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Abstract
We review the major paradigms for similarity queries, in particular those that allow ap-

proximate results. We propose an original classification schema which easily allows existing
approaches to be compared along several independent coordinates, such as quality of results,
error metrics, and user interaction.

1 Introduction

Similarity queries are a search paradigm which is profitably used when dealing with mining of data.
In its essence, the problem is to find objects which are similar, up to a given degree, to a given query
object. In this way, for example, we are able to cluster together similar objects by executing several
similarity queries [EKSX96]. In order to assess the similarity between pair of objects, usually a
notion of distance is used, being understood that low values of distance correspond to high degrees
of similarity. More formally, we are faced with the following problem: Given a set of objects O ⊂ U
drawn from a generic metric space M = (U , d), where U is a domain (the feature space) and
d : U × U → �+

0 is a non-negative and symmetric binary function that also satisfies the triangle
inequality, retrieve the object(s) which are closest (i.e. that lead to the lowest values of d) to a
user-specified query object q ∈ U . Typical similarity queries include range queries (where all the
objects in O whose distance to q does not exceed a user-specified threshold α are requested) and
k-nearest neighbor (k-NN) queries (where the k objects in O which are closest to q are requested).

Several access structures have been proposed to speed up the resolution of (exact) similar-
ity queries: They can be broadly classified (depending on their field of applicability) as multi-
dimensional (or spatial) and metric access methods (the former only apply when the feature space
is a vector space). Recent studies, however, pointed out the fact that using such access structures
is sometimes not very efficient (e.g. when the feature space is a high-dimensional vector space
[WSB98]): In such cases, the most efficient way to exactly solve similarity queries is to sequentially
scan the entire data-set, comparing each object against the query object q. Obviously, such solution
is not viable for very large data-sets.

To speed-up the search it is common to offer to the user a quality/time trade-off: If the user
is willing to save search time, he/she has to accept a degradation in the quality of the result, i.e.
an error with respect to the exact case. Approximate similarity search, therefore, has the goal
to reduce search times for similarity queries by introducing an error in the result. Since k-NN
queries represent the most used type of similarity queries (because the user can control the query
selectivity, i.e. the cardinality of the result set), in the following we will concentrate on this kind
of queries.
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In this work we review the problem of approximate similarity search, proposing a classification
schema able to characterize existing approaches with respect to the kind of used approximation
and on how the quality of the result is measured. The goal is to present an unified view over
the different approaches proposed in literature. This paper is articulated as follows: In Section 2
we present some applicability scenarios for approximate similarity search. Section 3 presents the
proposed classification schema. In Section 4, some of the approaches recently proposed in literature
for approximate similarity search are classified according to the presented schema. Finally, Section
5 discusses about classification results, proposing possible extensions to the schema, and concludes.

2 Applicability Scenarios

The field of applicability of approximate similarity search is very wide. As an example, consider a
multimedia database, where the user can query the system to search for images similar to a given
one: Usually, such kind of search consists of several steps, each refining the query by changing,
through relevance feedback techniques [BCW00], both the query object and the distance function
used to compare objects. In this light it is clear that the first steps of the search do not require
that an exact result is found, but only that a result can be quickly obtained that is approximately
similar to the exact result, in order to proceed with further steps as soon as possible.

As another example, consider modern Decision Support Systems (DSSs), where complex queries
are posed to the underlying database system over Gigabytes (or even Terabytes) of data. Such
queries are expected to be computationally very expensive even if the exploratory nature of many
DSS applications often do not require an exact answer [CGRS00]. In this scenario, users are
frequently ready to accept an approximate result if the query solution time is reduced by some
orders of magnitude.

Another common case when approximate queries arise is that of cluster-based similarity search:
In this context, the data-set is first divided in clusters, i.e. sets of objects sharing common charac-
teristics (e.g. which are similar to each other), by means of data mining techniques [JD88, JMF99];
then, at query time, the query object is compared against clusters’ representatives and only
those cluster that are closest to the query are accessed to retrieve objects similar to the query
[WYM97, BFG99, LCGMW]. It is clear that such techniques cannot guarantee that the exact
result is found.

