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Abstract. The presence of structure in XML documents poses new chal-
lenges for the retrieval of data. Answering complex structured queries
with predicates on contert where data is to be retrieved, implies to find
results that match semantic as well as structural query conditions. Then,
the structural heterogeneity and irregularity of documents in large digi-
tal libraries make necessary to support approrimate queries, i.e. queries
where matching conditions are relazed so as to retrieve results that pos-
sibly partially satisfy user’s query conditions.

Exhaustive approaches based on sequential processing of documents are
not adequate as to response time. In this paper we present an indexing
method to execute efficiently approximate complex queries on XML doc-
uments. Approximations are both on content and document’s structure.
The proposed index provides a great deal of flexibility, supporting dif-
ferent query processing strategies, depending on the constraints the user
might want to set to possible approximations on query results.

1 Introduction and Related Work

XML is announced to be the standard for future representation of data, thanks
to the capability it offers to compose semi-structured documents that can be
checked by automatic tools, as well as the great flexibility it provides for data
modelling. The presence of nested tags inside XML documents leads to the ne-
cessity of managing structured information. In this scenario, traditional IR tech-
niques need to be adapted, and possibly redesigned, to deal with the structural
information coded in the tags. When querying XML data, the user’s is allowed
to express structural conditions, i.e. predicates that specify the context where
data is to be retrieved. For instance, the user might want to retrieve: “Papers
having title dealing with XML” (Queryl). Of course, the user is not interested
in retrieving whatsoever is containing the keyword “XML”. This implies to find
both a structural match for the context (title of papers) and a (traditional IR)
semantic match for the content (the “XML” issue) locally to the matched con-
text. Then, the structural heterogeneity and irregularity of documents in large
digital libraries, as well as user’s ignorance of documents structure, make nec-
essary to support epprorimate queries, i.e. queries where matching conditions
are relazed so as to retrieve results that possibly partially satisfy user’s query



< cdstore>Artist Shop
<cd>
<title>One night only</title>
<singer>Elton John< /singer>
<tracklist>
<track>
<title>
Can you feel the love ...
< /title>
</track>

< /tracklist>

< article>

<title articleCode="152010" >
Constructing ... </title>
<authors>
<author AuthorPos="01">

Amihai Motro </author>

< /authors>

< /article>

<article>
<title articleCode="152018" >
Global query ... </title>
<authors>

<article key=...>
<author>D. Beech< />
<title>Unification of ... </>
<journal>ANSI X3H2< />
<volume>X3H2-92-062< />
<year>1992< />
<url>...</>

< /article>

<article>. .. </article>

< phdthesis key=...>
<author>1.S. Mumick</>
<title>Query ... </>

</ed> <author AuthorPos="01"> <year>1991</>
Timos K Sellis </author> <school>Dept. of ...</>
< /cdstore> < /authors> < /phdthesis>
< /article> <phdthesis>. .. </phdthesis>
Doci Doc2 Doc3

Fig. 1. Sample XML documents

conditions. Powerful query tools should be able to efficiently answer structural
queries, providing results that are ranked according to possible relaxations on
the matching conditions. As an example, consider document Doc1 in Fig. 1 and
the query: “Retrieve CDs with songs having the word love in the title” (Query2).
Docl contains a relevant answer that should be returned, although some dissim-
ilarities are present with respect to the query structural condition: 1) The track
element indeed can be considered a synonym for song in this context (seman-
tic relazation), and 2) an additional tracklist element is present between cd
and track (structural relazation). An exact match of the query on Docl would
have returned no result. The above query is more properly a path query, i.e.
a query where structural condition is expressed by a single sequence of nested
tags. Things are more complicated when answering complex queries, i.e. queries
with two or more branching conditions. Finding structural approximate answers
to this kind of query is known to be a hard task, namely, finding a solution to
the unordered tree embedding problem! [5-7,14,15], which is proved to be NP-
complete [10]. In [15] some critical assumptions of the problem are simplified to
reduce the overall complexity, as to support approximate structural queries.

