphs also show that, when the query radius ε is low, costs due to dI indeed reduce the
saving, since they are similar to costs due to dQ; when the search radius increases, however, timedI

has a
minor impact, and the CPU saving can be very well estimated using Equation 19.

Figure 11 also proves the reliability of Equation 20. In particular, by using the corresponding distance
distributions (not shown here for brevity) and the distance computation times in Table 3, it is obtained

• εmax(BibleWords) = F−1
dms

(1 − 7.78/26.1) ≈ F−1
dms

(0.703) ≈ 6 (for which the query selectivity is
Fdedit

(εmax) = 0.38),

• εmax(BibleLines20) = F−1
dms

(1− 17.7/232) ≈ F−1
dms

(0.924) ≈ 11 (Fdedit
(εmax) = 0.0018), and

• εmax(BibleLines) = F−1
dms

(1− 66.1/1300) ≈ F−1
dms

(0.949) ≈ 39, (Fdedit
(εmax) = 0.17).
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Figure 11: Real and predicted CPU saving for the BibleWords (a), BibleLines20 (b), and BibleLines (c)
data sets. Also shown are the εmax values which limit the usefulness of using dC .
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6.1.2 Choosing the Best Comparison Distance

Another issue worth investigating is how to choose the most suitable comparison distance when many of them
are available. We study the problem with reference to the AirPhoto60 data set with dQ ≡ dI ≡ L2[D = 60]
and dC ≡ L2[D′], i.e. the Euclidean distance computed only on the first D′ < D dimensions.8 In this way,
we are able to vary the computation time of dC along with the similarity between the distance distributions
FdQ

and FdC
. Intuitively, the distance computation time should linearly increase with D′, whereas the

difference between distance distributions should reduce. This is confirmed by Figure 12, where the distance
distributions and average computation times are plotted for different values of D′. In Figure 12 (a), the
distance distribution FL2[D′](x) is plotted as a function of the distance distribution FL2[D](x), i.e. of the
correct query distance, to emphasize differences between the distance distributions for different values of x.
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Figure 12: Distance distribution (a) for different comparison distances with respect to the L2 metric and
average computation time (b) as a function of the number D′ of considered dimensions.

We execute several range queries, by varying the search radius ε, and analyze the saving in CPU times,
savCPU , for several values of D′. Figure 13 shows the “CPU saving loss”, i.e. the amount of saving which is
lost when using a non-optimal D′ in place of the optimal D′ for that query selectivity. In our experiments
it turns out that the optimal number of dimensions to be retained varies between 6 and 10, depending
on the query selectivity. As Figure 13 clearly demonstrates, choosing D′ far from the optimal values can
considerably reduce the effectiveness of using dC (e.g. see the curve for D′ = 30). Predictions yielded by
Equation 19 are almost always able to select the optimal D′ and, whenever this is not the case, they never
lead to a CPU saving loss higher than 2%.

6.2 Querying with User-Defined Functions

In this Section we report experimental results for the case when dQ �= dI , and compare the performance
of QIC-RangeSearch algorithm (exemplified in Figure 14 (a)) with results obtained from two alternate
approaches:

1. The first approach (which we call “unfeasible”, UNF for short) consists in building from scratch an
M-tree for each new query by using the current dQ distance (Figure 14 (b)). In some sense, UNF
provides the reference performance level against which to compare QIC-RangeSearch performance.

2. The second approach is indeed a filter & refine (F&R) variant of the QIC solution. In this case a
“classic” M-tree built using dI is queried with the query range(O, Q, SI→Q ε, dI), thus scaling the
query threshold, after that a second refinement step discards the resulting false drops (Figure 14 (c)).

8Of course, when D′ < D it is L2[D′](O1, O2) ≤ L2[D](O1, O2).
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Figure 14: Three possible solutions for querying an M-tree with a user-defined function: (a) QIC, (b) UNF,
and (c) F&R.

6.2.1 Comparing the Distance Functions

The goal of this set of experiments is to investigate how search performance is influenced when dI �= dQ.
Intuitively, the more dQ and dI are “similar”, the lower the search costs needed to solve a query with dQ
using a QIC-M-tree built on dI . This leads us to define a measure able to quantify how much a distance
function is similar to (i.e. how well it approximates) another distance function. Until now, the problem
has been addressed only for specific cases, thus leading to solutions that cannot be generalized to arbitrary
distance functions. For instance, in [ABKS98] the authors measure the quality of approximating ellipsoid
queries with simpler geometric figures by introducing the concept of ellipsoid sphericity. In [SYKU01], the
flatness of an ellipsoid, computed as the variance of eigenvalues of the query matrix A, is used to discriminate
between different query distances.

To start with, consider two distance functions d1 and d2 such that d1 � d2. In order to define how much
d1 and d2 differ, it is important that we refer our measure to a specific data set O. This is because the effect
of using d1 in place of d2 will vary depending on the distribution of the indexed objects, as also confirmed
by analytical results [CPZ98a]. For arbitrary distance functions we therefore consider the corresponding
distance distributions they induce on O. Note that since d1 � d2, it is d+1 ≤ d+2 as well as Fd1(x) ≥ Fd2(x)
∀x ∈ [0, d+2 ].

The error measure we propose to compare d1 and d2 corresponds to the (normalized) integral difference
between Fd1(·) and Fd2(·).
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Definition 5 (Error Measure for Distance Functions)
The normalized error measure, Err(d1|d2), of distance function d1 with respect to d2 on a data set O (for
simplicity, the dependency on O is understood in the notation) is:

Err(d1|d2) =
1
d+2

∫ d+2

0

(Fd1(x)− Fd2(x)) dx (22)

where it is assumed that d1 � d2. Note that 0 ≤ Err(d1|d2) ≤ 1 and Err(d1|d2) = 0 iff Fd1(·) = Fd2(·). �

Figure 15 (a) refers to the case where d1 ≡ dms, d2 ≡ dedit, and distances refer to the BibleWords data
set. From Definition 5 it follows that Err(dms|dedit) equals the normalized volume of the shaded area in the
figure.
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Figure 15: The distance distributions (a) and pdf’s (b) of dms and dedit for the BibleWords data set.

The following result shows that Err(d1|d2) can be indeed easily expressed in terms of the expected values
of the d1 and d2 random variables.

Lemma 2
If d1 (d2) is distributed according to Fd1(·) (respectively Fd2(·)), then:

Err(d1|d2) =
E [d2]− E [d1]

d+2
(23)

�

Proof: Given in Appendix B. �
Similar arguments show that when d1 � S1→2 d2 it is:

Err(d1|d2) =
E [d2]− E [d1] /S1→2

d+2
(24)

In Figure 15 (b) we plot the pdf’s of dms and dedit for the BibleWords data set. From Lemma 2 it is
Err(dms|dedit) = (7.09− 6.09)/16 ≈ 0.0627.

