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Abstract
Modern content-based image retrieval systems use different low-

level features, like color, texture, and shape, to search in large image
databases for those images which are perceptually similar to a given
query image. Effective and efficient retrieval by shape similarity is
still an open issue, despite the high importance of the shape feature in
describing the content of an image. In this paper, we propose a new
approach (based on the Discrete Fourier Transform) for assessing the
shape similarity between two objects. The use of Fourier coefficients
allows a compact representation of shape boundaries which is robust to
noise and can be easily made independent of translation, scaling, rota-
tion and changes in the starting point used to describe each boundary.
Since the Euclidean distance, which is used by almost all Fourier-based
approaches to shape-matching, is not effective whenever a phase shift-
ing exists between the two boundaries to be compared, we propose
the use of the (Dynamic) Time Warping distance to compare shape
descriptors, allowing a (limited) elastic stretching of the time axis to
accommodate possible phase differences. A comparative experimental
analysis conducted on a real data set shows the superior effectiveness
of our approach with respect to existing Fourier-based techniques.

1 Introduction

Large image databases are increasingly used in many multimedia areas like
crime prevention, architectural and engineering design, fashion, medical di-
agnosis, journalism and advertising, geographical information systems. The
efficient and effective retrieval of images by their content has, consequently,
gained a considerable attention. The classical approach to solve the im-
age retrieval problem is to characterize the image content by way of a set
of features, then, at query time, only those images are retrieved whose
features are most similar (as assessed by means of a similarity function)
to those extracted from the query image [FSN+95, PPS96, SC96, ABP99,
CTB+99, NRS99, SWS+00, WLW01]. Even if features like color and tex-
ture, able to effectively represent the content of images, have been proven
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to be quite easy to extract and to require few parameters to be represented
[HSE+95, SO95, MM96], the same it is not true for the shape property
[Pav78, RSH96, MM99, BDelBP00]. Shape representation has, in fact,
proven to be a difficult problem [Mum87] because capturing the shape con-
tent is a more complex task than representing color and texture features.
For this reason, shape characterization still represents a challenging topic
for the multimedia scientific research community.

When designing a shape-based retrieval system two primary issues have
to be considered:

Shape representation. How can an object be represented in terms of its
shape properties?

Similarity measure. Given the representation of two shapes, how they
should be compared?

Since we are dealing with large image databases, the shape representation
and the similarity measure should satisfy three basic requirements:

Compactness: A significant compactness of the shape representation with
respect to the original shape boundary is required, since the recon-
struction of the original shape from its representation is not required.

Indexability: Since we suppose the cardinality of the database to be very
large (in the order of millions of objects), the näıve solution of com-
paring (the representation of) the query object with all the database
objects is not feasible. To avoid this, the shape representation and
the similarity measure should allow the objects to be indexed using
a suitable structure, e.g. with metric access methods like the M-tree
[CPZ97] which are already profitably used in several other image and
multimedia applications [HSE+95, BDelBP00].

Robustness to noise: Imaging conditions, e.g. perspective or discretiza-
tion transformations resulting from changing the viewing angle, and
distortion introduced by the segmentation and the shape extraction
processes can slightly alter the overall shape of an object. Both the
shape representation and the similarity measure should be robust to
such noise, in the sense that the similarity between a given shape and
the same shape with added noise should be high.

Invariance to transformations: The overall shape representation should
be invariant to a number of transformations. In particular, we are
interested in translation, scaling, and rotation transformation. More-
over, since the extraction process typically produces a boundary which
is considered as a discrete-time signal, the representation should also
be invariant with respect to the starting point, i.e. the initial point of
the boundary parameterization.
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Shape representation methods fall in two major categories [Del99]: The
transformational approach and the feature vector technique. Even if, in the
general case, the former case has proved to be more robust to noise and dis-
tortion than the latter [Del99], since its shape similarity model is closer to
human perception, the choice of a particular representation is driven by ap-
plication needs, like characteristics of the shapes being analyzed, robustness
again noise, possibility of indexing, and invariance properties.

The transformational model is typically used in the pattern recognition
literature [Wid73]. With this approach a shape is regarded as a template
and it is deformed in order to improve its match with a target image, i.e. the
original image is deformed until a fitting with the target image is found. The
overall dissimilarity between two shapes is taken as the cost for transform-
ing one shape into the other. This solution has been largely used in image
retrieval [DelBP97], to find correspondences between points of two different
shapes, or for classification purposes. The main disadvantage of this ap-
proach, however, is that it does not support indexing, due to the fact that
the method used to assess similarity usually does not satisfy metric postu-
lates, like symmetry and triangle inequality [BDelBP00], and consequently
it is not suited for large image databases.

On the other hand, the feature vector approach is widely employed in
information retrieval and allows effective indexing. In detail, a shape is
represented as a numerical vector using a parametric internal (or global)
method, where the region enclosed by the object contour is represented
[FSN+95], or a parametric external method, where the external boundary
of the object is represented [RSH96, MM99, BDelBP00]. Since the para-
metric external representation is less sensible to edge noise with respect to
the internal one, it is thus largely used in the field of content-based image
retrieval [Del99]. In external methods, a finite set of points is extracted from
each boundary, representing the vertices of a polygon that approximates the
shape of the object. The polygon can then be seen as a discrete-time signal,
each vertex corresponding to a signal sample. This allows the application
to objects boundaries of existing techniques for signal processing (either in
the time or in the frequency domain). Several schemas have been proposed
to represent such complex contour: All of them use autoregressive models
[SKO92] or Fourier analysis [ZR72] to extract descriptors from the boundary
of each object. An experimental comparison of shape representation models
based on these two techniques is presented in [KSP95] where the superior
effectiveness of Fourier-based method with respect to autoregressive-based
solutions, especially for noisy images, is proven. Moreover, the preserva-
tion of invariance properties (i.e. scale-, translation-, rotation-, and starting
point-invariance) is easily obtained by switching to the frequency domain.

