
FeedbackBypass: A New Approach to Interactive

Similarity Query Processing

Ilaria Bartolini Paolo Ciaccia Florian Waas

DEIS – CSITE-CNR, University of Bologna
Bologna, Italy

Abstract

In recent years, several methods have been proposed for implementing interactive similarity queries
on multimedia databases. Common to all these methods is the idea to exploit user feedback in order
to progressively adjust the query parameters and to eventually converge to an “optimal” parameter
setting. However, all these methods also share the feature to “forget” user preferences across multiple
query sessions, thus requiring the feedback loop to be restarted for every new query (i.e. using default
parameter values), which not only is frustrating from the user’s point of view but is also a significant
waste of system resources.

In this paper we presentFeedbackBypass, a new approach to interactive similarity query pro-
cessing. It complements the role of relevance feedback engines by storing and maintaining the query
parameters, determined with feedback loops over time, using a wavelet-based data structure called
“Simplex Tree”. For each query, a favorable set of query parameters can be determined using the
Simplex Tree. This information can then be used to either “bypass” the feedback loop completely
for already-seen queries, or to start the search process from a near-optimal configuration.

FeedbackBypass can be well combined with all state-of-the-art relevance feedback techniques
working in high-dimensional vector spaces. Its storage requirements scale linearly with the dimen-
sionality of the query space, making even sophisticated query spaces amenable. Experimental results
demonstrate both the effectivness and efficiency of our technique.

1 Introduction

Similarity and distance-based queries are a powerful way to retrieve interesting information from large

multimedia repositories [Fal96]. However, the very nature of multimedia objects often complicates the

user’s task of choosing an appropriate query and a suitable distance criterion to retrieve from the database

the objects which best match his/her needs [SK97]. This can be due both to limitation of the query

interface and to the objective difficulty, from the user’s point of view, to properly understand how the

retrieval process works in high-dimensional spaces, which typically are used to represent the relevant

features of the multimedia objects . For instance, the user of an image retrieval system will hardly be

able to predict the effects that the modification of a single parameter of the distance function used to

compare the individual objects can have on the result of a query.

To obviate this unpleasant situation, several multimedia systems now incorporate somefeedback

mechanisms so as to allow users to provide an evaluation of therelevance of the result objects. By prop-

erly analyzing such relevance judgments, the system can then generate a new, refined query, which will

likely improve the quality of the result, as experimental evidence confirms [RHOM98]. This interactive

retrieval process, which can be iterated several times until the user is satisfied with the results, gives rise

to a so-calledfeedback loop during which the default parameters used by the query engine are gradually

adjusted to fit the user’s needs (see e.g. [ORC+97]).

Although relevance feedback has been recognized as a highly effective tool, its applicability suffers

two major problems:

1. Depending on the query, it may require numerous iterations before an acceptable result is found,

thus convergence can be slow.

2. Once the feedback loop of a query is terminated, no information about this particular query is

retained for re-use in further processing. Rather, for further queries, the feedback process is started

anew with default values. Even in the case that a query object has already been used in an earlier

feedback loop, all iterations have to be repeated.

Note that both problems concern theefficiency of the feedback process, whereas itseffectivenes will

depend on the specific feedback mechanisms used by the system, on the similarity model, and on the

features used to represent the objects.

This paper presentsFeedbackBypass, a new approach to interactive similarity query processing,

which complements the role of current relevance feedback engines.FeedbackBypass is based on the

idea that, by properly storing and maintaining the information on query parameters gathered from past

feedback loops, it is possible to either “bypass” the feedback loop completely for already-seen queries,

or to “predict” near-optimal parameters for new queries. In both cases, as an overall effect, the number

of feedback and database search iterations is greatly reduced, resulting in a significant speed-up of the

interactive search process.

Figure 1 shows a query image together with the 5 best results obtained from searching with default

parameters a data set of about 10,000 color images. No result image belongs to the same semantic cate-

gory of the query image, which is “Mammal” (see Section 6 for a description of image categories). The

bottom line of the figure shows the 5 best matches obtained for the same query whenFeedbackBypass

has been switched-on, and the system uses the predicted query parameters. This leads to have 4 relevant

images (i.e. 4 mammals) in the 5 top positions of the result.

The implementation ofFeedbackBypass is based on a novel wavelet-based data structure, called

simplex tree, whose storage overhead is linear in the dimensionality of the query space making even

sophisticated query spaces amenable. Its resource requirements areindependent of the number of pro-

cessed queries but rely only on the query parameter function, which guarantees proper scalability and

2

Default results

Query

resultsFeedbackBypass

Figure 1:FeedbackBypass in action. The top line shows the 5 best matches computed using default
parameters for the query image on the left. The bottom line shows the results obtained for the same query
when the parameters suggested byFeedbackBypass are used

performance levels. Furthermore, storage requirements can be easily traded-off for the accuracy of the

prediction. Experimental results demonstrate both the effectiveness and efficiency of our technique.

The rest of the paper is organized as follows. Section 2 provides the background on relevance feed-

back mechanisms and on related work. In Section 3 we describe our approach and state the basic require-

ments for an effective implementation ofFeedbackBypass. Section 4 shortly describes the underlying

principles on which the Simplex Tree is based, and Section 5 provides a thorough description of the

Simplex Tree and of related implementation issues. Experimental results on a real-world image data set

are presented in Section 6. Section 7 concludes the paper.