3 A Classification Schema

Being understood that exact similarity search is sometimes difficult, several approaches have been
recently proposed to solve the approximate problem. Virtually every approach proposes a new
technique and new kind of metrics to evaluate the quality of the approximate result, yet all of them
fail in relating the presented approach with other techniques presented in literature. The goal of
this Section is to present a schema able to classify existing approaches by means of the following
coordinates:

1. The type of data to which the approach can be applied.

2. The metrics introduced to quantify errors produced by approximation.

3. The guarantees in the quality of the result offered by the approach.
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4. The degree of interaction with the user, i.e. the possibility the user has to tune the technique
parameters to adapt to his/her actual needs.

The above coordinates have been chosen in order to evaluate the field of applicability of existing
techniques for approximate similarity search. In fact, it is understood that if a technique A is
applicable only to a subset of the data to which another technique B is applicable, then A is less
general than B. On the other hand, it could be the case that A is more efficient or leads to lower
errors: We are not interested in overall efficiency or accuracy of existing techniques here, but only
on how they are achieved and how they can be measured.

3.1 Data Types

Since (exact) similarity queries require a notion of distance to be defined, an approximate technique
is usually applied to a set of objects O ⊂ U drawn from a generic metric space M (see Section 1).
Examples of metric spaces include the D-dimensional vector space �D with the Euclidean distance
L2 or the set Σ∗ of (finite length) strings obtained from an alphabet of symbols Σ with the edit
distance dedit (i.e. the minimum number of symbols that have to be inserted, deleted or substituted
in order to transform a string into another).

Since, however, in most of the cases the data-set O is drawn from a vector space, several
techniques exploit this fact by explicitly referring to coordinates of the space. Of course, this
limits the applicability of such techniques, since they cannot be used on non-vectorial objects (e.g.
strings with the edit distance). Moreover, some techniques are only applicable when the distance
used to measure the (dis-)similarity between objects is an Lp metric1 or, even more restrictive, the
Euclidean distance L2.

In this light, the following classification is given, in decreasing order of applicability:

MS (metric spaces) Methods in this class are applicable to the more general case of objects
drawn from a generic metric space.

VS (vector spaces) In this class fall all those techniques that explicitly use objects’ coordinates,
thus are only applicable to vector spaces. However, these techniques do not make any as-
sumption on the metric used to compare vectors (thus arbitrarily chosen distance functions
can be used, e.g. quadratic form functions where the distance between vectors is defined by
way of a positive definite symmetric matrix [SK97]).

VSLp (vector spaces, Lp distance) Techniques belonging to this class can only be applied when
the considered objects are vectors in a D-dimensional space and the distance used to compare
them is an Lp metric (thus no correlation between coordinates is allowed). Specific classes can
be obtained by instantiating p (e.g. the class VSL2 contains techniques that only applies to
Euclidean spaces, i.e. when the distance used is the L2 Euclidean metric). If p is not instan-
tiated, then the technique is applicable to any vector space with an Lp metric, independently
of the value of p.

As examples of the above classification method, we now describe three approximations tech-
niques, assigning each of them to the proper class.

1We recall that the definition of the Lp distance between two points x and y in a D-dimensional space is as follows:

Lp(x, y) =
(∑D

i=1 |x[i]− y[i]|p
)1/p

, 1 ≤ p < ∞, L∞(x, y) = maxD
i=1 |x[i]− y[i]|.
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Example 1
In [GIM99] the authors propose the use of Locality-Sensitive Hashing (LSH) to transform a D-
dimensional vector x into a sequence of C bits (binary vector) v(x). Since the L1 distance between
vectors can be approximated by the Hamming (edit) distance between the corresponding binary
vectors, they propose a hashing technique to index only the binary vectors v(x). Of course, both
accuracy and efficiency of the technique highly depend on the number C of bits used for approxi-
mating vectors. Since the approximation for the Hamming distance only applies to the L1 metric,
this technique is of class VSL1 .

Example 2
In [WB00] approximate nearest neighbor search techniques based on the VA-file [WSB98] are
presented. Such structure, in its essence, is a sequential structure containing approximations of
vectors using a fixed number b of bits. Exact k-NN search is performed by first executing a sequential
scan of the structure using the query distance on vectors approximations, which yields a number
M > k of candidate vectors, and then applying a refinement step, where the distance is evaluated
on real vectors and only the k “best” vectors are kept. Proposed techniques suggest either to reduce
the number of considered approximations by reducing the query radius (VA-BND) or to avoid the
refinement phase by returning only the “best” k candidate vectors, using the approximations (VA-
LOW). Since no assumption is made on the distance to be used, both techniques fall in the VS
class.