At present time, however, shape-based retrieval systems following the
Fourier-based approach are hindered by the problem of following too sim-
plistic ways to ensure the invariance properties and/or to determine the sim-
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ilarity value between two shapes, since they discard a part of the information
about Fourier coefficients. Moreover, almost all the existing techniques use
the Euclidean distance to compare the extracted descriptors. This does not
allow phase shiftings of subsequences of the shape, thus similar shapes that
are not aligned along the time axis lead to counter-intuitive high distance
values [Keo02].

In this paper we present a new shape matching approach based on the
Discrete Fourier Transform. We show how a transformation-invariant rep-
resentation of the shape boundary can be derived from Fourier coefficients,
using both the magnitude and the phase information, since, in our view,
phase is as much important as magnitude, carrying a significant part of
the information about the shape. Furthermore, to overcome the limits of
the Euclidean metric in accommodating phase differences between similar
shapes, we propose the use of the Dynamic Time Warping distance [BC94]
to compare the (modified) Fourier descriptors. Even if the DTW distance
does not satisfy the metric postulates, recent results [Keo02] demonstrate
how the Dynamic Time Warping distance can be indexed, thus the index-
ability requirement is satisfied. Experiments conducted on a real data set
of shapes of marine animals demonstrate the robustness to noise of our ap-
proach and its superior effectiveness with respect to existing Fourier-based
approaches.

The rest of the paper is organized as follows. Section 2 reports the
state of the art of Fourier-based shape retrieval systems. In Section 3 we
describe the details of the approach we propose, formally demonstrating how
the invariance properties are satisfied. In Section 4 the experimental setup
used to prove the effectiveness and the efficiency of our shape matching
algorithm is described. An experimental comparison between our approach
and existing methods is given in Section 5. Finally, Section 6 concludes the
paper, pointing out interesting directions for future research.

2 Related Work

In the following, we report the state of the art for external shape-based
representations, together with the distance used for comparing shape de-
scriptors. We will primarily focus on Fourier-based methods because of the
their proved effectiveness [KSP95].

The use of the Discrete Fourier Transform (DFT) [PTVF92] for the
retrieval of shapes dates back to the early years of computer science [Cos60,
ZR72, PF77]. The analysis in the frequency domain allows to achieve the
invariance properties with simple calculations on the Fourier coefficients.
Basically, existing Fourier-based methods work as follows:

1. The shape boundary is parameterized to obtain a discrete-time peri-
odic signal, where the signal period equals the number N of points in
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the boundary.

2. Since the number of boundary points differs from one object to an-
other, and it is usually large, the signal parameterization is re-sampled
to include only a limited number, fixed for all objects, of interest
points, e.g. by including only contour points where the curvature has
a singular value. If the number of interest points is appropriately cho-
sen, this step also allows to efficiently compute the DFT, e.g. using
the Fast Fourier Transform (FFT).

3. The DFT is performed on the re-sampled signal, obtaining a (reduced)
number of Fourier coefficients.

4. The so-obtained coefficients are then modified to achieve the desired
invariance properties. For example, in order to obtain the translation-
and the size-invariance, the first (DC) Fourier coefficient is discarded
and the amplitude of other coefficients is normalized by dividing them
by the first non-zero coefficient amplitude.

5. Finally, at query time, the modified coefficients of the query object are
compared against the coefficients of database shapes using a distance
function to find the shapes more similar to the query.

Differences between Fourier-based techniques, thus, arise in: (i) The
parameterization of the original signal; (ii) How the parameterized signal
is re-sampled to reduce its length; (iii) How the Fourier coefficients are
modified in order to achieve the rotation- and starting point-invariance; (iv)
The distance function used to compare the coefficients.

In general, the following different parameterizations are considered as
functions of the curvilinear position l of each point along the boundary:

Complex coordinate function: The parameterization assigns to each point
of the boundary, with coordinates x(l) and y(l), a complex value
z(l) = x(l) + j y(l), with j =

√−1. This function was considered
in [KSP95, RSH96, MM99, ZL02, RM02].

Centroid distance function: Here the parameterization consists of the
distances of boundary points from the centroid of the object, r(l) =√

(x(l) − xc)2 + (y(l) − yc)2, where xc = 1/N
∑N−1

l=0 x(l) and yc =
1/N

∑N−1
l=0 y(l). This parameterization is translation-invariant and

was used in [KSP95, MM99, ZL02]. The major drawback of this ap-
proach resides in the fact that the phase information of the shape
boundary is discarded, since it is immediate to derive that r(l) = |z(l)|
except for a translation of the space origin in the shape centroid.

Tangent angle function: Here, each point of the boundary is represented
by the value of the tangent angle in that point, indicating the change
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in angular direction of the shape boundary. This function was first in-
troduced in [ZR72] and was also used in [PF77, ZL02]. The drawback
of this parameterization is that it is very sensitive to discretization
noise, since noisy contours introduce significant variations in the tan-
gent angle value, however it is translation- and scale-invariant.