2 Background and Related Work

We frame our discussion within the context ofvector space similarity models, for which a multimedia

object is represented through aD-dimensional vector (i.e. a point in<D) of features, p = (p1; : : : ; pD),

and the similarity of two pointsp andq is measured by means of somedistance function on such space.

Relevant examples of distance functions includeLp norms:

Lp(p;q) =

DX
i=1

(pi � qi)
p

!1=p

1 � p <1

L1(p;q) =max
i
fjpi � qijg

3

(L1 is the Manhattan distance,L2 is the Euclidean norm,L1 is the “max-metric”) and their weighted

versions. For instance, the weighted Euclidean distance is:

L2W (p;q;W) =

DX
i=1

wi (pi � qi)
2

!1=2

(1)

Further,quadratic distances can also be used to capture correlations between different coordinates of the

feature vectors. The well-known Mahalanobis distance is defined as

d2Mahalanobis(p;q;W) =

DX
i=1

DX
j=1

wi;j(pi � qi)(pj � qj)

and leads to arbitrarily-oriented ellipsoidal iso-distant surfaces in feature space [SK97]. Note that this

distance is indeed a “rotated” weighted Euclidean norm.

The typical interaction with a multimedia retrieval systems that implements relevance feedback

mechanisms can be summarized as follows [Sal88]:

Query formulation. The user submits an initial queryQ = (q; k), whereq is called thequery point

andk is a limit on the number of results to be returned by the system.

Query processing. The query pointq is compared with the database objects by using a (default) dis-

tance functiond. Then, thek objects which are closest toq according tod, Result(Q; d) =

fp1; : : : ;pkg, are returned to the user.

Feedback loop. The user evaluates the relevance of the objects inResult(Q; d) by assigning to each of

them arelevance score, Score(pi). On the basis of such scores a new query,Q0 = (q0; k), and a

new distance function,d0, are computed and then used to determine the second round of results.

Termination. After a certain number of iterations, the loop ends, the final result being

Result(Qopt; dopt), whereQopt = (qopt; k) is the “optimal” query the user had in mind, and

dopt the “optimal” way to retrieve relevant objects forQopt.

Each interactive retrieval system provides a specific implementation for each of the above steps. For

instance, the choice of the initial query point depends on the system interface and, also considering the

very nature of the multimedia objects, can include aquery-by-sketch facility, the choice from a random

sample of objects, the upload of the query point from a user’s file, etc. Many options are also available for

implementing the query processing step, which typically exploits index structures for high-dimensional

data, such as the X-tree [BKK96] and the M-tree [CPZ97].

4

(a) (b)

Figure 2: The “query point movement” (a) and the ”re-weighting” (b) feedback strategies

More relevant to the present discussion are the issues concerning the feedback loop. The use of

binary relevance scores is the simplest one, even from the user’s point of view. In this case the user can

mark a result object either as “good” or “bad”, and implicitly assigns a neutral (“no-opinion”) score to

non-marked objects. Graded, and even continuous, score levels have also been used to allow for a finer

tuning of user’s preferences [RHOM98].

The two basic strategies for implementing the feedback loop concern the computation of a new query

point (query point movement) and the change of the distance function, which can be accomplished by

modifying the weights (importance) of the feature components (re-weighting).

Query point movement. The idea of this strategy is to try to move the query point towards the “good”

matches (as evaluated by the user), as well as to move it far away from the “bad” result points (see Figure

2 (a)). A well-known implementation of this idea dates back to Rocchio’s formula [Sal88], which has

been successfully used for document retrieval. More recently, query point movement has been applied

by several image retrieval systems, such as the MARS system [RHOM98]. Ishikawa et al. [ISF98] have

proved that, when usingpositive feedback (scores) and the Mahalanobis distance, the “optimal” query

point (based on the available set of results) is a weighted average of the good results, i.e.:

q
0 =

P
i Score(pi)� piP

i Score(pi)
(2)

Re-weighting. The idea of re-weighting stems from the observation that user feedback can highlight

that some feature components are more important than others in determining whether a result point is

“good” or not, thus such components should be given a higher relevance. For simplicity of exposition,

let us consider a retrieval model based on weighted Euclidean (see Equation 1) and also refer to Figure

2 (b). In order to assess the relative importance of thei-th feature vector component, the distribution

of the “good”pj;i values, i.e. the values of the good matches along thei-th coordinate, is analyzed. In

an earlier version of the MARS system [RHOM98], it was proposed to assign to thei-th coordinate a

5

weightwi computed as the inverse of the standard deviation of thepj;i values, i.e.wi = 1=�i. Later on,

it was proved in [ISF98] that the “optimal” choice of weights is to have

wi / 1

�2i
(3)

Similar results have been proved for quadratic distance functions [ISF98], as well as for the case where

the number of good matches is less than the dimensionality of the feature space [RH00].

In a recent paper [RH00] Rui and Huang have extended the re-weighting strategy to a “hierarchical

model” of similarity, where above strategy is first individually applied to each feature separately, and

then each feature (rather than each feature component) is assigned a weight which takes into account the

overall distance that good matches have from the query point by considering only that feature. Note that

for F features this amounts to define the distance bewteen objectsp andq as a weighted sum of feature

distances, each of which the authors assume to have a quadratic form [RH00].