Example 3
In [GR00] the authors propose the P-Sphere tree, a 2-level index structure for approximate 1-NN
search. In order to find the nearest neighbor for the query point, the leaf node which is closest,
according to the used distance function, to the query point is accessed. The query is solved through
a simple linear scan of objects contained in such node. In this case, no assumption is made on
the query distance to be used (which, however, should be the same used to build the tree) and no
coordinates are used, thus this technique is classified as MS.

3.2 Error Metrics

In this Section we review the most relevant error measures introduced to evaluate the accuracy of
approximate techniques for similarity search. From the point of view of approximation, existing
techniques can be classified as follows:

CS (changing space) To this class belong approximate methods that change the metric space,
either by changing the distance used to compare objects or by modifying the feature space,
then solve the exact problem on the so obtained approximate space. The goal is to obtain
a “simpler” exact problem. Examples of such techniques are those that approximate vectors
using a fixed number of bits, or dimensionality reduction techniques [CM00].

RC (reducing comparisons) Techniques in this class use the exact distance to compare objects
but reduce the number of objects to be compared against the query in order to obtain a
speedup with respect to the exact search. Examples of such techniques are those that prune
from the search regions of the space according to the computation of bounds.

Of course, if we use a CS technique, the ranking of objects, i.e. the ordering of objects in the
data-set with respect to the distance to the query object, is changing with respect with the exact
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case. On the other hand, using a RC technique, since the distance is not changed, the ranking of
objects with respect to the exact case changes because some results are missed.

Therefore, CS methods commonly use comparisons in ranking of objects between approximate
and exact results to measure the accuracy of their approximation (ranking measures), whereas RC
techniques use measures of precision/recall (i.e. how many exact results are returned by the approx-
imate query)2 or measure the difference in distance between the exact and the approximate result
(distance measures). Other measures include the percentage of correct results, i.e. the percentage
of times in which the approximate result is equal to the exact result.

In the following we will describe some error measures presented in literature, classifying them
by means of above categories.

Example 4
In [AMN+98] the authors propose the BBD-tree, which is a primary memory structure able to
answer to approximate k-NN queries in a time that is logarithmic in the number of objects included
in the data-set O. To reduce the number of tree cells accessed, during the search the query radius
is reduced by a factor of ε with respect to the radius used for exact search. Therefore, this method
can be classified as RC. The measure proposed to rate the accuracy of the proposed algorithm is
the average relative error which is defined as the ratio between the distance of the approximate
NN and the exact nearest neighbor with respect to the query minus 1: This measure is also used
in [CP00], where it is called effective error εeff . More formally, if we denote the query object as q,
its exact NN as nn(q), and the approximate NN as ñn(q), it is

εeff =
d(q, ñn(q))
d(q, nn(q))

− 1 (1)

Clearly, εeff is a distance measure.

Example 5
In [ZSAR98] three different algorithms are presented to solve approximate k-NN queries with M-
tree [CPZ97]. All of them use heuristic conditions to prematurely stop the exact k-NN search on
the tree. Thus, such methods fall in the RC class. To measure the accuracy of proposed heuristics
on k-NN queries, the relative distance error ε is proposed, which is defined as the average εeffi ,
i = 1, . . . , k:

ε =
1
k

k∑
i=1

(
d(q, ñni(q))
d(q, nni(q))

− 1
)

(2)

where nni(q) and ñni(q) denote the i-th exact and approximate NN, respectively. It can be easily
proven that ε ≤ εeffk

.

Example 6
The technique proposed in [FTAA01] combines clustering and dimensionality reduction to approxi-
mate k-NN search. During the search, only the clusters which are closest to the query are considered
and, for all the points in such clusters, only a fraction of dimensions is used to assess the distance

2It has to be noted that, since we only consider k-NN queries, the number of retrieved objects (the result of the
approximate query) is equal to the number k of relevant objects (the result of the exact query), so that the two
notions of precision and recall used in Information Retrieval [Sal88] are coincident.
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to the query. To improve accuracy, the user can increase both the number of visited clusters and
the fraction of considered dimensions. This technique, therefore, combines characteristics of both
classes CS (for using only some dimensions) and RC (for looking up only in some clusters).