Curvature function: In this case, for each point of the boundary the
change in the tangent angle function is assessed, computed as follows:

K(l) = arctan
(
y(l) − y(l − w)
x(l) − x(l − w)

)
− arctan

(
y(l − 1) − y(l − 1 − w)
x(l − 1) − x(l − 1 − w)

)
(1)

where the smoothing factor w > 1 is used to reduce the influence of
the discretization noise in computing the differentiation of the angle
function. This parameterization was used in [KSP95, MM99, ZL02]
and is translation-, scale-, and rotation-invariant, but, as the tangent
angle parameterization, suffers from discretization noise sensitivity .

Area function: For each point, the area of the triangle formed by the point
itself, the previous point and the centroid of the object boundary is
considered. Such parameterization was considered in [ZL02] and is
translation- and rotation-invariant.

Most of the approaches reduce the length of the boundary signals by
maintaining only a fixed number M of points. This is usually carried out
by sampling the parameterized signal every N/M steps [KSP95, RSH96,
MM99]. However, this could lead to miss significant boundary points, e.g.
points where the boundary tangent angle changes sharply (see differences
in the tails of the two ray images in Figure 2). A possible solution to
this problem is to maintain the M points having highest curvature values,
where the curvature in each point is defined as in Equation 1. However,
this approach is prone to discretization noise, as Figure 3 shows (note the
different representation of the ray nose and tail). Other approaches [ZL01,
ZL02, RM02] compute the DFT on the original signal and only keep a limited
number of Fourier coefficients. This approach does not allow the use of Fast
DFT algorithms, since the whole signal should be used to compute the
DFT, but, as shown in Figure 4, points extracted from similar images will
be very similar. We investigate the effectiveness of the different approaches
in Section 5.

In order to achieve the translation-invariance for the complex parameter-
ization, one has to simply discard the DC Fourier coefficient. To obtain the
scale-invariance for the complex, the centroid distance, and the area func-
tions, the amplitude of the Fourier coefficients has to be normalized, e.g. by
dividing all the modules by the first non-zero module. Changes in the rota-
tion of the shape or in the starting point, however, influence the phase of the
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(a) (b)

Figure 1: Ray image: (a) Original image; (b) image rotated by 10 degrees.

(a) (b)

Figure 2: Ray image sampled with M = 32: (a) Original image; (b) rotated
image.

Fourier coefficients: Most of the approaches [KSP95, MM99, ZL02, RM02]
simply consider the (normalized) modules of the Fourier coefficients, thus
discarding the phase information. However, since the phase of the Fourier
coefficients contains a significant fraction of the information of the original
signal, by simply discarding it a part of the information useful to retrieve
shapes similar to the query is potentially lost. The only exception to this
simplistic approach is presented in [RSH96], where the phase information
is maintained and the starting point-invariance is resolved by modifying
the phase coefficients. However, the amplitude and the phase coefficients
are not integrated to obtain a single distance between modified signals, but
Fourier coefficients of the two shapes to be matched are directly compared
obtaining two different distance measures, dampl and dphase (for example,
in [RSH96] such distances are obtained as the variance over all the ratios
of corresponding amplitude coefficients, dampl, and the variance over all the

7



(a) (b)

Figure 3: Maximum curvature points for ray images: (a) Original image;
(b) rotated image.

(a) (b)

Figure 4: Points obtained by computing the Inverse DFT using only the
the first M = 32 Fourier coefficients for ray images: (a) Original image; (b)
rotated image. The original image is super-imposed to show differences.

shifts of corresponding phase coefficients, dphase). In order to obtain a single
distance value, used to rank shape descriptors, the two distance values are
then linearly combined using a weight value: d = (1 − λ) dampl + λ dphase.
Now, the issue of finding a good value for λ ∈ [0, 1] is raised; such problem
cannot, however, solved by recurring to intuition, since λ has no perceptual
meaning, and an empirical value is suggested in [RSH96].1

As to the distance function used to compare (modified) Fourier coeffi-
cients, all the approaches except [RSH96] use the Euclidean distance. As
we pointed out in the introduction, however, this does not allow an elastic
shifting of the time scale to allow phase differences between similar shapes.

Another technique similar to Fourier-based methods is based on the cur-
vature scale-space (CSS) representation of the boundary [MM92], and it

1It has to be noted that the value of the weight λ has to be fixed in advance and cannot
be modified at query time; otherwise, indexability has to be given up.
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is included in the MPEG-7 standard [Bob01]. In this case, the curvature
parameterization expressed by Equation 1 is smoothed by applying a 1-D
Gaussian kernel of width σ. As a result of the smoothing, by increasing the
value of σ, the contour evolves to become a convex curve with no curvature
zero-crossings. For each value of σ, the CSS image of a boundary is implic-
itly defined as the position of the points where the smoothed curvature has
a value of zero (note that, since the boundary is convex, the number of such
points is even for all values of σ). The CSS descriptor consists of the peaks,
i.e. the maxima, of the CSS image. Such image is invariant to translation,
scale, and rotation transformations. However, since changing the starting
point introduces an horizontal shift in the CSS representation, the invari-
ance is obtained by shifting the whole CSS image until the position of the
highest peak is in the origin. When comparing two CSS images, the peaks
of the two CSS images are matched and the similarity between two shapes
is measured by summing all the peak differences. The matching algorithm,
however, is very complex, since the number of peaks of the two images to
be compared can be very different and an alignment between peaks some-
times cannot be found. Moreover, since CSS descriptors only capture local
features such as the location and the degree of concavity (or convexity) of
segments of the shape boundary, global features are not considered.

3 Proposed Approach

Our approach is based on the complex coordinate parameterization intro-
duced in Section 2, thus we consider the boundary of an object O as a
discrete-time complex periodical signal, z(l) = x(l) + j y(l), with period N ,
where N is the total shape length, i.e. the number of points included in
the object boundary. We extract, from each shape boundary, a feature de-
scriptor Z = f(z) representing the original signal in a compact way. The
requirements for such descriptor are the following:

Robustness: The representation should be robust with respect to possible
noise, e.g. the spatial discretization noise.