3 The FeedbackBypass Approach

This section explains in detail howFeedbackBypass can be smoothly integrated with query and rele-

vance feedback models commonly used for similarity search.

The basic idea of our approach is to “bypass” the loop iterations of a typical interactive similarity

retrieval system by trying to “guess” what the user is actually looking for, based only on the initial query

he/she submits to the system.

If we abstract from the specific differences existing between the systems and concentrate on what all

such systems share, two important observations can be done:

1. All systems assume that the user has in mind an “optimal” query point as well as an “optimal”

distance function for that query.

2. Each time a new distance function is computed, this is taken from aparameterized class of func-

tions (e.g. the class of weighted Euclidean distances), by appropriately setting the values of the

class parameters.

This general state of things can be synthetically represented as a mapping:

q 7! (qopt; dopt) � (qopt;Wopt) (4)

6

Figure 3: The optimal query mapping for 3 sample query points, assuming the class of Mahalanobis
distances

which assigns to the initial query pointq an optimal query point,qopt, and an optimal distance function,

dopt. The equivalence just highlights thatdopt is the distance function obtained when the parameters are

set toWopt.

Figure 3 provides an intuitive graphical representation of the above mapping for three 2-dimensional

query points.FeedbackBypass is based on the observation that, as more and more query points are

added, an “optimal”query mapping, Mopt, from query points to query points and distance functions, will

take shape, and that “learning” such mapping can indeed lead to “bypass” the feedback loop.

LetQ � <D be the set of all query points and letW be the set of possible parameter choices, where

eachW 2 W corresponds to a distance function in the considered class. Then, the problem faced by

FeedbackBypass can be precisely formulated as follows:

Problem 1 Given the set Q of all possible query points and a class of distance functions with set of

parameters W , “learn” the query mapping Mopt : Q ! Q�W which associates to each query point

q 2 Q the “optimal” pair (qopt;Wopt) = Mopt(q).

In other terms, the problem to be faced is that of learning the “optimal” way to map (query) points of

<D into points of<D+P , whereP is the number ofindependent parameters that characterize a distance

function in the chosen class. In the case when (query) points are normalized, the dimensionality of both

the input (feature) and the output space ofMopt is reduced by 1.

Of course, statistical techniques fordimensionality reduction, such as the Karhunen-Loeve (K-L)

transform, could be applied to lower the dimensionality of both the input and the output space. We

do not consider dimensionality reduction in this paper, and leave it as an interesting follow-up of our

research.

7

Bypass

Feedback

DB

Result

Result

User

Query + Distance Function

Feedback
Module

Query/Relevance Scores

Predicted Query and Distance Function

Optimal Query and Distance Function

User Query

Figure 4: An interactive retrieval system enriched with theFeedbackBypass module

Example 1 Assume that objects are color images, which are represented by using a 32-bins color his-

togram, and that similarity is measured by the weighted Euclidean distance. Since the sum of the color

bins is constant (it equals the number of pixels in the image) and one of the weights of the distance

function can be set to a constant value, say 1, without altering at all the retrieval process, it turns out that

Mopt is a function from<31 to<31+31. 2

Figure 4 shows the basic architecture of an interactive retrieval system enriched withFeedbackBy-

pass. Upon receiving the initial user query, the system forwards the query toFeedbackBypass, which

returns a predicted optimal query point and the parameters for setting up the distance function. Then,

the usual query processing-user evaluation-feedback computation loop can take place. When the loop

ends, possibly after no iterations at all, the new feedback-determined query parameters for that query are

passed toFeedbackBypass and stored for later reuse. Clearly, the storage phase can be skipped if no

new feedback information has been provided by the user.

3.1 Requirements

The method we seek for learningMopt from sample queries has to satisfy a set of somewhat contrasting

requirements, which are summarized as follows:

Limited Storage Overhead. Since the number of possible queries to be posed to the system is huge and

will grow over time, it is not conceivable to just do some “query book-keeping”, i.e. storing the val-

ues ofMopt for already-seen queries. The method we seek should have a complexityindependent

of the number of processed queries and only a low (e.g. linear) complexity in the dimensionalities

of the feature space and of the parameter space.

8

Prediction. The method should also be able to provide reasonable “guesses” even for new queries. It is

also requested that the quality of this approximation has to increase over time, as more and more

queries and user-feedback information are processed.

Dynamicity. Since we consider an interactive retrieval scenario, it is absolutely necessary that the

method is able to efficiently handle updates, i.e. incorporate additional data without rebuilding

the approximation ofMopt from scratch.

We have been able to achieve a satisfactory trade-off, thus meeting all above requirements, by imple-

mentingFeedbackBypass using a wavelet-based data structure, which we call thesimplex tree.

4 Wavelets, Lifting, and Interpolation

The process oflearning a function can be understood asapproximating the function. From the rich

mathematical toolkit of approximation theory, we chose to go with wavelets constructed by a technique

called Lifting. In this section, we briefly outline the principles but refer the interested reader to e.g.

[Swe96, SS96].