Example 7
The VA-LOW technique discussed in Example 2 belongs to the CS class, since the approximate
results are chosen by considering only the vector approximations. One of the metrics proposed to
measure the result quality is the normalized rank sum, i.e. the inverse of the sum of ranks in the
exact result of objects in the approximate result, computed as

nrs =
k(k + 1)

2 · ∑k
i=1 rank(ñni(q))

(3)

where the function rank(x) returns the ranking of object x in the exact result. Of course, this is a
ranking measure.

3.3 Quality Guarantees

Having determined how approximate techniques measure the result quality, it is worth considering
whether each method is able to bound its performance above a predetermined level. In other
words, we are asking if an approximate technique can guarantee its error measure to be lower than
a (user-specified) threshold. The classification we give is as follows:

NG (no guarantees) In this class fall those methods that only use heuristic conditions to ap-
proximate the search; thus such methods are not able to give any formal bound on the error
introduced by the approximation.

DG (deterministic guarantees) Techniques in this class are able to deterministically bound
from above the error introduced by approximation.

PG (probabilistic guarantees) Approximate methods following this approach are only able to
give probabilistic guarantees on the quality of query result. This means that, depending on
the query object, the accuracy of the result can fall below the specified threshold, but, when
averaging results for several queries, the quality guarantees are met. To achieve this goal,
information about distribution of data is needed. In this light, techniques belonging to this
class can be further divided into two basic types according to how much it is known about
objects’ distribution [MCS88].

PGpar (probabilistic guarantees, parametric) Approaches in the parametric class as-
sume that the used data-set follows a certain distribution; the only unknown information
concerns a few parameters that need to be estimated (e.g. through sampling). Of course,
when the considered objects do not follow the modeled distribution, quality guarantees
cannot be met.

PGnpar (probabilistic guarantees, non-parametric) In this case, little assumptions (or
no assumption at all) are made on distribution of objects, so that such information has
to be estimated through sampling and stored in a suitable way (e.g. through histograms).

6



Example 8
The third technique proposed in [ZSAR98] (see also Example 5) stops the k-NN search whenever
the improvement in the distance between the query and its k-th NN falls below a threshold κ. In
this case, however, no guarantee can be given on the accuracy of the approximate result, defined,
for example, through the relative distance error ε defined by Equation 2. Thus, this method is in
the NG class.

Example 9
The algorithm for approximate search proposed for BBD-trees in [AMN+98] (see also Example 4),
and the first technique proposed in [ZSAR98] both use a value ε to reduce the query radius during
the search. In both cases, it is guaranteed that εeff ≤ ε, thus both techniques belong to class DG.

Example 10
In [BFG99] the DBIN structure is proposed as a 2-level index for solving the k-NN problem. The
method assume that the data-set is composed of K clusters, and that distribution of objects within
each cluster can be modeled by way of a Gaussian distribution, parameterized by a mean vector
and a covariance matrix. At query time, the cluster that best fits the query object is found, and
the NN is computed by considering objects in that cluster. Then, remaining clusters are accessed
iff the probability that the NN has not been found yet is higher than a user-specified threshold.
Such probability is computed by relying on the assumption of a Gaussian model, with parameters
estimated at index construction time. Since the correct NN is found only with high probability
and a Gaussian distribution is assumed (where mean and covariance have to be estimated), this
method is in the PGpar class.

Example 11
The PAC technique proposed in [CP00] is a paradigm for approximate 1-NN search with metric
access methods, where the effective error εeff measure (Equation 1) is allowed to exceed the user-
specified accuracy threshold ε with a probability limited by the user-specified confidence δ. To
guarantee this, the distance between the query objects and its NN is estimated from the distance
distribution [CPZ98a] of indexed objects. Since this latter information is not known at query
time, such distribution is estimated (through sampling) and stored (in a histogram). By above
considerations, this technique can be classified in the PGnpar class.

3.4 User Interaction

The last classification we propose relates to the possibility given to the user to specify, at query
time, the parameters for the search (e.g. the maximum error allowed). Some techniques, in fact,
are inherently static, in the sense that a structure is built by using a set of parameters to offer
some guarantees: If the user wants to change, for example, the accuracy of the result, he/she has
to modify the value of the parameters and to rebuild the structure from scratch. Other methods,
on the other hand, exploit a single structure that is not bound to any parameter and can be used
with different sets of parameters, according to user’s needs.