The above error measure is by no means the only possible one to compare two distributions. With respect
to more complex measures, such as the Kullback-Leibler distance,9 Err(d1|d2) has however the advantages
of having low computational costs and an extremely easy-to-grasp interpretation.

Turning back to our scenario, the specific error measure we consider is defined as follows.

9The Kullback-Leibler distance [CT91], also called relative entropy, of f1(·) with respect to f2(·) is defined as∫
x f2(x) log

f2(x)
f1(x)

dx, and provides a measure of how much information we get about f2(·) if we know f1(·).
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Definition 6 (Indexing Error)
The normalized indexing error with respect to a data set O when using an index distance dI � SI→Q dQ is:

ErrI
def= Err(dI |dQ) =

E [dQ]− E [dI] /SI→Q

d+Q
(25)

�

6.2.2 The Effect of Different Distance Distributions

To investigate the effect of the difference in distance distributions between dQ and dI , as well as the relevance
of the indexing error measure, we measure performance degradation when the query distance is dissimilar
with respect to the index distance, thus we keep dI fixed and vary dQ. In the first set of experiments we index
the BibleWords data set using dI ≡ dedit and query the QIC-M-tree with different dQ ≡ dedit[γ] functions.
Since computation times for dedit and dedit[γ] are the same, differences in performance only depend on the
distance distributions. We contrast results obtained from the QIC algorithm with the UNF approach.

To construct different weighing functions γ, all edit operations are initially given a unitary cost, then
this default situation is perturbed by giving to some cost the value 2. The fraction of edit operations having
cost 2, therefore, characterizes each distance function.10 Note that, for all considered weight functions, it
is SI→Q[γ] = 1. Table 4 shows the average distance values and the indexing errors for different dedit[γ]
functions.

Fraction of 2 in γ E [dQ] ErrI

0 7.093 6 × 10−5

0.25 8.50 0.044
0.5 9.90 0.088
0.75 11.6 0.14
1 14.2 0.22

Table 4: Indexing error values for different metrics with respect to the unweighted edit distance for the
BibleWords data set (E [dedit] = 7.092, d+Q = 32).

Figure 16 (a) shows the query distance selectivity seldQ
as a function of the indexing error ErrI for a

1-NN query for the QIC and the UNF solutions, whereas Figure 16 (b) reports actual search times. It can be
seen that the search cost is almost the same for different weighing functions when using the UNF approach,
whereas it is linearly correlated with ErrI when using QIC. Indeed, when costs of edit operations increase,
the distribution FdQ

shifts toward the right, thus the indexing error ErrI grows; therefore, the expected
distance between Q and its 1-NN increases as well and so necessarily do search costs.

The inverse correlation between search performance and the indexing error is also confirmed by the second
series of experiments we present. Here we consider the AirPhoto8 data set with dI ≡ L2 and query the
index with differently weighted Euclidean distances. To construct different weighing functions, we assign a
weight higher than 1 to an increasingly number of dimensions. Average distance values and indexing errors
are shown in Table 5 for each query distance.

In Figure 17 (a) the cost overhead for solving a 1-NN query is plotted as a function of the indexing error.
Again, we see that a direct correlation between performance degradation and indexing error exists: The
higher the difference between dQ and dI , the higher search costs when using a tree built on dI to solve a
query with dQ.

The fact that search performance increases when the index and the query distance are more similar
is also demonstrated by recent studies conducted for SAMs. In [SYKU01], the Spatial Transformation
Technique is introduced to decrease CPU costs for SAMs when queried with quadratic form distances, and
experimental studies show how search performance deteriorates as the flatness (see Section 6.2.1) of the

10For simplicity, we refer to the situation of only one operation (resp. all operations except one) having cost 2 as 0 (resp. 1).
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Figure 16: Query distance selectivity (a) and overall costs (b) for 1-NN queries as a function of ErrI for the
BibleWords data set with different querying functions with respect to the dedit index distance.

No. of weights > 1 E [dQ] ErrI

1 45.08 0.023
2 49.63 0.036
3 54.67 0.050
4 63.20 0.075
5 66.78 0.085
6 70.15 0.095
7 73.32 0.104

Table 5: Indexing error values for different metrics with respect to the L2 distance for the AirPhoto8 data
set (E [L2] = 37.03, d+L2

= 350).

query matrix increases; intuitively, as the query ellipsoid flattens, its relative distance distribution becomes
more and more different with respect to that of the Euclidean distance, which is taken as the “default” index
distance. It has to be noted that the flatness measure is independent of axis rotation, thus it cannot capture
performance deterioration due to differences in distance distributions. On the other hand, the indexing error
does not take into account information on space coordinates, thus it is able to reflect rotations of the query
ellipsoid (see Figure 18). This is confirmed by Figure 17 (b), where the correlation between the flatness and
the indexing error is plotted for the query distances used in the previous experiments. Moreover, in this
case, it has to be noted that performance is reduced with decreasing flatness values, contrary to intended
purposes of the flatness measure.11

6.2.3 The Effect of Distance Computation Costs

Although the “unfeasible” (UNF) solution, for which by definition it is dI ≡ dQ, apparently represents the
most favorable situation to deal with, indexing objects with a dI cheaper to evaluate than dQ could in
principle lead to a better performance. This can be the case when the increase in the number of distances
to be evaluated is more than compensated by the reduction in the cost of a single distance computation. To
this end, in this second series of experiments we index the Corel data set with dI ≡ L2 and query the index
with four dQs having different computation costs. The query distances, for which costs and indexing errors
are given in Table 6, are:

11It has to be noted that results in [SYKU01] are however correct, since in that paper the flatness of query ellipsoids is varied
only along certain fixed axes.
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Figure 17: Cost overhead as a function of the indexing error (a) and correlation between flatness and indexing
error (b).

Q Q

Figure 18: The two query ellipsoids have the same flatness value, but, clearly, different distance distributions
with respect to the considered data set.

Lrandom: A weighted Euclidean distance, with randomly chosen weights.

Lσ: A weighted Euclidean distance, where the weight of each coordinate is equal to the inverse of the
standard deviation of the data set values for that coordinate.

Arandom: A quadratic function, where the A matrix is a randomly chosen positive definite symmetric one.

Adist: A quadratic function, where each coefficient aij of the A matrix represents the similarity in the RGB
space between color i and color j.