The lifting schema, introduced by Sweldens [Swe96], is a highly effective yet simple technique to

derive a wavelet decomposition for a given data set.

Lifting consists of three steps:split, predict, andupdate, which are repeatedly applied to the data set.

Before we go into detail, it may be helpful to give the reader an intuition of the process. Essentially, the

idea behind lifting is to gradually remove data from the original signal and replace it with information

that allows to reconstruct the original data. This removal process is recursively repeated. At the end of

each such iteration we obtain a coarser approximation of the original data and information necessary to

revert the last approximation step. Finally, after the recursive application of this schema terminated we

arrived at the coarsest approximation possible (e.g. one data point) but have also the information how to

reconstruct the original data step by step. This proceeding, formally speaking, implements the wavelet

transform.

For simplicity, let’s assume the original data, usually referred to as signal, is given as pairs(xi; yi).

Moreover, letxi be equidistant (see Fig. 5a)). The three steps in detail are as follows:

1. In thesplit step, the original data setY = fy1; y2; : : : ; yng is devided into two subsetsY1 and

Y2. Although there are no further requirements as to how to choose the subsets, let’s assume

9

(a)

remaining
removed

(b)

approximation

(c)

Figure 5: Lifting: (a) original data set, (b) split and removing of data set, and (c) predicted data by
interpolation

Y1 = fy1; : : : ; y2k+1g andY2 = fy2; : : : ; y2k+2g, see also Fig 5b). We then removeY2 from the

dataset.

2. In the next step, wepredict each of the removed points inY2 by interpolating onl of the re-

maining neighbors inY1—in the case of linear interpolation, we simply use the line segment

(xm; ym); (xm+2; ym+2) to approximate(xm+1; ym+1). Let (x̂m+1; ŷm+1) be the result of the in-

terpolation. In the case where the interpolation coincides with the original data point, we obviously

did not loose any information. However, in general, the points do not coincide. To make up for the

loss of information, we determine the differenceÆ between the predicted and the actual value and

store it in place of the original data. At the end of this step we can encode the signal using onlyY1

and� = fÆ1; : : : ; Æk+1g (cf. Fig. 5 c)).

l, the number of neighbor considered during the interpolation determines the degree of the poly-

nomial function.l = 2 corresponds to linear,l = 4 to cubic interpolation etc. Special care has to

be taken at the fringes of the data set though [Swe96]. In case ofl = 2, we obtain the well-known

Haar-Wavelet (see e.g. [Kai94]).

3. In theupdate step, the remaining original data is adjusted to preserve the total energy of the signal.

To see what we mean by this, consider the following example wherey2i+1 = 0 andy2i+2 = 1. The

average value of the signal is 0.5. However after removing all valuesy2i+2, the signal’s average

drops to 0, no matter the difference data we stored. Like the predict step, the update step can be

performed locally by taking only a data point and it’s removed neighbor into account.

Conversely, Lifting can be used to interpolate signals where data points are added successively. To

do so, we simply need to reverse step 1 and 2. There is no need to apply step 3, the update step as

10

we do not know the total energy of the signal in advance—as a result, the approximation may change

fundamentally as the dataset changes, in other words, shape and quality of the approximation are evolving

with the dataset [SS96]. Like with the original Lifting technique, we may use polynoms of any degree.

When detailing the three steps above, we assumed the data to be equidistant; this assumption is valid

in classical areas of application like signal or image processing. However, in the case of interpolation of

a growing dataset, thexi cannot be equidistant due to the fact that we introduce more and more points as

we go. Thus, the interpolation has to take into account that intervals between data points may vary. In

case of linear interpolation, we obtain of theunbalanced Haar-Wavelet.

5 The Simplex Tree

The Simplex Tree is a data structure which forms the core of our approach. Recall that we want to

approximate the optimal query mapping

Mopt : <D ! <n; n = D + P

given a small but evolving sample of data points, namely queries for which feedback data is available.

We can simplify the problem by decomposing this function into a set ofn independent functions

mi : <D ! <

and expressMopt (x) as(m1(x);m2(x); : : : ;mn(x)). Hence, we will develop the idea ofFeedback-

Bypass using the simple form only and discuss potential issues when integrating the decomposition at

the end of this section.

In order to approximate themi scalar mapping using Lifting, we firstly need to organize the original,

high-dimensional vector space<D as a collection of intervals� with
S
� = <D. The pointsx at which

feedback datami(x) is available are the delimiters of the intervals. Secondly, for every new query, we

have to determine the interval that contains the new query point and all its delimiters. And finally, for

all feedback data for which we decide to incorporate it in our approximation, we need to update the

organization of the vector space. It is highly desirable that this update affects only the interval which

encloses the query point to avoid cascading effects which would make re-organization prohibitively

expensive.

11

Figure 6: Example of triangulation forD = 2

5.1 Triangulation

Given an initial set of feedback data, we define suitable intervals on which we can base our wavelet by

triangulating the set. In general, a triangulation is a decomposition into simplices, i.e. intervals spanned

by D + 1 points—that is, triangles in<2, tetrahedrons in<3, and so forth. Figure 6 shows an example

for D = 2. Triangulations are one of the fundamental problems in computational geometry and very

efficient techniques to find “good” triangulations are known for low dimensional spaces [Meh84, PS85].