SA (static approach) When using a technique in this class, the user cannot vary the set of
parameters for query approximation, but is bound to those specified when building the ap-
proximate structure. Usually, to provide several quality of result profiles, different structures
are built, using different sets of parameters, and the user is given the possibility to choose
the structure that best fits his/her actual needs.
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IA (interactive approach) Methods in this class are not bound to a specific set of parameters,
but can be interactively used by varying such parameters at query time. Usually, interactive
techniques are obtained as modifications of the exact similarity search method, that can be
executed by requesting a maximum error of 0%.

Example 12
In the P-Sphere technique presented in [GR00] (see also Example 3), the size of leaf nodes, i.e. the
number of objects in each data page, is estimated by taking into account a user-specified accuracy.
Of course, if the accuracy parameter is changed, the P-Sphere tree has to be rebuilt from scratch.
Therefore, this method is static and belongs to the SA class.

Example 13
In [HAK00] the authors propose the generalized NN search as a new approach for high-dimensional
NN search. The key idea here is to find a suitable projection to reduce the space dimensionality;
then, the NN search is performed on the reduced space using the original distance function and
projected points. Of course, the higher the value of the dimensionality D′ of the reduced space, the
better accuracy is obtained by this technique. Since the user can specify, at query time, the value
of D′, this method can be classified as IA.

4 Some Relevant Cases

In this Section we use the schema introduced in Section 3 to classify some of the approaches for
approximate similarity search presented in recent years. For each method presented in the following
Sections, the classification is expressed as a 4-tuple consisting of the following “coordinates”: (<
data type >, < error metric >, < quality guarantee >, < user interaction >).

4.1 Fastmap [FL95]: (MS,CS,NG,SA)

The Fastmap technique [FL95] has been proposed as a tool for mining and visualization of metric
data-sets. In its essence, the Fastmap algorithm is able to map a set of objects drawn from a
generic metric space to a D′-dimensional Euclidean space, where D′ is a user-specified value, such
that distances between objects are preserved as much as possible. Of course, this approach can also
be used for approximate searching, since performing a similarity search in the target D′-dimensional
space can be viewed as an approximate search in the original metric space. Since the method applies
to general metric spaces, it belongs to the MS class; the transformation of the space is reflected in
a transformation of the distance used to compare objects, thus this technique is in the CS class; in
the paper, the authors give no guarantee on the error introduced for distance in the target space,3

hence the quality guarantee class is NG; finally, as for user interaction, the mapping in the D′-
dimensional space has to be made before any index structure is built on the transformed objects,
thus Fastmap falls in the SA class.

3The error between exact distances and distances between transformed objects can be limited, for the relevant
case of vector spaces, by exploiting the Johnson-Lindenstrauss lemma. However, for the general case of metric spaces,
no general rule has been proposed so far.
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4.2 DBIN [BFG99]: (VS,RC,PGpar, IA)

The DBIN (density based indexing) method was presented in [BFG99] as an approach to solve
approximate similarity queries in high-dimensional spaces. The base assumption is that the distri-
bution of objects in the space can be modeled as a mixture of Gaussian distributions. Each point,
therefore, can be associated to a cluster, parametrized with a mean vector and a covariance matrix,
by using an expectation-maximization algorithm. When searching for the NN of a query point,
the clusters obtained in the building phase are ranked according to the probability that the query
point belongs to them; then, each cluster is accessed (and points in that cluster compared to the
query) until the probability that the NN has not been found falls below an user-specified tolerance.
Since no assumption is made on the distance used to compare vectors (even if analytical results
are given only in the case of quadratic form distance functions), this method falls in class VS;
the distance used to compare vectors is the exact distance, thus the class of this technique is RC;
as for quality guarantees, this technique assumes that indexed objects are distributed in clusters
according to a Gaussian distribution, for which the mean and the covariance are estimated in the
building phase, hence this method belongs to class PGpar; since the user can specify the tolerance
parameter, used when stopping the search, this method is of class IA. Finally, the metric used
to measure quality of the result is the percentage of times the exact NN has been found (this is a
precision/recall measure).