Query distance dQ costdQ (s) E [dQ] SI→Q ErrI

Lrandom 4.18 × 10−6 0.409 22.74 0.295
Lσ 4.18 × 10−6 1.79 0.433 0.0898
Arandom 60.4 × 10−6 2.01 0.337 0.0650
Adist 60.4 × 10−6 0.619 173.09 0.422

Table 6: Indexing error values and computation times for different metrics with respect to the Euclidean
distance for the Corel data set (costL2 = 4.05× 10−6, E [L2] = 0.573).

In Figure 19 we plot the query distance and the CPU time overhead (oh#dQ
and ohtimeCP U

, respectively)
for a k-NN query, as a function of k.

As expected, the increase in the number of dQ computations is again directly related to the indexing
error (see Figure 19 (a)), with all cases presenting a positive overhead. On the other hand, when turning
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Figure 19: Distance (a) and CPU time (b) overhead for k-NN queries for the Corel data set for different
querying functions.

to consider the CPU time overhead (see Figure 19 (b)), the higher cost of quadratic functions becomes
apparent. In particular, in the case of Arandom and for k ≤ 30, the QIC approach is even more convenient
than UNF.

6.2.4 Comparison with F&R

Finally, we compare the QIC and the filter & refine approaches. To this end, we use the AirPhoto data sets
with dQ ≡ L2 and the L1, L3, and L∞ metrics as index distances. Distance computation costs and indexing
errors with respect to dQ are given in Table 7.

Index distance dI costdI (s) ErrI

L1 0.75 × 10−6 0.0523
L2 1.25 × 10−6 0
L3 1.5 × 10−6 0.0348
L∞ 1.0 × 10−6 0.0576

(a)

Index distance dI costdI (s) ErrI

L1 2.76 × 10−6 0.1223
L2 4.8 × 10−6 0
L3 5.5 × 10−6 0.0635
L∞ 4.51 × 10−6 0.0971

(b)

Table 7: Distance computation times and indexing errors for the Airphoto8 (a) and the Airphoto60 (b)
data sets.

Figure 20 shows CPU times for solving a range query using different index distances. From the graphs it
can be observed that using the QIC approach always leads to lower search CPU costs except when querying
the AirPhoto60 data set with dI ≡ L1 and query selectivities less than 3%. This is due to the combination
of two factors: the low query selectivity, which alleviates the cost of the refinement phase, and the cheapness
of L1 wrt L2 (see Table 7 (b)), which reduces the cost of distance computations at the leaf level of the tree.

To better analyze the additional cost of the refinement phase, Figure 21 (a) shows the distance distribu-
tions of the AirPhoto60 data set for different index distances plotted as functions of the query selectivity.
In order to find the predicted number of query distances to be computed for retrieving a given percentage of
objects, one should look at the value of the index distance distribution for that value of the query selectivity,
and multiply it by the number of indexed objects (as an example, if the user would select 10% of the data
set using the L1 metric as the index distance, the filter phase would retrieve around 30% of the indexed
objects). The (percent) difference between distance distributions values for the index and the query distance
represents the false drop percentage (this is also shown in Figure 21 (b), again for the AirPhoto60 data set).
Similar results are also obtained for the AirPhoto8 data set.
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Figure 20: Comparison of CPU search costs for the QIC and the filter & refine strategies when using different
index distance functions for the AirPhoto8 (a) and the AirPhoto60 (b) data sets.
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Figure 21: Distance distribution of different index distances (a) and percentage of false drops (b) as a
function of the query selectivity for the AirPhoto60 data set.

In order to predict which strategy is most suitable for the situation at hand, the cost model can be used.
Since the index I/O cost is the same for QIC and F&R, and so is the number of computed index distances,
it is sufficient to consider differences arising from the number of query distance computations. For QIC this
cost evaluates to #dQ

· costdQ
, whereas for F&R the cost is #dQ

· costdI
+M · FdI

(SI→Q ε) · costdQ
, since

the number of objects returned by the index can be estimated as M · FdI
(SI→Q ε). As a consequence, F&R

has a lower cost than QIC as long as

#dQ
· costdI

+M · FdI
(SI→Q ε) · costdQ

≤ #dQ
· costdQ

(26)

This is the case iff
M · FdI

(SI→Q ε)
#dQ

=
FdI

(SI→Q ε)
seldQ

≤ 1− costdI

costdQ

(27)

where #dQ
can be predicted using Equation 10 (or Equation 12).

As an example, for a search radius ε = 5 (corresponding to a query selectivity of 1.25%) and dI ≡ L1, from
Equation 12 we estimate seldQ

= 23.94%. The scaling factor to be used in Equation 27 is D1/1−1/2 =
√

60
(see Corollary 1 in Section 3.2). Since FL1(

√
60 · 5) = 5.315% (Figure 21 (a)), we obtain 5.315

23.94 = 0.222 <
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(
1− 2.76

4.8

)
= 0.42 (see Table 7 (b)). For the same search radius, using dI ≡ L∞ yields seldQ

= 21.56%, and
FL1(5) = 6.293% (see Figure 21 (a)). Therefore, it is 6.293

21.56 = 0.292 >
(
1− 4.51

4.8

)
= 0.05 (see Table 7 (b)).

Thus, when dI ≡ L1, it is cheaper to use the filter & refine approach, whereas if dI ≡ L∞ we should use the
QIC solution. This fully agrees with results in Figure 20 (b).

6.3 Summary of Experiments

The results of our experimental analysis can be summarized as follows:

• The cost model can accurately predict performance of QIC-M-tree, delivering estimates which are
robust with respect to parameter changes.

• The effectiveness of using a comparison distance dC can also be reliably estimated, and consequently
the maximum query radius that limits the usefulness of dC . These results are not limited to the
QIC-M-tree, but are also valid for other MAMs.

• Further, when several dCs are available, the best one to adopt for the case at hand can be analytically
chosen.

• The indexing error defined by Equation 25 is very effective in accounting for the performance degra-
dation when the query distance is different from the index distance.

• The QIC approach can even lead to better performance than the so-called UNF solution, i.e. when
dI ≡ dQ. This is possible when costdI

< costdQ
.

• Whenever dI �= dQ, both QIC and its F&R variant are viable alternatives. Using the cost model, we
can predict which of them is the most suitable to use in a given context.