Computing triangulations like the Delaunay triangulation which minimizes the lengths of edges of the

simplices is computational expensive and, as we found in own preliminary test, too time consuming for

dimension higher than 10.

Instead, to keep the computational effort low, we use anincremental triangulation technique as we go

forward andsplit for every new data point its enclosing simplex. More formally, letS = fv1; : : : ;vD+1g
be the set of points, which spans the simplex that encloses the new data pointx. Then,

Si = fvj jj 6= ig [fxg; 1 � i � D + 1

is a decomposition ofS. Figure 7 shows examples for splits in two and three dimensions respectively.

Splitting a simplex is inO(1), since the dimensionality is a constant for a given data set. The space

requirements of the triangulation, i.e. the number of simplices scales linearly with the number of splits

g, thus is inO(g).

Obviously, we can only split a simplex if the new point is inside the simplex. Hence, we have to take

care that the initial simplex, consisting of artificial points, covers the entire subspace of<D in which

our feedback data is embedded. With scaling all dimensions to fit the unit cubeID we choose the initial

simplex to beB [(0; : : : ; 0), with B = f� � bg; � �
p
D, andbi being an orthonormal basis of<D.

12

Figure 7: Splitting of simplices forD = 2 andD = 3

Figure 8: Example for approximation forD = 2

On a technical note, though� �
p
D ensures the coverage of the unit cube, greater values for� are

favorable as they cause larger angles in later splits.

Triangulating the data set imposes some sort of mesh, i.e. unbalanced intervals on which we can base

in the following our wavelet as outlined in the previous section.

5.2 Lookups

For each split operation we need to determine in which simplex the new point is contained. To avoid

that the costs to lookup the enclosing simplex for a given new query point become dominating with an

increasing number of simplices, we organize the simplices as a tree structure, hence the nameSimplex

Tree. To that end, we do not discard the original simplex when splitting it but merely add the new

simplices as its children. This immediately provides for a tree index structure of degreeD + 1 with the

initial simplex as root.

We do not re-organize the tree in case it gets unbalanced due to the distribution of the data. Hence,

the depth of the tree isO(g), g being the number of splits, in the worst, andO(logD(g)) in the best case.

We will assess the average behaviour experimentally in the next section.

13

5.3 Interpolation

So far we only dicussed how to organize the original feature space<D in intervals. To add the wavelet

to the Simplex Tree, we annotate each of the pointsv in the Simplex Tree with the valuew = mi(v),

i.e. the value obtained at the end of the feedback loop which started with the query pointv. For a new

query pointx, using the unbalanced Haar-Wavelet for approximating withbw the optimal query mapping

valuew = mi(x) means to perform a linear interpolation inx.

Since a simplex,S = fv1; : : : ;vD+1g, by itself is a linear subspace of dimensionD, we need only

to solve the following equation forbw
������������

x1 � v1;1 x2 � v1;2 : : : xD � v1;D bw � w1

v2;1 � v1;1 v2;2 � v1;2 : : : v2;D � v1;D w2 � w1

: : : : : : : : : : : :

vD+1;1 � v1;1 vD+1;2 � v1;2 : : : vD+1;D � v1;D wD+1 � w1

������������
= 0

Figure 8 shows the resulting approximation by linear approximation for a synthetic example. The

approximation was done using the triangulation of Figure 6.

5.4 Inserts

As opposed to typical spatial index structure the Simplex Tree is not an index which stores primarily

points. Instead, it stores points to organize the feature space into simplices. We do not need to insert

every point but only points which contribute to the approximationsignificantly, i.e. points for which

jmi(x) � bwj > �

for a given threshold�. In other words, ifbw is almost equal tomi(x) there is no need to storex in the

Simplex Tree. The particular choice of the threshold� determines the quality of the approximation: for

low thresholds the approximation is more accurate—with a threshold of zero every point which wasn’t

precisely predicted gets inserted—whereas high thresholds cause more slack. More important, however,

is the character of the query mapping function. IfMopt is composed of low frequencies, only very little

feedback data is inserted, for a query mapping composed of high frequencies, more query points are

needed to reach approximations of suitable quality.

Consequently, the resource requirements of the Simplex Tree do not depend on the number of queries

for which feedback is provided but on the optimal query mapping and the insert threshold.

14

5.5 Dealing with Numeric Instability

Depending on the data distribution and the optimal query mapping, we might end up inserting points

close to previously inserted ones, or points close to a subsimplex, i.e. a facet, of the enclosing simplex.

This in turn may incur numeric instability, e.g. due to numeric imprecision we cannot determine in which

leaf of the Simplex Tree a point actually is enclosed.

This kind of numeric instability is inherent to multi-dimensional computational geometry. Essen-

tially, there are two possible ways to deal with it:

� using libraries which implement infinite precision arithmetic

� rigorous checks for numerical errors and aborting of any arithmetic operation if the numerical error

can no longer be assessed conclusively, i.e. the impact of the error is no longer controlable

The first possibility clearly is the preferred solution but due to its enormous costs in terms of running

time, it is no alternative in our case.