Invariance to a group of transformations: A measure is invariant to a
group of transformations G if, for every g ∈ G, it is f(z) = f(g(z)).
In particular, the transformations we are interested in are: Scaling,
shifting, rotation, and changes in the starting point used to define the
boundary.

Compactness: Since each descriptor will be indexed in the database, it is
important to keep its size limited to the maximum possible extent.

Extraction efficiency: The computation of Z from the original signal z
should be performed quickly. This requirement is not strict, since it is
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only performed once at population time for each database shape and
once for each query.

One of the simplest and most used ways (e.g. see [Cos60, ZR72, PF77,
KSP95, RSH96, MM99, ZL02]) to accomplish the above requirements is to
map the original signal z in the frequency domain by way of the Discrete
Fourier Transform [PTVF92]. The DFT Z(m) of a signal z(l) is defined as

Z(m) =
N−1∑
l=0

z(l)e−j 2πlm
N = R(m)ejΘ(m) m ∈ Z (2)

where R(m) and Θ(m) are the module and the phase of each Fourier co-
efficient, respectively. It has to be noted that Z(m) is also periodic, with
period N .

In order to guarantee compactness and robustness to noise, we propose
to only use the low frequency Fourier coefficients. Denoting with M the
number of coefficients to maintain, this equals to discard all the coefficients
except for the first M . Thus we obtain

Z(m) =
N−1∑
l=0

z(l)e−j 2πlm
N m = −M/2, . . . ,−1, 0, 1, . . . ,M/2 − 1 (3)

In general, the computation of each Fourier coefficient is in O(N), thus
the overall complexity for the extraction of the Z descriptors is O(M ·N).
Note that we cannot use the Fast Fourier Transform [PTVF92], whose com-
plexity for extracting all the N coefficients is in O(N logN), since the FFT
requires N to be a power of 2, and this is not true in general.2

As for the value of M , we have to trade-off the accuracy in representing
the original signal, which increases with M , with the compactness and the
extraction efficiency, which decrease with M . To help in the choice for a
good value of M , it is useful to analyze the spectral characteristics of the
data set at hand. For example, in Figure 5, we plot the contribution to
the total signal energy for the first M Fourier coefficients (we omitted the
0-frequency coefficient, since it only gives information about the position
of the shape), obtained by averaging results over all the FISHES data set
described in Section 5.

From the graph we see that, when using the first 16 coefficients, we keep
the 83.7% of the energy of the original signal. For M = 32 the energy value
increases to 89.8%. Increasing the value of M to 64, we obtain the 93.4%
of the total energy. In order to obtain the 99% of the total energy, we have
to increase M to the value of 512, which is far too high if we want to keep

2Other fast DFT algorithms exist [PTVF92]; however, since we are only interested in
the first M � N coefficients, our experiments (see Section 5) show that the described
approach is quick enough for the scenario we are interested in.
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Figure 5: Total energy for Fourier coefficients. The graph shows the fraction
of the total signal energy obtained when maintaining only the first M Fourier
coefficients.

extraction costs low. Therefore, for the FISHES data set, we can conclude
that M should be chosen in the interval [16 ÷ 64]. We will investigate in
Section 5 the effect of M on the effectiveness of the method for the FISHES
data set.

By using the Fourier coefficients, we are also able to guarantee the
translation-, scaling-, rotation-, and starting point-invariance, as it will be
shown in the following.

3.1 Translation Invariance

Consider the boundary z′(l) obtained from the signal z(l) by simply shifting
each point by a constant value z, z′(l) = z(l) + z (see Figure 6).

z(l)

z(l)+ zz(l)+ z

zz

Figure 6: Geometrical interpretation of the translation operation.
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The DFT Z ′ of the shifted signal is:

Z ′(m) =
N−1∑
l=0

z′(l)e−j 2πlm
N =

N−1∑
l=0

(z(l) + z)e−j 2πlm
N =

=
N−1∑
l=0

z(l)e−j 2πlm
N +

N−1∑
l=0

ze−j 2πlm
N = Z(m) + z

N−1∑
l=0

e−j 2πlm
N =

= Z(m) + zχ0(m)

(4)

where χ0(m) = 0, ∀m 
= 0, and χ0(0) = 1. Thus, the translation introduces
a variation in the descriptor only in the DC coefficient. The shape descrip-
tor, thus, should simply discard the zero frequency coefficient in order to
achieve the translation invariance. This is reasonable, since the DC coeffi-
cient represents the mean of the original signal z(l), thus it gives information
only about the shape centroid, i.e. on the spatial location of the object, and
not about its shape.

3.2 Scale Invariance

Consider a zero-mean signal z(l):3 Let z′(l) be a boundary obtained from
z(l) by scaling each point by a constant factor β ∈ �+, z′(l) = βz(l) (see
Figure 7).

z(l)

β z(l)

Figure 7: Geometrical interpretation of the scale transformation.

The Fourier coefficients Z ′ of the new scaled signal are obtained as:

Z ′(m) =
N−1∑
l=0

z′(l)e−j 2πlm
N =

N−1∑
l=0

βz(l)e−j 2πlm
N = βZ(m) (5)

Each coefficient, thus, is scaled by the value of β. To achieve scale-invariance,
we can easily normalize the module of all coefficients, e.g. by dividing them
by the first module Z(m) 
= 0, the arguments remaining untouched.