In this paper we present an indexing structure, the Collection Indez, that
effectively and efficiently supports complex approximate queries on XML data.
The Index aims to reduce the complexity of finding approximate query patterns,
avoiding the sequential examination of all documents in the collection. This issue
has been recently covered by several approaches [8,9,11, 13]. However, all these
works do not deal with semantic nor structural approximations, except for the
explicit use of wildcards in query paths. Actually, wildcards do not contribute to
result ranking: Data is asked to satisfy a relaxed pattern, no matter the “grade”

! According to the XML Information Set W3C Recommendation [4], XML documents
can be represented as trees. Complex queries can be also represented as pattern trees
to be searched in the documents.



of relaxation. Thus, for instance, cohesion of results is not taken into account for
ranking. Approximation is investigated in [17], although the proposed method
focuses only on semantic similarity. Structural relaxations are supported by the
index structures proposed in [12], though these are limited to deal with path
expressions. The indexing method we propose is based on an intensional view
of the data, similarly in spirit with traditional database modeling where data is
separated from the schema. The Collection Index is a concise representation of
the structure of all the documents in the collection, in that each document can
be mapped exactly in one part of the index. The structure we propose resembles
a DataGuide [9], but overcomes its limitations.? The Collection Index efficiently
supports queries on XML document collections producing relevant ranked results
that even partially satisfy query requirements, also in absence of wildcards in the
query. Results are ranked according to their approximation to both structural
and semantic query conditions.

The paper is organized as follows: In Section 2 we compare our approach with
ApproXQL [15], a similar system that supports complex approximate query pro-
cessing on XML data. Section 3 presents the Collection Index, as an extended
template for the structure of a set of XML documents. In Section 4 we show
how the Collection Index efficiently and flexibly supports approximate query
processing: Different query processing strategies can be applied on the Index,
depending on the constraints the user might want to set to possible approxima-
tions on query results. Complexity of query processing is also discussed, showing
the feasibility of our approach. In Section 5 we sketch some experiments on a
large heterogeneous collection of XML documents [16], and finally in Section 6
we draw our conclusion and discuss future developments.

2 Comparison with ApproXQL

Supporting approximate complex queries are work in progress (or future work)
of most of the mentioned proposals that deal with efficient techniques to query
XML data [12]. To authors’ knowledge, ApproXQL [15] is currently the more
complete system that enables the user to retrieve all approximate results to
complex structured queries. ApproXQL applies different approximations to the
query tree, allowing for renaming, insertion, and deletion of query nodes. We
will refer to this system to compare the efficiency and the effectiveness of our
method. The focus of the problem is finding an efficient algorithm to solve the
tree embedding problem [10], properly reformulated to escape NP-completeness.

Reformulating the Tree Embedding Problem. Both queries and docu-
ments are assumed to be tree-structured. We recall that, given two trees ¢; and
ty, an injective function f from nodes of ¢; to nodes of 5 is an embedding of t;
into to, if it preserves labels, and ancestorship in both directions [10].

In order to make the embedding function efficiently computable, ApproXQL,
as well as our approach, guarantees ancestorship only in one sense, from query

% Basically, a DataGuide would have not been helpful in answering Query?2, since it
does not allow for approximate navigation.



tree to document tree. This means that siblingness is not guaranteed by the map-
ping, in that sibling nodes in the query may be mapped to ancestor-descendant
nodes in the data. For convenience, we will use the term embedding to denote
such reformulated tree embedding problem, according to the one-way ancestor-
ship preservation. For the sake of simplicity, we limit to insertion of nodes the
approximations on results. This is compliant with the definition of tree embed-
ding (as to ancestorship). We will complete discussion on renaming and deletion
of query nodes in Section 4.3.

According to this new formulation of tree embedding problem, the result of
a complex query for the ApproXQL method is a set R of nodes of the document
tree, such that each r € R is the root of a document (sub)tree that matches
the query root and contains at least one embedding of the query tree. Using
the Collection Index, we return the set S of minimal® document (sub)trees that
contain at least one embedding of the query tree. It is easy to show that the
relationship between ApproXQL and Collection Index results is: R = |J; root(t;)
t; € S. We can derive that both ApproXQL and the Collection Index retrieve
(or provide a reference to) the same embeddings.

A View to Complexity. Processing a complex structured query* is proved
to require time O(ny*l*s), with n, number of query nodes, ! maximal number
of repetition of a given label along a document path, and s maximal number
of occurrences of a label in the document tree [15]. The goal of the Collection
Index is to reduce this complexity. We will show that our method obtains the
same results as ApproXQL in time O(n,*I*si*p!), with sl*p! < s, where s! is
the maximal number of contextual occurrences of a label [; in all index subtrees
rooted at a given label [; (each subtree is called a contest for label I;), and p' is
the maximal number of occurrences of a given index path in the document tree.
It is worth to note that in most cases s!*p! << s, depending on the heterogeneity
of the document collection. More details are given in Section 4.2.