Thus, we chose to implement the less expensive solution. In case of numerical problems during

an insert, we simply abort the operation, i.e. the actually valuable data point is ignored. During the

prediction, aborting is somewhat unsiatisfactory as no appropriate value can be returned for processing

the associated query. However, the hierarchical structure of the Simplex Tree provides for a simple,

yet robust solution: In case of numeric instability where we cannot determine the child simplex which

encloses the query point, we fall back use the parent simplex for the interpolation.

Though depending on the data set andMopt , we rarely encountered numeric problems in our ex-

periments, and it has been our experience that their impact, when dealt with as we just outlined, is not

appreciable in general.

5.6 Vector Valued Query Mappings

We simplified the original problem focusing on the approximation of only one single parameter, i.e.m

was a function into<.

To handle the general caseMopt : <D ! <n we maintain vectors at each point in the Simplex

Tree. When interpolating we treat the parameters, however, individually and solve the above determinant

equationn times, adjusting the last column accordingly. We insert a pointx if

max
i
jmi(x)� bwij > �

15

The other operations, lookup and split, are unaffected by the dimensionality of the optimal query map-

ping.

6 Experimental Evaluation

We have implementedFeedbackBypass in C++ under Linux, and tested its performance in order to

answer the following basic questions:

� Which are the actual prediction capabilities ofFeedbackBypass? How much feedback informa-

tion doesFeedbackBypass need to perform reasonably well? How long does it take to learn the

optimal query mapping?

� How much do the predictions ofFeedbackBypass depend on the specific data set? Alternatively,

is FeedbackBypass robust to changes in the type of queries to be learned?

� How much do we gain, in terms of efficiency, by “skipping” the feedback loop?

� Which is the relationship between the storage overhead and the accuracy of prediction? Does

FeedbackBypass effectively exploit storage resources?

For evaluation purposes we used the IMSI data set consisting of about 10,000 color images.1 Each

image is already annotated with acategory (such as “birds”, “monuments”, etc.). From each image a

32-bins color histogram was computed and used to compare images using the class of weighted Eu-

clidean distances. We implemented both query point movement and re-weighting feeedback strategies,

as described in Section 2, which means that the query mapping managed by the simplex tree is a function

from<31 to<62 (see also Example 1 in Section 3).

The setup for the experiments with the IMSI data set was as follows. From the whole data set

we selected 2,491 images belonging to 7 categories: Bird (318 images), Fish (129), Mammal (834),

Blossom (189), TreeLeaf (575), Bridge (148), and Monument (298). This subset of images was then

used to randomly sample queries, whereas images in other classes were just used to add further noise to

the retrieval process. For each query image, any image in the same category was considered a “good”

match whereas all other images were considered “bad” matches,regardless of their color similarity. This

leads to hard conceptual queries, which however well represent what users might want to ask to an image

retrieval system. Since within each category images largely differ as to color content, any query based

1IMSI MasterPhotos 50,000:http://www.imsisoft.com,

16

Figure 9: Sample images from the “Fish” category

on a color distance cannot be expected to find more than a fraction of relevant images to be close in color

space. For instance, all the 4 images shown in Figure 9 belong to the “Fish” category: only the 2nd

image (“shark”) has a dominant blue color, whereas others have strong components of yellow, gray, and

orange, respectively. A similar fair evaluation procedure was also adopted in [RH00].

To measure the effectiveness ofFeedbackBypass we consider classical precision and recall metrics

[Sal88], averaged over the set of processed queries. For a given numberk of retrieved objects, precision

(Pr) is defined as the number of retrieved relevant objects overk, and recall (Re) is the number of

retrieved relevant objects over the total number of relevant objects (in our case, the number of images in

the category of the query).

In our experiments we used a typical value ofk = 50, and in any casek never exceeded80. This

is because we consider that a real user will hardly provide feedback information for larger result sets.

As a consequence, since the number of retrieved good matches is limited above byk (and in practice

stays well below thek limit), the use of distance functions more complex than weighted Euclidean, such

as Mahalanobis, was not considered. Indeed, as observed in [RH00], improvement due to feeedback

information is possible only when the number of good matches is not much less than the number of

parameters of the distance function to be learned, which is 31 in our case but would be31� 32=2 = 496

for the Mahalanobis distance.

The results we show forFeedbackBypass always refer to predictions for “new” (i.e. never seen

before) queries. They are contrasted with those obtainable from theDefault strategy that uses default

query parameters (i.e. user query point and Euclidean distance), which is the strategy used byall current

interactive retrieval systems. For reference purpose we also show results obtainable by our method for

AlreadySeen queries, which indeed represent the most favorable situation. It can be argued that the

more the results fromFeedbackBypass andAlreadySeen are similar, the moreFeedbackBypass is

approaching the intrinsic limit established by the use of a given class of distance functions.

17

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

P
re

ci
si

on

no. of queries

AlreadySeen
FeedbackBypass

Default

(a)

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

P
re

ci
si

on
 G

ai
n

(%
)

no. of queries

AlreadySeen
FeedbackBypass

(b)

Figure 10: Precision results: (a) absolute values; (b) gains with respect to the DEFAULT strategy

6.1 Experiments with the Image Data Set

6.1.1 Speed of learning

Figures 10 (a) shows average precision as a function of the number of processed queries. For this figure

the number of retrieved objects was set tok = 50. It is evident that the performance ofFeedbackBy-

pass monotonically increases with the number of queries, and that the difference betweenFeedback-

Bypass and theDefault strategy is already significant after the first few hundred queries . This is also

emphasized in Figure 10 (b), where we show values of theprecision gain, PrGain, defined as:

PrGain(FeedbackBypass) =

�
Pr(FeedbackBypass)

Pr(Default)
� 1

�
� 100

and similarly for theAlreadySeen case. The number of good matches doubles for already seen queries,

and increase by60% for queries never seen before.