7 Extending to Other Metric Access Methods

The QIC approach that we have extensively described with reference to the M-tree can also be profitably
adapted to work with other MAMs. This is trivially true for the Slim-tree [TTSF00], since this MAM
uses the same organizing principles of the M-tree. Below we provide basic intuition on how both vp-tree
[Yia93, Chi94] and GNAT [Bri95] can benefit from our findings, whereas we leave out the mvp-tree [BÖ97],
since its analysis would closely follow that of the vp-tree. For simplicity, we consider basic (i.e. binary)
versions of vp-tree and GNAT, and only refer to the case of range queries. For clarity purpose the notation
we use is here adapted to be consistent with the rest of this paper. As a representative of non-tree-structured
methods, we also consider the LAESA algorithm [MOV94].

7.1 vp-tree

The vp-tree partitions the data space using spherical cuts around so-called vantage points. In a binary
vp-tree each internal node has the format [O[v], µ, ptr(Nl), ptr(Nr)], where O[v] is the vantage point (i.e.
an object of the data set), µ is (an estimate of) the median of the distances between O[v] and all the
objects reachable from the node, and ptr(Nl) and ptr(Nr) are pointers to the left and right child node,
respectively. The left child node, Nl, indexes the objects whose distance from O[v] is less than or equal to
µ, thus Reg(Nl) = {O ∈ U|dI(O[v], O) ≤ µ}. The right child node, Nr, indexes the objects whose distance
from O[v] is greater than µ, that is, Reg(Nr) = {O ∈ U|dI(O[v], O) > µ}. The same partitioning principle is
then recursively applied to the Nl and Nr child nodes.

Given a range query range(O, Q, ε, dQ), consider a vp-tree built using the distance dI , with dI �
SI→Q dQ, and a node N . From Theorem 2 it is immediate to conclude that we can skip reading the
left child node Nl if dI(Q,O[v]) > SI→Q ε+ µ holds. As for the right child node Nr, arguments are almost
similar. In particular, we can use the pruning condition dI(Q,O[v]) ≤ µ− SI→Q ε, since:

dI(Q,O[v]) ≤ µ− SI→Q ε =⇒ dQ(Q,O) > ε ∀O ∈ Reg(Nr)
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This is derived as follows, where the “trick” is to use triangle inequality in the opposite way as usually done
(since we want to prune a node which is “far” from the vantage point):

dQ(Q,O) ≥ dI(Q,O)/SI→Q (by the hyp. dI � SI→Q dQ)

≥ dI(O[v], O)/SI→Q − dI(Q,O[v])/SI→Q (triangle inequality)

> µ/SI→Q − dI(Q,O[v])/SI→Q (since O ∈ Reg(Nr))
≥ µ/SI→Q − (µ− SI→Q ε)/SI→Q (by hypothesis)
= ε

Finally, if also a comparison distance dC is used, appropriately scaling the search threshold still guarantees
correctness of the search algorithm.

7.2 GNAT

We now turn to consider GNAT. In the simplest version, each node N of this structure has the format:

[O[1], ptr(N1),O[2], ptr(N2),

dminI (O[1], Reg(N2)), dmaxI (O[1], Reg(N2)), dminI (O[2], Reg(N1)), dmaxI (O[2], Reg(N1))]

where O[1] and O[2] are two split points, and ptr(N1) and ptr(N2) are pointers to the corresponding child
nodes. The dminI and dmaxI values are respectively the minimum and the maximum distance between O[1]

(O[2]) and the indexed objects assigned to the child node N2 (N1, respectively). The partitioning of objects
is based on a generalized hyperplane rule: if dI(O[1], Oi) ≤ dI(O[2], Oi) then assign Oi to node N1, else assign
it to node N2.

The QIC Theorem can be easily adapted to work with GNAT. The pruning step of GNAT search algorithm
uses a split point, say O[2], to verify if the node associated to another split point, say O[1], can be pruned.
After computing dI(Q,O[2]) the pruning test is [Bri95]:

[dI(Q,O[2])− ε, dI(Q,O[2]) + ε] ∩ [dminI (O[2], Reg(N1)), dmaxI (O[2], Reg(N1))] = ∅

Note that the role of O[2] in the test is similar to that of a vantage point, since all distances refer to it. For
our purposes, above test can be more conveniently rewritten as:

dI(Q,O[2]) + ε < dminI (O[2], Reg(N1)) or dI(Q,O[2])− ε > dmaxI (O[2], Reg(N1))

We now show that if above tests are replaced by the following ones:

dI(Q,O[2]) + SI→Q ε < d
min
I (O[2], Reg(N1)) (28)

dI(Q,O[2])− SI→Q ε > d
max
I (O[2], Reg(N1)) (29)

then pruning is still correct in the case dI � SI→Q dQ. Consider first inequality (28). We have, for each
point O ∈ Reg(N1):

dQ(Q,O) ≥ dI(Q,O)/SI→Q (by the hyp. dI � SI→Q dQ)

≥ dI(O[2], O)/SI→Q − dI(Q,O[2])/SI→Q (triangle inequality)

> dI(O[2], O)/SI→Q + (SI→Q ε− dminI (O[2], Reg(N1)))/SI→Q (by hypothesis)

≥ dminI (O[2], Reg(N1))/SI→Q − dminI (O[2], Reg(N1))/SI→Q + ε (by def. of dminI (O[2], Reg(N1)))
= ε
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Similarly, when inequality (29) holds:

dQ(Q,O) ≥ dI(Q,O)/SI→Q (by the hyp. dI � SI→Q dQ)

≥ dI(Q,O[2])/SI→Q − dI(O[2], O)/SI→Q (triangle inequality)

> (dmaxI (O[2], Reg(N1)) + SI→Q ε)/SI→Q − dI(O,O[2])/SI→Q (by hypothesis)

≥ dmaxI (O[2], Reg(N1))/SI→Q + ε− dmaxI (O[2], Reg(N1))/SI→Q (by def. of dmaxI (O[2], Reg(N1)))
= ε

Again, introducing a comparison distance dC does not lead to major modifications.

7.3 LAESA

The Linear Approximating Eliminating Search Algorithm [MOV94] works by pre-computing the distances
between the indexed objects and (properly chosen) pivot objects P = {P1, . . . , Ps} ⊆ O. Space and con-
struction time for LAESA are both O(m · s). Consider a range query range(O, Q, ε, dI). At query time,
first the distances dI(Q,Pi) are computed, then (without computing any further distance) all objects O for
which |dI(Q,Pi) − dI(Pi, O)| > ε holds for at least one pivot are discarded, whereas remaining objects are
directly compared against Q.