4.3 PAC [CP00]: (MS,RC,PGnpar, IA)

PAC (probably approximately correct) nearest neighbor queries, introduced in [CP00], represent
a probabilistic approach to approximate 1-NN search in metric spaces, where the error in the
result can exceed a specified accuracy threshold ε with a probability that is limited by a confidence
parameter δ. The PAC paradigm can be applied to any distance-based (either multi-dimensional
or metric) index tree that is based on a recursive and conservative decomposition of the space (thus
it is of MS class). The only information that is needed by the algorithm to prune index nodes from
the search is the value of rq

δ , the maximum value of distance from the query object q for which the
probability that the exact NN of q has a distance lower than d is not greater than δ:

rq
δ = sup{r|Pr{d(q, nn(q)) ≤ r} ≤ δ} (4)

In the paper, this value is estimated by using the distance distribution of indexed objects with
respect to the query object (estimated through sampling and stored as an histogram); it is therefore
clear that this approach is probabilistic and non parametric (PGnpar class). The distance used
to query the distance-based index structure is the exact one, the approximation is introduced by
reducing the number of object to be compared against the query object q by means of rq

δ and of the
ε parameter, and quality of the result is measured by the effective error εeff defined by Equation
1, thus the class of this approach is RC; finally, since the accuracy and the confidence parameters
(ε and δ, respectively) can be specified at query time, this technique belongs to the IA class.

4.4 VA-BND [WB00]: (VS,RC,PGnpar, IA)

In [WB00] two approximate query evaluation techniques are presented for the VA-File. The VA-File
structure [WSB98] approximates vectors using a fixed number of bits, and stores such approxima-
tions in a file. For exact k-NN search, the approximation file is sequentially scanned to exclude
vectors that can not be in the result set through the computation of bounds on exact distances
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(such scan is very fast since the computation of bounds between approximations has to consider
only a few bits); finally, exact vectors corresponding to approximations included in the result of
the previous scan (the candidate vectors) are compared against the query point to compute the
final result. Since the approximations of the VA-File are only applicable to vector spaces and any
distance can be used to compare vectors (even if computation of bounds can be a difficult task if
complex metrics are used), all approximate techniques developed for this structure fall in the VS
class. In the paper, two different metrics are proposed to measure the accuracy of approximate
techniques:

1. The ratio of false dismissals rfd, defined as

rfd =
1
k
·

k∑
i=1

{
1 if rank(ñni(q)) > k

0 otherwise
(5)

which counts the number of exact results not included in the approximate result (divided by
k). This can be classified as a precision/recall measure and it is the same measure used in
[BFG99] (see Section 4.2), where it is called discounted accuracy.

2. The normalized rank sum nrs, defined by Equation 3, is computed as the inverse of the
sum of rankings in the exact result of objects in the approximate result, normalized in order
to obtain a value in the interval [0, 1]. This is a ranking measure and it is used to better
distinguish the quality of result with respect to the above measure.

The first approach to reduce the complexity of similarity searching in the VA-File through
approximation proposes to adapt the computation of distance between approximate vectors. The
user is given the possibility to specify a value α to adapt computed bounds: Higher values of α
correspond to higher errors in the result but the candidate set will consist in a lower number of
vectors. Since the approximation is introduced in the computation of bounds and not on the exact
distance, this technique can be classified as RC. The number of vectors missed can be computed as
a function of the distance distribution between objects, thus this technique can give probabilistic
guarantees on the ratio of false dismissals rfd as a function of the parameter α; therefore, the
class for this method is PGnpar. Finally, since the parameter α can be specified at query time, the
VA-BND technique is in class IA.

4.5 VA-LOW [WB00]: (VS,CS,DG,SA)

The second approximate technique for the VA-file (also presented in [WB00]) proposes to com-
pletely omit the second refinement phase and to return, as the approximate result, the k vectors
corresponding to the best approximations. Of course, in this case, the approximation in the result
comes from using, in computing the distance, the approximate vectors instead of the exact vectors,
thus this method can be classified as CS. The error in computation of the distance on approximate
vectors can be controlled by means of the quantity of bits used for the approximations: The more
bits are used, the better the approximation but the slower the first sequential phase. Since a bound
on the error between the distance on approximate vectors and the exact distance can be easily
computed, this technique falls in the DG class. As for the interaction with the user, it is clear
that the only parameter used, i.e. the number of bits used for vectors’ approximation, has to be
specified before the actual VA-File is built, so that the class for this technique is SA.
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5 Comments and Extensions