3If the boundary signal has mean different from zero, we can simply apply the trans-
lation invariance presented in Section 3.1.
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3.3 Rotation Invariance

Consider the zero-mean signal z(l) = r(l)ejθ(l), where with r(l) and θ(l)
we denote module and phase of each sample, respectively. Let z′(l) be a
boundary obtained from z(l) by rotating each point by a constant factor θ,
z′(l) = r(l)ej(θ(l)+θ) = r(l)ejθ(l)ejθ = z(l)ejθ (see Figure 8).

z l

z l ejθ
θ

z l

z l ejθ
θ

Figure 8: Geometrical interpretation of the rotation transformation.

The corresponding DFT is:

Z ′(m) =
N−1∑
l=0

z′(l)e−j 2πlm
N =

N−1∑
l=0

z(l)ejθe−j 2πlm
N = Z(m)ejθ (6)

It is clear that object rotation only changes the argument of the coefficients
(the modules remaining untouched). Thus, to obtain rotation invariance,
it is sufficient to subtract to all the arguments a constant value, e.g. the
argument of the first coefficient, Θ(1) = arg(Z(1)).4

3.4 Starting Point Invariance

Changing the starting point used in the definition of the boundary sequence,
corresponds to a shifting in the time domain, since the signal z(l) is periodic.
The new boundary z′(l) can therefore be obtained as z′(l) = z(l− l0), where
l0 is the index of the new starting point in the original signal (see Figure 9).

The corresponding Fourier coefficients are obtained as:

Z ′(m) =
N−1∑
l=0

z′(l)e−j 2πlm
N =

N−1∑
l=0

z(l − l0)e−j 2πlm
N =

=
N−1∑
l=0

z(l − l0)e−j
2π(l−l0)m

N e−j
2πl0m

N = Z(m)e−j
2πl0m

N

(7)

4Remember that the DC coefficient has been already discarded to achieve translation-
invariance.
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z l

z l - l0

p0

z l

z l - l0

p0

Figure 9: Geometrical interpretation of the starting point transformation.

A shift in the time domain thus introduces a rotation in the Fourier coef-
ficients which is linear in the frequency value. To get rid of this factor, we
should subtract, to the arguments of all the DFT coefficients, a term which
is linear in m. Omitting the straightforward algebra, we obtain that such
term is equal to mΘ(−1)−Θ(1)

2 − Θ(1)+Θ(−1)
2 .

Summarizing, the invariant Fourier coefficients Ẑ(m) = R̂(m)ejΘ̂(m) can
be obtained from the DFT coefficients as follows (without loss of generality,
suppose that R(1) = |Z(1)| 
= 0):

Ẑ(0) = 0

R̂(m) =
R(m)
R(1)

m = −M/2, . . . ,−1, 1, . . . ,M/2 − 1 (8)

Θ̂(m) = Θ(m) − Θ(1) + Θ(−1)
2

+ m
Θ(−1) − Θ(1)

2
m = −M/2, . . . ,−1, 1, . . . ,M/2 − 1

We are now able to obtain a modified signal ẑ(l), which is scale-, translation-,
rotation-, and starting point-invariant, by simply performing the Inverse
DFT on the Ẑ(m) coefficients of Equation 8:

ẑ(l) =
1
M

M/2−1∑
m=−M/2

Ẑ(m)ej 2πlm
M l = 0, . . . ,M (9)

For each shape in the database, the corresponding modified signal ẑ(l) is
stored and used, at query time, to find the shapes which are more similar to
the given query. To this end, a (dis-)similarity measure d is used to compare
the modified query signal ẑq with the database descriptors. Formally, if we
denote with U the space of all possible signals, we have to find a function
d : U × U → �+

0 having the following characteristics:

Computation efficiency: Since the query resolution is done on-line, the
computation of d between any two descriptors should be performed
quickly.
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Metric property: The use of index structures, advocated in Section 1
to reduce query resolution times, requires that the distance used to
compare the shapes should be a metric, i.e. d should be symmetric,
d(z1, z2) = d(z2, z1), and should also satisfy the triangle inequality:
d(z1, z2) ≤ d(z1, z3) + d(z3, z2), for all z1, z2, z3 ∈ U .

Stability: If two shape boundaries are perceptually similar, the distance
between the relative signals should be low. If two signals have a small
distance between them, the boundaries they represent should be per-
ceptually similar.

The usual way to compare fixed-length vectors is to use the Euclidean
distance L2, representing the energy of the difference between the two signals
z and z′:

L2(z(l), z′(l)) =

√√√√ M∑
l=0

|z(l) − z′(l)|2

The metric property is obviously satisfied, as well as the computation effi-
ciency. Moreover, we do not need to perform the IDFT, since the Parseval’s
theorem guarantees that L2(Ẑ(m), Ẑ ′(m)) = L2(ẑ(l), ẑ′(l)), thus the dis-
tance between the modified Fourier descriptors (see Equations 8) equals the
distance between the modified signals.

In recent times, however, the use of other distance measures has been
considered, since the Euclidean distance does not allow elastic shiftings of
the time axis, e.g. to accommodate signals which are similar, but where a
phase difference between some samples exists, as shown in Figure 10. To
this end, we consider the use of a (Dynamic) Time Warping distance [BC94].

(a) (b)

Figure 10: An example of the Time Warping distance on two real signals
(a) and the alignment matrix for computing it (b).