When dI � SI→Q dQ, then the correct pruning condition is:

|dI(Q, pi)− dI(pi, O)| > SI→Q ε

since:

dQ(Q,O) ≥ dI(Q,O)/SI→Q (by the hyp. dI � SI→Q dQ)
≥ |dI(Q, pi)− dI(pi, O)| /SI→Q (triangle inequality)
> SI→Q ε/SI→Q (by hypothesis)
= ε

Even with LAESA, the presence of dC can be easily accommodated.

8 Other Query Types

In this Section we briefly describe how other query types supported by MAMs can be managed by the QIC
approach.

8.1 Sorted Access Queries

Given a data set O and a query Q, a sorted access query requests to output, one by one, the objects of O
in order of increasing distance from Q. The user is also given the possibility to stop the output whenever
he/she wants, so that it is not necessary to retrieve all the M indexed objects.

For solving sorted access queries, we consider the algorithm presented in [HS99], which is already part of
the M-tree repertoire. Essentially, the algorithm is similar to k-NNSearch with the major difference that no
pruning of nodes (and objects) can take place and that the RL result list has a variable size, since it contains
all the objects that have been accessed but have not been already delivered as results.

In light of this, the algorithm can be immediately extended by using dI on internal nodes and dQ on
objects (stored in leaf nodes). Further, the scaling factor SI→Q should be used when comparing the distance
from Q of the top element of RL with the distance from Q to the region of the most promising node (i.e. the
top element of the priority queue PQ).

As a final remark, we observe that, since no nodes or objects can be pruned, the use of a comparison
distance is meaningless. Finally, it can be argued that the performance of the algorithm for retrieving k
objects can be still predicted using the cost model in Section 5.1, with the advise that the optimizations of
lines 8. and 19. cannot be used.
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8.2 Complex Similarity Queries

Complex similarity queries [Fag96, CPZ98b, BMSW01] are another query type supported by MAMs that
can be extended to deal with user-defined and approximate distance functions. For the purpose of our
work, complex queries can be modelled as conventional range or k-NN queries where a combining function
[Fag96], CF , combines the distance values12 of an (indexed) object O with respect to p ≥ 1 query objectsQ =
{Q1, . . . , Qp}.13 Then, the “distance” dQ between an objectO andQ is obtained as CF (dQ(Q1, O), . . . , dQ(Qp, O)).14

In [CPZ98b] it is proved that when dQ ≡ dI , under the assumption of monotonicity of the combining
function, any index tree based on a recursive and conservative decomposition of the space can process
complex queries as a whole, i.e. without decomposing them into p simple queries. The basic rationale of the
solution in [CPZ98b] is that, in order to be able to prune a node N of the tree, one has to compute a lower
bound of CF and check that such bound is higher than the query threshold ε. Because of the monotonicity
of CF , if one computes dminI (Qi, Reg(N)) for each query object Qi, and then plugs such values as arguments
of CF , then it is guaranteed that

CF
(
dminI (Q1, Reg(N)), . . . , dminI (Qp, Reg(N))

)
> ε =⇒ dI(Q, O) > ε ∀O ∈ Reg(N)

The following Corollary generalizes the above to the case dQ �= dI , also considering the presence of a
comparison distance dC .

Corollary 3
Let Q = {Q1, . . . , Qp}, be a set of query objects, CF a monotonic non-decreasing combining function, T a
tree-structured MAM built on the data set O using dI , dQ a query distance, and dC a comparison distance,
with dI � SI→Q dQ, dC � SC→I dI , and dC � SC→Q dQ. Then a node N of T can be pruned if

CF (dminI (Q1, Reg(N))/SI→Q, . . . , d
min
I (Qp, Reg(N))/SI→Q) > ε′ (30)

where ε′ is

• the user supplied query radius, if the query is a range query;

• the k-th lower distance dQ encountered so far between the complex predicate and indexed objects, if
the query is a k-NN query. If less than k objects have been evaluated, then ε′ = d+Q.

Moreover, let d∗C(Qi, Reg(N)) be a lower bound of SC→I d
min
I (Qi, Reg(N)). Then, node N can be pruned

if CF (d∗C(Q1, Reg(N))/(SC→I SI→Q), . . . , d∗C(Qp, Reg(N))/(SC→I SI→Q)) > ε′, and object O can be dis-
carded from the result if CF (dC(Q1, O)/SC→Q, . . . , dC(Qp, O)/SC→Q) > ε′. �

Proof: Given in Appendix B. �
It has to be observed that above Theorem relies on the possibility of (efficiently) evaluating d∗C(Qi, Reg(N)).

For the specific case of the QIC-M-tree, let

d∗C(Qi, Reg(N)) = max
{
dC(Qi, O[N ])− SC→I r

[N ], 0
}

Then it is immediate to see that

d∗C(Qi, Reg(N)) ≤ max
{
SC→I dI(Qi, O[N ])− SC→I r

[N ], 0
}

= SC→I d
min
I (Qi, Reg(N))

12In [Fag96, CPZ98b] the combining function was applied to produce a similarity score; we adapted this concept to better
suit our scenario, being understood that high similarity values correspond to low distances and vice versa.

13Note that complex queries are different from multiple queries [BEKS00]; in a complex query, multiple predicates are
combined into a single query, whereas multiple queries are defined as sets of (simple) queries issued simultaneously, each with
its own result.

14Nothing would prevent to use a different query distance dQi
for each query object Qi. We do not consider this case in the

following.
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9 Related Work

At the best of our knowledge, this is the first work that investigates the use of metric access methods to answer
similarity queries based on user-defined distance functions. Indeed, the complain that MAMs are bound to
use a given distance function was raised several times (e.g. see [SK98, AKS98, KSF+98, CM99, SYKU01]).
For the same reason, the issue of supporting adaptable similarity criteria for searching in generic metric spaces
has not been investigated before. Thus, being unable to compare our approach with direct competitors, in
the following we restrict ourselves to briefly discuss other approaches and techniques that somewhat have
been influential to our work.

The paper by Seidl and Kriegel [SK97] was the first to consider the possibility of using Spatial Access
Methods to efficiently support user-adaptable similarity queries in vector spaces. Their basic algorithm for
answering elliptic queries, which is based on computing intersections of ellipsoids and boxes, is however only
suitable in low D-dimensional spaces, because of its O(D2) complexity. To overcome such limitation, the
authors propose to apply dimensionality reduction techniques and to exploit the lower-bounding lemma (first
introduced in [AFS93] to deal with similarity queries over time sequences) to implement a filter & refine
query processing algorithm.