We believe that the proposed classification schema can be very fruitful for the analysis of approx-
imate techniques for similarity search. By using such schema interesting relations and similarities
between techniques can be found that may not be evident at a first sight. As an example, consider
the PAC approach (reviewed in Section 4.3) and the VA-BND technique (Section 4.4): Both are
classified as belonging to the RC, PGnpar, and IA classes, the only difference being in the fact
that the VA-File only applies to vector spaces. Indeed, at a closer look, these two method share
several analogies:

• In both cases the approach requests for an additional confidence parameter (δ and α, respec-
tively) representing the quality of the result the user is willing to obtain. The lower the value
of the parameter, the lower the error and the higher the search costs.

• Both methods use information about the distance distribution in order to estimate the dis-
tance between the query object and its nearest neighbor.

• In both cases the distance distribution and the confidence parameter are jointly used to derive
bounds to stop the search.

• Different error metrics are proposed for the two methods, but estimates on other metrics can
be easily obtained (e.g. on rfd and nrs for PAC, and on εeff for VA-BND).

It is clear that, by using the proposed classification schema, we are able to immediately under-
stand the field of applicability of a particular approximate technique. In this way, we can conceive
whether, for example, a method is more general, i.e. it applies to a superset of scenarios, with
respect to another, or how its quality measures relate to those proposed for other techniques. In
search for the “best” approximate technique for a specific scenario at hand, in fact, different aspects
are to be considered, in particular the generality/efficiency trade-off: A more general method is
expected to have a lower efficiency (i.e. to lead to higher search costs) than a method that applies to
a lower number of cases, since it is expected that the latter is able to exploit some domain-specific
information that the former cannot to take into account; this applies immediately when considering
methods that apply to metric spaces or only to vector spaces. The same considerations can be made
when dealing with quality guarantees: Parametric approaches usually attain better performance
with respect to non-parametric ones, yet they are only applicable to particular distributions of
objects. On the other hand, deterministic techniques, in some senses, are the most general ones,
since guarantees are met in all possible cases and not only in a probabilistic way. Finally, it is clear
that interactive approaches are more general than static ones, since the user is given the possibility
to choose at query time the desired quality of the result, which is inversely related to search costs
needed to obtain the approximate result.

Limits of approximate techniques can also be discovered by means of the proposed classification
schema. As an example, consider the PAC technique reviewed in Section 4.3: Since only the
distance between the query object and its nearest neighbor is estimated, it is clear that such
approach cannot deal with approximate k-NN queries when k > 1. In order to extend the PAC
approach to generic k-NN queries, we need to estimate the distance between the query object and
its k-th nearest neighbor, e.g. by using formulas from [CPZ98a].

Finally, we would like to point out some issues that are currently open for research. In our
view, the most pressing one is that of extending approximate similarity techniques to deal with
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the case of complex queries, where different similarity predicates are jointly evaluated to derive
the similarity between the object and the query [Fag96, CPZ98b]. In the simplest case, all the
similarity predicates refer to a single feature, thus, for example, we could ask for the objects which
are most similar to a query object q1 and to a query object q2: In this case, the overall similarity
score for an object O ∈ U is obtained by computing the similarity between O and q1, and that
between O and q2, and combining them through a scoring function [Fag96]. In order to solve
complex queries, some existing approaches suggest to independently solve the two sub-queries, i.e.
to consider objects that are sufficiently close to q1 or to q2, and then to combine the so-obtained
results [Fag96, GBK00, WFSP00], whereas other techniques are able to consider the complex query
as a whole and to process it with classical distance-based access methods [CPZ98b]. The former
approach is usually much less efficient than the latter, since a lot of work is wasted during the first
phase to consider objects that are not contained in the final result (for a comparison, see [CPZ98b]).
Besides specific problems, however, it is clear that this kind of similarity search is affected by the
same problems that limit (simple) similarity search, thus one could conceive approximate techniques
applying to complex similarity queries. By our knowledge, no previous work dealt with such issue,
probably because of the preliminary state for approximate techniques for simple similarity search.
We plan to investigate this issue in the future.
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