15



Definition 3.1 (Time Warping Distance) Given two sequences z(l) and
z′(l) of length M , construct an M × M matrix, where each element (i, j)
corresponds to the alignment of the i-th sample of z with the j-th sample
of z′. A warping path W is a contiguous sequence of matrix cells defin-
ing a mapping between z and z′. More precisely, W is a sequence W(k),
k = 0, . . . ,KW − 1, where W(k) = (ik, jk), and M ≤ KW < 2M . The
warping path should satisfy the following constraints:

Monotonicity: Cells in W should be monotonically ordered, i.e. for con-
secutive pairs W(k) = (ik, jk) and W(k + 1) = (ik+1, jk+1), it is
ik+1 − ik ≥ 0 and jk+1 − jk ≥ 0, with at least one inequality being
strict.

Continuity: Steps in the path are constrained to neighboring cells, i.e. for
consecutive pairs W(k) = (ik, jk) and W(k + 1) = (ik+1, jk+1), it is
ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1.

Boundary condition: W(0) = (0, 0) and W(K) = (M − 1,M − 1), thus
the first and last samples of the two sequences should be reciprocally
aligned.

For each path W, the alignment cost dW can be defined as the (square root
of the) sum of distances between aligned samples:

dW =

√√√√KW−1∑
k=0

δ(z(ik), z′(jk))2 (10)

where δ is an arbitrary distance function between samples (in the following
we will use the Euclidean distance between the two samples, δ(z(i), z′(j)) =
|z(i) − z′(j)|).

The Time Warping distance dtw(z, z′) is defined as the minimum cost
taken over all the possible paths:

dtw(z, z′) = min
W

{dW} = min
W




√√√√KW−1∑
k=0

δ(z(ik), z′(jk))2


 (11)

�

Although an exponential number of possible paths exist, the Time Warp-
ing distance can be computed using a dynamic programming algorithm in
O(M2) time. The algorithm is based on the following recurrence relation,
defining the cumulative cost d(i, j) for each cell in the matrix:

d(i, j) = δ(z(i), z′(j))2 + min{d(i− 1, j − 1), d(i, j − 1), d(i− 1, j)}
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Thus, we obtain the cost for matching z(i) and z′(j) as the sum of the
distance between the samples and the minimum cost for matching previous
samples. The overall Time Warping distance is obtained as the (square root
of the) cost for the last cell in the matrix, dtw(z, z′) =

√
d(M − 1,M − 1).

In the vast majority of applications of the Time Warping distance, the
warping path is constrained by limiting how far it can deviate from the diag-
onal. The most frequently used constraint is the Sakoe-Chiba band [SC78]
(see Figure 11), which limits the deviation from the diagonal up to a value
ω, which is called the window length; thus, we have the additional con-
straint |ik − jk| ≤ ω, k = 0, . . . ,KW −1.5 The motivation for this constraint
is twofold: First, it limits the complexity of computing dtw to O(M × ω);
second, and more important, it prevents the creation of pathological paths,
aligning samples which are far away from each other.

ω

Figure 11: An illustration of the Sakoe-Chiba band for constraining the
warping path for the computation of dtw. In this example, the window
length ω is 2.

Even if the Time Warping distance has a number of desirable properties,
it suffers from the problem of not being a metric, since dtw does not satisfy
the triangle inequality [YJF98]. However, indexing without losing relevant
objects is still possible as long as we can find a metric dI which lower-
bounds d, i.e. dI(z1, z2) ≤ d(z1, z2), ∀z1, z2 ∈ U [CP02]. In [Keo02] a lower-
bounding metric distance for dtw is proposed under the conditions that the
two sequences to be compared have equal length and that a global constraint
on alignment, like the Sakoe-Chiba band, is used. Since this is exactly our
case, we conclude that such lower-bounding distance can be used for indexing
shape descriptors.

Compared to existing solution for modifying Fourier descriptors pre-
sented in Section 2, our technique nicely combines both amplitude- and

5It is worth noting that by setting ω = 0 we obtain the Euclidean distance. Therefore,
it is also dtw(z, z′) ≤ L2(z, z′), for any value of ω.
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phase-related invariance, without losing important phase information or re-
curring to artificial weights. Moreover, to the best of our knowledge, this is
the first application of the Time Warping distance to the retrieval of shapes.

4 Experimental Evaluation

This section presents the goals and the setup for the experimental tests of
Section 5.

We implemented the shape-matching method presented in Section 3 and
tested its performance, shown in Section 5, in order to (i) realize a tuning
of the method itself and (ii) to compare the presented solution with other
techniques described in Section 2. In details, we are interested in providing
an answer to the following questions:

• Which is the best choice for the number of Fourier coefficients M to
be retained? Is the use of the Time Warping distance really increasing
the retrieval effectiveness?

• Which is the discriminant capacity of our approach in terms of retrieval
results, i.e. is it able to retrieve, as first results, only shapes that are
perceptually similar to the query?

• Is our approach robust to spatial discretization noise? Is it invariant
to transformations?

• What is the complexity of our approach for the extraction of the
Fourier coefficients as compared to other techniques?

• Can we assert that, using both the magnitude and the phase informa-
tion to ensure the rotation-invariance, results are better compared to
those obtained by discarding the phase data?

Data Set. To test the effectiveness of our method, we used the data pro-
vided by [AMK], consisting of 1100 text files each containing the x and
y coordinates of boundary points of an object, each object representing a
marine animal. To better test our approach in term of robustness to noise
and rotation invariance, we have added to the data set other 100 images as
follows: 30 pictures were randomly chosen from the starting data set and
were differently rotated (e.g. by 10, 30, 90, 180, 270 degrees, etc.) obtaining
about 1200 images, that we refer as the FISHES data set. Note that, while a
rotation of a multiple of π/2 produce a signals without spatial discretization
noise with respect to the original image, a free rotation introduces noise to
the original signal due to the spatial discretization.