Several other approaches have been proposed to increase performance of SAMs for user-adaptable simi-
larity queries in high-dimensional spaces. Basically, all of them either rely on a transformation of the original
space to a low-dimensional space equipped with the Euclidean distance (this is the case, for example, of the
Spatial Transformation Technique in [SYKU01]), or approximate the query region with a simpler figure, e.g.
a hyper-sphere or a hyper-box [ABKS98]. In both cases, the so-obtained problem is considerably simpler
to be solved with respect to the original one and the lower-bounding property is still used to guarantee the
correctness of search algorithms.

When turning to consider similarity queries in generic metric spaces, three major trends for speeding-
up query evaluation can be observed. The first one, well represented by the so-called GEMINI approach
[ZCF+97, Chapter 12], is to extract from each object a feature vector and to replace the original object
distance with a distance in the so-resulting feature (vector) space. Again, this allows SAMs to be used and,
provided the feature distance lower-bounds the object distance, the filter & refine processing algorithm to
be applied. The problem of finding a distance in a feature space that lower-bounds the object distance has
however to be solved using domain-specific considerations (see, for example, [FEF+94] for the case of color
images). Alternatively, and without the need of a domain knowledge, one could try to map objects into
points of a (low-dimensional) vector space so that relative object distances are preserved as much as possible
in the resulting target space. FastMap [FL95] is a well-known representative of this approach. In [HS00]
it is however demonstrated that mappings achieved through FastMap do not satisfy the lower-bounding
property unless the original space is (isometric to) the Euclidean space: Correctness of search algorithms has
therefore to be given up. Other mappings are proposed in [HS00] that satisfy the lower-bounding property,
but they require high computation costs, and therefore cannot be used to improve search performance.
Finally, several techniques have been proposed to reduce the number of distance computations at query time
without resorting to a vector space mapping [CNBYM, FTTF01]. Such techniques use optimizations that
are very similar to those used for the M-tree, in that pre-computed distances between indexed objects and a
set of suitable objects, called pivots,15 are used together with the triangle inequality to exclude objects from
the result.

10 Final Discussion

In recent times, metric spaces have become a popular paradigm for similarity retrieval. Several techniques
have been proposed to efficiently search in generic metric spaces where the (dis)similarity criterion is known
in advance. However, none of such techniques is able to support user-defined distance functions which are
not a priori available. Moreover, in complex domains where computing a single distance is a very expensive
task, the search can become CPU-bound, thus requiring alternative solutions to improve query processing

15These are called foci in [FTTF01].
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performance. We have addressed the problems of supporting user-defined distance functions with a metric
access method (MAM), and of using approximate distances to reduce the CPU cost of similarity search. In
particular, we have detailed how an appropriately extended M-tree built using an index distance dI can:

• Use any query distance dQ for which dI is a (scaled) lower bound.

• Use any (cheap) comparison distance dC which lower-bounds dI with the purpose of quickly pruning
objects and tree nodes.

We have also shown how our so-called QIC (Query, Index, and Comparison) approach can be extended to
other MAMs (namely, the vp-tree, the GNAT, and LAESA). Our claim is that any MAM can be QICly
extended.

The major contributions of this paper can be summarized as follows:

1. Definition of QIC algorithms for the M-tree to solve range and k-NN queries.

2. Introduction of a cost model to analytically estimate search performance of QIC-M-tree. The accuracy
of the model has been evaluated through extensive experimentations.

3. Application of the model to predict the usefulness of the comparison distance and to choose the best
comparison distance, in case several of them are available.

4. Application of the model to choose the best query processing strategy between QIC and its filter &
refine variant.

5. We have shown that differences in distance distribution between dQ and dI impact search costs, and
have introduced the indexing error, which is a measure able to characterize this decrease in performance.

6. Extension of the QIC approach to other MAMs.

7. Extension of QIC-M-tree to other query types, namely sorted access queries and complex queries.

Our work generates a number of interesting follow-ups. First, it is now possible to compare SAMs and
MAMs in a larger variety of scenarios. This gives more freedom to a designer in choosing the best access
method for the problem at hand. In this light, it has to be remarked that recent studies have demonstrated
how even in vector spaces MAMs can outperform SAMs [CPZ97, BDBP00]. Second, as an interesting design
problem, it could be worth investigating the case where multiple QIC-extended MAMs, each with its own
index distance, are available at the same time, and the problem becomes that of choosing, for a given query,
the most suitable one to use (see also [SYKU01]). For this task, the indexing error defined in Section 6.2.1
could be profitably used.

The basic lesson we have learned is that MAMs are not tightly bound to use a single distance function.
From this, one could argue whether other basic ways of extending MAMs, besides the one considered in this
paper, exist. At present, we envision two interesting research directions:

• For the sake of generality, in this paper we have made no assumptions on the metric nature of dQ (as
well as of dC). If one assumes that dQ is a metric and that there exists SQ→I such that dQ � SQ→I dI ,
then new opportunities for pruning the search space are available. Indeed, with reference to the
QIC-M-tree range search algorithm, it is easy to demonstrate that dQ(Q,O[N ]) > ε + SQ→I r

[N ] is
now a (new) sufficient condition for pruning node N . In other terms, rather than just “changing the
shape” of the query region, one could also change the shape of index regions. It has to be observed
that this pruning criterion is somewhat orthogonal to the one we have considered in this paper (i.e.
dI(Q,O[N ]) > SI→Q ε+ r[N ]), so that performance improvements are expected. As a simple example,
Figure 22 illustrates the case dI ≡ L2 and dQ ≡ L1. Same arguments apply to the comparison distance.
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Figure 22: Searching with dQ �= dI : Either the query region or the node region are inflated. In the former
case (QIC approach) the index node has to be accessed, whereas in the latter it can be pruned.

• Another challenging research issue is to revise the design principles of a MAM so that from the very
beginning it is suited to support a class of distance functions. As a concrete example, consider the class
of Lp norms and the M-tree basic structure: If each entry of an M-tree node not only stores the covering
radius computed according to a primary dI (say, L2) but also the covering radii for other Lp norms
(e.g. L1, L∞), then this additional information could be directly exploited when answering queries
using, say, L1. In some sense, this is related to the above-discussed extension where explicit covering
radii are maintained rather than using only the bounds provided by the SQ→I scaling factor(s).
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A Lower-bounding Metric for Quadratic Form Distance Functions

In this Appendix we prove that the Euclidean distance L2 is a lower-bounding distance function for all
quadratic form distance functions. Theorem 4 is an alternative formulation of a result presented in [HSE+95]
to better suit our scenario.