Figures 11 (a) and (b) show, respectively, the values of average precision and recall after1000 queries,

when k varies between10 and 80. The graphs confirm that our method is able to provide accurate

predictions even when the number of retrieved objects per query,k, is low. This can also be appreciated

in Figures 12 (a) and (b), where precision and recall curves fork = 20; 50, and80 are plotted versus the

number of queries.

In the previous experiments we have considered a same value ofk both to train the system and to

evaluate it. However, it is also important to understand if trainingFeedbackBypass with larger values

of k can be better than trainingFeedbackBypass with less information. Clearly, precision results

shown in Figure 12 (a) are of little use to this pupose, since they are obtained with a different number of

18

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60 70 80

P
re

ci
si

on

k

AlreadySeen
FeedbackBypass

Default

(a)

0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70 80

R
ec

al
l

k

AlreadySeen
FeedbackBypass

Default

(b)

Figure 11: Precision (a) and recall (b) after 1000 queries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

P
re

ci
si

on

no. of queries

k = 20
k = 50
k = 80

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

R
ec

al
l

no. of queries

k = 20
k = 50
k = 80

(b)

Figure 12: Precision (a) and recall (b) ofFeedbackBypass for different values ofk

19

0.1

0.12

0.14

0.16

0.18

0.2

10 20 30 40 50 60 70 80

P
re

ci
si

on

no. of retrieved objects

k = 20
k = 50
k = 80

(a)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

10 20 30 40 50 60 70 80

R
ec

al
l

no. of retrieved objects

k = 20
k = 50
k = 80

(b)

Figure 13: Precision (a) and recall (b) ofFeedbackBypass for several values ofk as a function of the
number of retrieved objects

retrieved objects for each curve. Thus, we have compared several versions ofFeedbackBypass each

trained with a specifick value, when they are used to answer queries requesting the same number of

objects from each version. The basic conclusion that can be drawn from the results shown in Figure 13 is

that using largerk values is worthwhile, even if less objects are retrieved. This is particularly evident for

thek = 80 curve, while less for the casek = 50. We argue that this is related to the intrinsic geometry

of the underlying feature space, as also Figure 12 suggests (there, the difference between thek = 80 and

k = 50 curves is much larger than the one betweenk = 50 andk = 20).

6.1.2 Robustness

We now turn to consider how much the performance ofFeedbackBypass depends on the specific

queries for which predictions are required. For this experiment we separately measured precision for the

7 query categories. Looking at precision results (see Figure 14 (a)) it can be observed thatFeedback-

Bypass is able to provide useful predictions in all cases where there is a significant difference between

theDefault and theAlreadySeen cases. Indeed, such a difference is a clear indication that feedback in-

formation actually leads to improve the results. This is particularly evident for the largest query category

(“Mammal”). On the other hand, when feedback only slightly improves the quality of the results (see the

“TreeLeaf” category, denoted simply as “Leaf” in the figure), predictions for new queries do not provide

benefits, as it could have been expected. This general behavior is only violated for the “Fish” category,

where it seems that no improvement can be obtained fromFeedbackBypass on new queries, even if

performance ofAlreadySeen is particularly good. However, since “Fish” is the smallest category (129

images), it can be argued that the number of sampled queries is still not enough to well approximate

20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bird Fish Mammal Blossom Leaf Bridge Monument

P
re

ci
si

on

AlreadySeen
FeedbackBypass

Default

(a)

0

0.05

0.1

0.15

0.2

Bird Fish Mammal Blossom Leaf Bridge Monument

R
ec

al
l

AlreadySeen
FeedbackBypass

Default

(b)

Figure 14: Precision (a) and recall (b) for the 7 query categories

the optimal query mapping for that category. Similar results are observed in Figure 14 (b) for the recall

metric.

6.1.3 Efficiency

An important aspect that we analyze here is how much we can gain by usingFeedbackBypass in terms

of efficiency. Clearly, the overall performance of an interactive retrieval system will also depend on the

specific access methods that are used to retrieve the stored objects, as well as by the indexed features. In

order to provide unbiased results, we consider the following performance metrics:

� The average number of feedback iterations thatFeedbackBypass saves with respect to theDe-

fault strategy, in order to obtain the same level of precision. Thus, for each query we start the

feedback loop either from default or from predicted query parameters, and measure how many

iterations are needed before no further improvements are possible. This “Saved-Cycles” measure

tells us how many query requests to the underlying system we save, on the average, for each user

query.