Since assessing the similarity of two shapes is a subjective task, we de-
cided to use the feedback of a number of volunteers to classify the FISHES
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data set. In details, using a set of 30 randomly chosen query images, we
asked to each user to select, for each image, the most similar pictures in
the data set. As a result, we obtained a characterization of the FISHES im-
ages based on 10 categories (for a total of about 300 images) where queries
are (randomly) extracted from. Other images were associated to a big com-
pound class, called “Misc” (for a total number of about 900 images), that we
used to further complicate the retrieval process in testing the discriminant
capacity of our approach. Each of the 1200 images in the FISHES data set is
thus annotated with a category: “Seahorses” (10 images), “Seamoths” (6),
“Sharks” (63), “Soles” (72), “Tonguefishes” (24), “Crustaceans” (4), “Eels”
(31), “U-Eels” (25), “Pipefishes” (21), “Rays” (46), and “Misc” (860). For
each query image, any image in the same category is considered relevant
whereas all other images are considered irrelevant. Table 1 shows some
examples of images together with the cardinality of their relative category.

image category cardinality image category cardinality

Rays 46 Seahorses 10

Sharks 63 Pipefishes 21

U-Eels 25 Soles 72

Table 1: Examples of query images extracted from some defined classes.

Workload. The workload used for our experiments consists of 30 query
images randomly chosen from the set of 300 FISHES images representing the
10 extracted categories of the dataset.

Metrics. To measure the effectiveness of our shape-matching algorithm,
we consider classical precision and recall metrics [Sal89], averaged over the
set of processed queries. For a given number k of retrieved objects, the pre-
cision P is the number of retrieved relevant objects over k, and the recall R
is the number of retrieved relevant objects over the total number of relevant
objects (in our case, the number of images in the category of the query).
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The formal definition is:

P =
|relevant⋂ retrieved|

|retrieved| (12)

R =
|relevant⋂ retrieved|

|relevant| (13)

where | · | indicates the cardinality of a set.
As reported above, the cardinality of each category varies from one class

to another (e.g. category “Crustaceans” has only 4 examples, whereas in the
“Rays” category there are 46 candidates). To overcome this disparity, we
show in our results the value of the precision at a fixed recall level.

From an efficiency point of view, we compare extraction and distance
times: The extraction time represents the average time needed to extract
the Fourier coefficients from a boundary during the feature extraction phase,
whereas the distance time represents the average time needed to compute a
distance between two shapes during the retrieval process.

5 Experimental Results

This section presents experimental results obtained applying the imple-
mented shape-matching algorithm to the FISHES data set. The software
has been developed in C++ under the Windows NT 4.0 operating system
and its performance has been tested on a 450-Mhz Pentium II PC with 256
MBytes of RAM.

Section 5.1 presents results concerning the effect of the number of Fourier
coefficients M . In Section 5.2 results obtained using the Dynamic Time
Warping distance are compared to those obtained with the simple Euclidean
distance. Section 5.3 investigates the discriminant capacity of our solution
during the retrieval process together with its robustness to spatial discretiza-
tion noise and its invariance to transformations. Section 5.4 compares our
approach with other existing Fourier-based techniques. Finally, Section 5.5
summarizes experimental results.

5.1 Effect of the Number of Fourier Coefficients M

The first question we answer concerns which is the best choice for the pa-
rameter M , i.e. the number of Fourier coefficients extracted from the outer
boundary of each shape. As stressed in Section 3, the problem is to find a
good trade-off between an accurate description of the contour and a compact
representation together with an efficient extraction of it. In particular, we
suggested that a good value for M should be chosen in the interval [16÷64].
Towards this goal, Table 2 reports the average time needed to extract the
feature vector of a single image and to compute the distance between a query
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image and an image belonging the FISHES data set for different values of M .
It should be noted that, as anticipated in Section 3, the time complexity of
the extraction time is in O(M), whereas the distance computation time is
O(M2), since we always choose ω = M/10, this being the most typical value
used in the literature [SC78, Keo02].

M extraction time (s) distance time (s)
16 0.032 0.060 × 10−3

32 0.065 0.198 × 10−3

64 0.129 0.500 × 10−3

Table 2: Time needed for extracting Fourier coefficients and for computing
the DTW distance for 16, 32, and 64 Fourier coefficients.

To determine in which measure this time difference is translated in term
of effectiveness of results, Figure 12 shows the precision-recall (P/R) graph
for different values of M . We can observe that the P/R curve for M = 32
is really close to that obtained with M = 64. On the other hand, results
for M = 16 are almost always 10% less than other values. This means
that M = 32 represents a good trade-off between effectiveness of result and
efficiency of storage overhead and computation.
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Figure 12: Precision-recall graphs for different values of M .

5.2 Effect of the Distance Function

The second point we investigate is the effect of the distance function used
to compare Fourier coefficients in terms of both effectiveness and efficiency.
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To this end, in Figure 13 (a) we compare the distance computation time
of the Euclidean distance (EU) and the Dynamic TIme Warping (DTW)
distance for different values of M . Figure 13 (b) then shows the averaged
precision-recall graph computed on the complete query workload. It is clear
that, even if the DTW distance function is more complex than the Euclidean
metric, the difference in effectiveness obtained during the retrieval process
is more than compensating the difference in computation costs. Thus, we
conclude that the DTW distance function improves the quality of results
over the Euclidean distance.
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Figure 13: Euclidean vs. DTW distance function: (a) Distance computation
time for different values of M ; (b) precision-recall graph for M = 32.