Theorem 4 ([HSE+95])
Let A be the set of all D ×D symmetric matrices A such that dqf [A] is a quadratic form distance function
over the D-dimensional vector space. Then L2 � dqf [A] and the optimal scaling for dqf [A] is given by

SL2→qf [A] = 1/
√

minj{λj}, where minj{λj} is the minimum eigenvalue of A. �

Proof: Since A is symmetric, it is A = UΛUT , where Λ is a diagonal matrix whose elements λjj ≡ λj are
the eigenvalues of A, and U is an orthonormal matrix, i.e. UUT = UTU = I. Then we have:

dqf [A](O1, O2) =
√

(O1 −O2)TA(O1 −O2) =
√

(O1 −O2)TUΛUT (O1 −O2) =

=
√

(UT (O1 −O2))TΛ(UT (O1 −O2)) =
√

(O′
1 −O′

2)TΛ(O′
1 −O′

2)

where O′
1 = UTO1 and O′

2 = UTO2. Thus it is

dqf [A](O1, O2) =

√√√√ D∑
j=1

λj · (O′
1j −O′

2j)2 ≥

√√√√min
j
{λj}

D∑
j=1

(O′
1j −O′

2j)2 =
√

min
j
{λj}L2(O′

1, O
′
2)

However, since U is orthonormal, it is

L2(O′
1, O

′
2) =

√
(UT (O1 −O2))T (UT (O1 −O2)) =

√
(O1 −O2)TUUT (O1 −O2) =

=
√

(O1 −O2)T (O1 −O2) = L2(O1, O2)

from which it is derived that dqf [A](O1, O2)/
√

minj{λj} ≥ L2(O1, O2). �

B Proofs

Proof of Theorem 1. For some sequence S = S1S2 . . . Sm of elementary edit operations, Sj = (Aj → Bj),
it is dedit[γ](X,Y ) =

∑m
j=1 γ(Sj) =

∑m
j=1 γ(Aj → Bj). Then we have:

dedit[γ](X,Y ) =
m∑
j=1

γ(Aj → Bj) =
m∑
j=1

γI(Aj → Bj)
γ(Aj → Bj)
γI(Aj → Bj)

≥

≥
m∑
j=1

γI(Aj → Bj) min
A,B,A �=B

{
γ(A→ B)
γI(A→ B)

}
= min
A,B,A �=B

{
γ(A→ B)
γI(A→ B)

} m∑
j=1

γI(Aj → Bj) ≥

≥ min
A,B,A �=B

{
γ(A→ B)
γI(A→ B)

}
dedit[γI ](X,Y )

where in the last step the inequality (rather than equality) is due to the fact that with γI there is no
guarantee that S is still a minimum cost transformation from X to Y . Note that since the minimum of cost
ratios is taken over all (non-null) values of the weight functions, the result does not depend on the specific
X and Y input strings. �
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Proof of Theorem 2. The proof amounts to show that the test at line 6. does not lead to discard any
qualifying object from the result, and that the tests at lines 13. and 15. do not prune form the search any
leaf that contains at least one qualifying object. For the test at line 13. it has to be proved that:

dC(Q,O[N ]) > SC→I(SI→Q ε+ r[N ]) =⇒ dQ(Q,O) > ε ∀O ∈ Reg(N)

which can be seen as a generalization of Equation 4. The derivation is as follows:

dQ(Q,O) ≥ dI(Q,O)/SI→Q (by hyp. dI � SI→Q dQ)

≥ dI(Q,O[N ])/SI→Q − dI(O[N ], O)/SI→Q (triangle inequality)

≥ dI(Q,O[N ])/SI→Q − r[N ]/SI→Q (def. of covering radius)

≥ dC(Q,O[N ])/(SC→I SI→Q)− r[N ]/SI→Q (by hyp. dC � SC→I dI)

> SC→I(SI→Q ε+ r[N ])/(SC→I SI→Q)− r[N ]/SI→Q (by hypothesis)

= (SC→I SI→Q ε)/(SC→I SI→Q) + r[N ]/SI→Q − r[N ]/SI→Q = ε

Similarly for the test at line 15. it is

dQ(Q,O) ≥ dI(Q,O[N ])/SI→Q − r[N ]/SI→Q (from the previous proof)

> (SI→Q ε+ r[N ])/SI→Q − r[N ]/SI→Q (by hypothesis)
= ε

Finally, the test at line 6. follows immediately

dQ(Q,O) ≥ dC(Q,O)/SC→Q (by hyp. dC � SC→Q dQ)
> SC→Q ε/SC→Q (by hypothesis)
= ε

�

Proof of Lemma 1. To compute the distance distribution of the random variable z = |dI(Q,O[N]) −
dI(O[N],O[Nc])|, we can consider it as a function of the two RVs x = dI(Q,O[N]) and y = dI(O[N],O[Nc]).
With z a given number, denote with Dz the region of the xy plane such that |x− y| ≤ z; thus, it is

Fz(z) = Pr {z ≤ z} = Pr {(x,y) ∈ Dz} =
∫∫
Dz

fxy(x, y) dx dy (31)

If we suppose that x and y are statistically independent, then it is

fxy(x, y) = fx(x) · fy(y) (32)

Therefore, in order to find the distribution of the z RV, we have to find the density of the two RVs x and
y. The distribution of x can be obtained from the distance distribution of dI , by taking into account that,
since we already accessed node N , it is x = dI(Q,O[N]) ≤ SI→Q ε+ r[N ]. Therefore it is

Fx(x) =

{
FdI

(x)

FdI
(SI→Q ε+r[N])

if x ≤ SI→Q ε+ r[N ],

1 otherwise.
(33)

fx(x) =

{
fdI

(x)

FdI
(SI→Q ε+r[N])

if x ≤ SI→Q ε+ r[N ],

0 otherwise.
(34)
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Likewise, the distribution of y can be obtained from the distance distribution of dI , by observing that it
is y = dI(O[N],O[Nc]) ≤ r[N ] − r[Nc]. Hence

Fy(y) =

{
FdI

(y)

FdI
(r[N]−r[Nc])

if y ≤ r[N ] − r[Nc],

1 otherwise.
(35)

fy(y) =

{
fdI

(y)

FdI
(r[N]−r[Nc])

if y ≤ r[N ] − r[Nc],

0 otherwise.
(36)

By taking into account Equations 32, 34, and 36, Equation 31 can be written as:

Fz(z) =
∫ r[N]−r[Nc]

0

∫ y+z

y−z
fxy(x, y) dx dy =

=
∫ r[N]−r[Nc]

0

∫ y+z

y−z
fx(x) fy(y) dx dy =

=
∫ r[N]−r[Nc]

0

fdI
(y)

FdI
(r[N ] − r[Nc])

∫ y+z

y−z

fdI
(x)