� The average number of objects that wedo not have to retrieve for achieving the same level of

precision thanDefault. Note that this “Saved-Objects” metric is simply computed as:

Saved-Objects= Saved-Cycles� k

Figure 15 presents results fork = 20 andk = 50. In both cases it can be seen that the savings

improve over time, and that after 1000 queries they amount to about 2 cycles fork = 50, which translates

21

0

0.5

1

1.5

2

2.5

300 400 500 600 700 800 900 1000

S
av

ed
-C

yc
le

s

no. of queries

k = 20
k = 50

(a)

0

20

40

60

80

100

120

300 400 500 600 700 800 900 1000

S
av

ed
-O

bj
ec

ts

no. of queries

k = 20
k = 50

(b)

Figure 15: Average number of feedback cycles (a) and retrieved objects (b) saved byFeedbackBypass

in a net reduction of 100 objects retrieved from the underlying system.

Finally, in the last experiments we want to assess the data structure as such. Figure 16a) shows the

number of simplices traversed for a query session with the same settings used above. For orientation,

we also plotted the depth, i.e. the maximum number of simplices that could be traversed. Both are

logarithmically increasing, however, the number of simplices traversed on average and thus the elapse

time per query is significantly lower than the depth underlining the efficiency ofFeedbackBypass.

In Figure 16b) the elapsed time for processing a batch of 700 queries is shown as a function of the

dimensionality. Recall, all operations in the Simplex Tree are either linear or logarithmic in the number

of queries for a fixed dimensionality. However, when varying the dimensionality we obtain quadratic

complexity as both the number of simplices and the number of arithmetic operations per simplex scale

lineary with the dimensionality, thusO(D2).

7 Conclusions

In this paper we have presented theFeedbackBypass, a new method to speed-up the process of inter-

actively searching for relevant information in multimedia databases. The key idea ofFeedbackBypass

is to organize the information gathered from user interaction in a multi-dimensional wavelet. Approx-

imations obtained from this wavelet can be used to either “bypass” the feedback loop completely for

already-seen queries, or to “predict” near-optimal parameters for new queries. We detailed the opera-

tions on theFeedbackBypass including inserts, lookups, and interpolation.

Our experiments show thatFeedbackBypass works well on real high-dimensional data, and that its

predictions consistently outperform basic retrieval strategies which start with default query parameters.

22

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700

Number of queries

Number of simplices traversed [avg]
Depth of Simplex Tree

(a)

0

20

40

60

80

100

120

0 5 10 15 20 25 30

E
la

ps
e

tim
e

fo
r

70
0

qu
er

ie
s

[s
ec

]

Dimensionality D

(b)

Figure 16: Average number of simplices traverse per query (a) and elapsed time for query batches with
variable dimensionality (b)

We have also quantified the savingsFeedbackBypass provides in terms of number of queries and of

retrieved objects.

A key feature ofFeedbackBypass is its orthogonality to existing feedback models, i.e. theFeed-

backBypass approach can be easily incorporated into current retrieval systems regardless of the partic-

ular mathematical model underlying the feedback loop. TheFeedbackBypass is distinguished by its

low resource requirements which grow polynomially with the dimensionality of the data set, thus making

it applicable to high-dimensional feature spaces.

References

[BKK96] S. Berchtold, D.A. Keim, and H.-P. Kriegel. The X-tree: An Index Structure for High-
Dimensional Data. InProc. of the Int’l. Conf. on Very Large Data Bases, pages 28–39,
Mumbai (Bombay), India, September 1996.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces. InProc. of the Int’l. Conf. on Very Large Data Bases, pages
426–435, Athens, Greece, August 1997.

[Fal96] C. Faloutsos.Searching Multimedia Databases by Content. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1996.

[ISF98] Y. Ishikawa, R. Subramanya, and C. Faloutsos. MindReader: Querying Databases Through
Multiple Examples. InProc. of the Int’l. Conf. on Very Large Data Bases, pages 218–227,
New York, NY, USA, August 1998.

[Kai94] G. Kaiser.A Friendly Guide to Wavelets. Birkhäuser, Boston, Basel, Berlin, 1994.

23

[Meh84] K. Mehlhorn. Data Structures and Algorithms Vol. 3: Muti-dimensional Searching and
Computational Geometry. Springer-Verlag, Berlin, New York, etc., 1984.

[ORC+97] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. Huang. Supporting similarity queries
in MARS. In Proc. of the Int.’l Conference on Multimedia, pages 403–413, Seattle, WA,
USA, November 1997.

[PS85] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-
Verlag, Berlin, New York, etc., 1985.

[RH00] Y. Rui and T. S. Huang. Optimizing Learning in Image Retrieval. InProc. of IEEE Int’l.
Conf. on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, June 2000.

[RHOM98] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance Feedback: A Power Tool in
Interactive Content-Based Image Retrieval.IEEE Trans. on Circuits and Systems for Video
Technology, 8(5):644–655, September 1998.

[Sal88] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley, 1988.

[SK97] T. Seidl and H.-P. Kriegel. Efficient User-Adaptable Similarity Search in Large Multimedia
Databases. InProc. of the Int’l. Conf. on Very Large Data Bases, pages 506–515, Athens,
Greece, August 1997.

[SS96] W. Sweldens and P. Schr¨oder. Building Your own Wavelets at Home. InWavelets in Com-
puter Graphics, pages 15–87. ACM SIGGRAPH, 1996.

[Swe96] W. Sweldens. The Lifting Scheme: A Custom-design Construction of Biorthogonal
wavelets.Appl. Comput. Harmon. Anal., 3(2):186–200, 1996.

24