To better show the superior retrieval effectiveness of the DTW distance,
we report in Figure 14 (a) and (b), respectively, the precision-recall graphs
computed over two single query images. This allows us to demonstrate the
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different level of difficulty in answering a query image depending on the
category of the query itself.
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Figure 14: Precision-recall graphs for the two query images “Soles” (a) and
“Rays” (b).

Finally, in Figure 15 we report a visual comparison of results obtained
using the DTW and the Euclidean distances.

5.3 Discriminating Capacity, Robustness to Noise, Invari-
ance to Transformations

This section demonstrates that our shape-matching algorithm has a very
good discriminating power, allowing the retrieval of an high fraction of rele-
vant objects. Furthermore, we show that it is robust to noise and invariant
to transformations. To this end, we report in Figure 16 five query examples
where the first image of each row is the query image and the others are the
most similar shapes found by the algorithm from the FISHES data set.
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We can observe that in all cases reported in Figure 16 our shape-matching
algorithm is able to retrieve both the images rotated by a multiple of π/2
(i.e. signals without spatial discretization noise with respect to the query
one, as observed in Section 4) and the freely rotated pictures, that present
noise with respect to the query. Moreover, results show that, for each query,
our approach has the capacity of discriminating among the whole FISHES
data set the images belonging to the same category of the image query,
returning, as first results of the search, only relevant objects.

5.4 Comparisons with Other Techniques

This section reports comparison results between our shape-matching algo-
rithm and the other techniques described in Section 2. The first point we
investigate concerns the best way to extract the Fourier coefficients from a
boundary. As reported in Section 2, there are basically two possible methods
to do this: Apply the inverse DFT approach to all the boundary points (that
we refer as IDFT in the following) by computing the first 32 coefficients, or
extract the M points with maximum curvature from the original boundary
and apply the Fourier transform to the so-obtained M points [MM99] (re-
ferred as MAXC). Figures 17 (a) and 18 (a) show results obtained applying
our method to two distinct query images (the first image of each row). In
the same figures, row (b) reports the results obtained for the same query
images using MAXC. We can observe that, in all cases, our method is much
more effective than MAXC (the trend is also confirmed for images in other
categories, that are not shown here for brevity). This means that our ap-
proach is more precise in finding “interesting” points of a shape. On the
other hand, Table 3 reports the needed time to extract the M Fourier co-
efficients for both the methods. We can observe that our approach requires
about three times more time than MAXC, but, as observed in Section 3,
this can be considered an acceptable trade-off, since the feature extraction
process is only performed once at the population time for each database
shape and once for each query image.

method extraction time (s)
IDFT 0.065
MAXC 0.022

Table 3: Extraction time for IDFT and MAXC. Results are obtained with
M = 32.

Our last experiment show that the conjunctive use of magnitude and
phase allows to further improve the effectiveness of results. To this end, row
(c) in Figures 17 and 18 show results for the same query images when we
apply IDFT by dropping the phase information of each Fourier coefficient
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(we call this technique IDFTM). Experimental results confirm that, also
in this case, simply ignoring the phase reduces the retrieval effectiveness,
because the phase carries some part of the information about the shape.
We can in fact observe that, even if result for IDFTM are good compared
to ours, it happens that some returned images do not belong to the query
image category.

5.5 Summary of Experiments

In previous sections we evaluated our shape-matching algorithm on the
FISHES data set for different values of M and two distinct distance functions.
In particular, when we use 32 Fourier coefficients with the DTW distance
function, we obtain a good trade-off between efficiency of the method and
effectiveness of query results. In summary, our method has proven to be
robust to noise and invariant to transformations. We also showed the strong
discriminating capacity of our approach in retrieving shapes relevant to the
query. Furthermore, the superior effectiveness of our approach with respect
to other solutions presented in Section 2 was shown.

6 Conclusions

In this paper we presented an effective Fourier-based approach for shape
matching, able to preserve the invariance properties by way of an oppor-
tune adjustment of both magnitude and phase of Fourier coefficients. As
to the distance function used to compare coefficients extracted from shape
boundaries, we proposed the use of the Dynamic Time Warping distance in
place of the commonly used Euclidean distance. The benefit of using the
DTW distance is that it allows a (limited) elastic stretching of the time axis
to accommodate for phase shiftings existing between the two boundaries to
be matched. Even if, in its general form, the DTW does not satisfy the
metric postulates [YJF98], thus preventing the use of indices to speed-up
the retrieval phase, by exploiting recent results on metric access structures
[CP02] and on the DTW itself [Keo02], we can still guarantee the indexabil-
ity of Fourier coefficients extracted from large data sets. The effectiveness of
our approach in retrieving only images which are relevant to the query has
been demonstrated on a real world data set. A comparative analysis on the
same data set has also proven the superiority of our approach with respect
to other existing Fourier-based shape retrieval techniques. We are currently
integrating the approach proposed here into our region-based image reteieval
system, Windsurf [ABP99], and we plan to conduct further experiments
on the retrieval efficiency, when an index like the M-tree [CPZ97] is used.
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Figure 15: Comparison results between DTW (first row of each example)
and EU (second row) for some query images.
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Figure 16: Results of retrieval evaluation for queries extracted from the
categories “Seahorses” (a), “Sharks” (b), “U-Eels” (c), “Rays” (d), and
“Tonguefishes” (e), respectively.
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Figure 17: Results of retrieval evaluation for the “Sole” query using: IDFT
(a), MAXC (b), and IDFTM (c). Experimental results are obtained with
M = 32 and using the DTW distance function.
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Figure 18: Results of retrieval evaluation for the “Pipefish” query using:
IDFT (a), MAXC (b), and IDFTM (c). Experimental results are obtained
with M = 32 and using the DTW distance function.
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