FdI
(SI→Q ε+ r[N ])

dx dy =

=
∫ r[N]−r[Nc]

0

fdI
(y)

FdI
(r[N ] − r[Nc])FdI

(SI→Q ε+ r[N ])
(FdI

(y + z)− FdI
(y − z)) dy

Thus, the probability that dC has to be computed for an object in a node at level l, is

Fz(SI→Q ε+ rl+1) =

=
∫ rl−rl+1

0

fdI
(y)

FdI
(rl − rl+1)FdI

(SI→Q ε+ rl)
(FdI

(y + SI→Q ε+ rl+1)− FdI
(y − SI→Q ε− rl+1)) dy

�

Proof of Theorem 3. For savCPU , let #dQ
(ε; dI , ;SI→Q, 1) be the number of query distances computed

when dC is not used. Clearly, when using dC , #dC
(ε; dI ;SI→Q) = #dQ

(ε; dI , ;SI→Q, 1) comparison distances
have to be computed between the query and objects in the data set. Then, a query distance dQ(Q,Oi) has to
be computed iff Oi has not been pruned by dC , i.e. iff dC(Q,Oi) ≤ SC→Q ε: This happens with probability
Pr{dC(Q,Oi) ≤ SC→Q ε} = FdC

(SC→Q ε). Therefore, it is

savCPU =
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)− timeCPU (ε; dQ, dI , dC ;SI→Q, SC→Q, SC→I)

timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)
=

= 1− timeCPU (ε; dQ, dI , dC ;SI→Q, SC→QSC→I)
timeCPU (ε; dQ, dI , ;SI→Q, , 11)

≈

≈ 1−
timedQ

(ε; dQ, dI , dC ;SI→Q, SC→Q) + timedC
(ε; dI , dC ;SI→Q)

timedQ
(ε; dQ, dI , ;SI→Q, 1

=

= 1−
#dQ

(ε; dI , dC ;SI→Q, SC→Q) · costdQ
+ #dC

(ε; dI ;SI→Q) · costdC

#dQ
(ε; dI , ;SI→Q, 1) · costdQ

=

= 1−
#dQ

(ε; dI , dC ;SI→Q, SC→Q) · costdQ
+ #dQ

(ε; dI , ;SI→Q, 1) · costdC

#dQ
(ε; dI , ;SI→Q, 1) · costdQ

=

= 1−
FdC

(SC→Q ε) ·#dQ
(ε; dI , ;SI→Q, 1) · costdQ

+ #dQ
(ε; dI , ;SI→Q, 1) · costdC

#dQ
(ε; dI , ;SI→Q, SC→I) · costdQ

=

= 1−
#dQ

(ε; dI , ;SI→Q, 1)(costdQ
· FdC

(SC→Q ε) + costdC
)

#dQ
(ε; dI , ;SI→Q, 1) · costdQ

=

= 1− FdC
(SC→Q ε)−

costdC

costdQ
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As for savtotal, it is sufficient to note that

savtotal =
timetotal(ε; dQ, dI , ;SI→Q, 1, 1)− timetotal(ε; dQ, dI , dC ;SI→Q, SC→QSC→I)

timetotal(ε; dQ, dI , ;SI→Q, 1, 1)
=

=
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1) + timeI/O(ε; dI ;SI→Q)
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1) + timeI/O(ε; dI ;SI→Q)

−
timeCPU (ε; dQ, dI , dC ;SI→Q, SC→Q, SC→I) + timeI/O(ε; dI ;SI→Q)

timeCPU (ε; dQ, dI , ;SI→Q, 1, 1) + timeI/O(ε; dI ;SI→Q)
=

=
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)− timeCPU (ε; dQ, dI , dC ;SI→Q, SC→Q, SC→I)

timeCPU (ε; dQ, dI , ;SI→Q, 1, 1) + timeI/O(ε; dI ;SI→Q)
=

=
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)

timeCPU (ε; dQ, dI , ;SI→Q, 1, 1) + timeI/O(ε; dI ;SI→Q)

· timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)− timeCPU (ε; dQ, dI , dC ;SI→Q, SC→QSC→I)
timeCPU (ε; dQ, dI , ;SI→Q, 1, 1)

=

= β · savCPU ≈ β
(
1− FdC

(SC→Q ε)−
costdC

costdQ

)

�

Proof of Lemma 2. Without loss of generality assume that both Fd1(·) and Fd2(·) are continuous, and let
fd1(·) and fd2(·) be their corresponding probability density functions (pdf’s). Integrating by parts Equation
22 it is obtained:

Err(d1|d2) =
1
d+2

∫ d+2

0

(Fd1(x)− Fd2(x)) dx =

=
1
d+2

[(
|x Fd1(x)|

d+2
0 −

∫ d+2

0

x · fd1(x) dx

)
−

(
|x Fd2(x)|

d+2
0 −

∫ d+2

0

x · fd2(x) dx

)]
=

=
1
d+2

[(
d+2 − E [d1]

)
−

(
d+2 − E [d2]

)]
=

=
E [d2]− E [d1]

d+2

�

Proof of Corollary 3. Equation 30 can be proved as follows:

dQ(Q, O) = CF (dQ(Q1, O), . . . , dQ(Qp, O)) (by def. of dQ(Q, O))

≥ CF
(
dI(Q1, O)
SI→Q

, . . . ,
dI(Qp, O)
SI→Q

)
(by hyp. dI � SI→Q dQ and CF is monotonic)

≥ CF
(
dminI (Q1, Reg(N))

SI→Q
, . . . ,

dminI (Qp, Reg(N))
SI→Q

)
(by def. of dminI and monotonicity of CF )

> ε′ (by hypothesis)

For the pruning of nodes using dC it is:

dQ(Q, O) ≥ CF
(
dminI (Q1, Reg(N))

SI→Q
, . . . ,

dminI (Qp, Reg(N))
SI→Q

)
(from the previous proof)

≥ CF
(
d∗C(Q1, Reg(N))
SC→I SI→Q

, . . . ,
d∗C(Qp, Reg(N))
SC→I SI→Q

)
(by def. of d∗C and monotonicity of CF )

> ε′ (by hypothesis)
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Similarly, when pruning objects:

dQ(Q, O) = CF (dQ(Q1, O), . . . , dQ(Qp, O)) (by def. of dQ(Q, O))

≥ CF
(
dC(Q1, O)
SC→Q

, . . . ,
dC(Qp, O)
SC→Q

)
(by hyp. dC � SI→Q dQ and CF is monotonic)

> ε′ (by hypothesis)

�
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