3 The Collection Index

The extensional representation of a large XML document collection presents a
great deal of redundancy because of the repeated tags to specify data seman-
tics and structural organization for each document. Consider Fig. 1, showing
two sample XML excerpts from XML Sigmod [1] (Doc2) and dblp [2] (Doc3)
collections.® Whilst redundancy is evident for homogeneous collections (Doc2),
the presence of repeated structural information is very common also in hetero-
geneous collections (e.g. article and phdthesis elements in Doc3). In general, the
collected documents can be partitioned into homogeneous groups, according to
the same basic structure they agree upon. Basically, the Collection Index is an

3 Among all document (sub)trees that contain n embeddings, the minimal subtree has
no proper subtrees that contain the same n embeddings.

4 Recall that here only insertions of data nodes are allowed.

 We consider a single large XML document gathering several records as a collection
of basic documents, one for each XML record.
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Fig. 2. Insertion of two documents in the index

extended template for the structure of a set of XML documents. The Index syn-
thesizes the documents in the collection, and provides a skeleton in accordance
with the structural relationships occurring in the documents.

3.1 Index Overview

The index is tree-structured: Nodes represent elements and attributes, and arcs
define hierarchical relationships according to the nesting of elements/attributes
in the documents. This structure forms the basic template of the document col-
lection. We start simple, giving an intuition of index construction, and deferring
a formal description of its components to Section 3.2.

The index is created incrementally, one document at a time. Before entering
the documents in the index, a tree representation is provided for each document.
Basically, each sequence® of tags (t1,...,%), with #; document root, referencing
a CDATA/PCDATA content defines a path instance in the document tree, i.e.
a sequence of nodes (ng,...,ng) where n; is the tree root, such that Vi, n; is
labelled with ¢;, and ny, is a tree leaf that refers the data content. Given a path
instance p = (n1,...,nk), the sequence p* = (label(ny),...,label(ng)) defines
the path schema of p . Each referred CDATA /PCDATA section is stored in what
we call a data leaf. All data leaves are globally numbered with increasing integer
values from left to right, according to a depth-first visit of each document’s
tree. This numbering scheme allows for uniquely identifying each data leaf to
be referenced by the index. Two sample document trees dt! and dt2 are shown
on the left side of Fig. 2: Squares denote data leaves, whereas tree nodes are
marked by circles. The insertion of a document tree ¢4 in the index is equivalent
to inserting (without repetitions) all the path instances that compose t4. The
path instances of t4 are assigned to equivalence classes according to the sequence
of node labels (i.e. document tags) they are made of.

Definition 1 (Path Equivalence Class (PEC)). A Path Equivalence Class
= is a set of path instances with the same path schema. Formally: Given two
path instances p1 = (21,..,2r) and p2 = (Y1,-,Yn), {P1,p2} C 5 <= k=h
and V i € [1..k] label(x; )=label(y;). For each path instance p; 3 a PEC Z; such
that p; € 5j.

Any (tree-structured) document collection C can be partitioned into a set of
PECs, according to the path instances that compose documents in C.

5 Elements and attributes are considered equivalent. This implies that sequences might
end with attributes.



Equivalence classes are created and grow as documents are processed. Equivalent
path instances share the same path in the index, i.e. only one path per class
is present in the index: This template path has the same schema of the path
instances of the class, i.e. the schema of the class.

Definition 2 (PEC Schema). Given any path instance p € =, the PEC schema
Z% of = is p®, the path schema of p.

This leads to the following definition, which is the milestone of the structure of
the Collection Index.

Definition 3 (Collection Index Path). Given a document collection C, a
path pr with schema p} is a Collection Index Path for C <= 3 a PEC instance
Z of C, with schema Z¢, and =° = p}. For each pair of PEC instances =;, =j,
let p; and p; be their corresponding Collection Index Paths, and let p3, be the
mazimal prefir’ of PEC schemas Zf and Z7. Then, py, is also the mazimal

prefiz of p; and p; and p; and p; share the (sub)path with schema p3; in the
Collection Indez.

For instance, in Fig. 2 the two paths in doc! referring to data leaves numbered
3, and 5, and the path in doc2 referring to data leaf numbered 11, respectively,
belong to the same PEC =; having the same schema =7 = (b, ¢, t). On the other
hand, the paths in doc1 leading to data leaves numbered 4, and 6, and the path
in doc2 referring to data leaf numbered 12, respectively, belong to the same PEC
Zj, having the same schema Z¢ = (b, ¢, 5). £ and =7 share their maximal prefix
(b, ¢) in the index.®

Each index (sub)path® references the set of data leaves referred by the doc-
ument paths it has been derived from. In our example, the index path /b/c/t
references data leaves numbered 3, 5, and 11, and the index (sub)path /b/c ref-
erences data leaves numbered 7, and 13. The index provides an intensional view
of the documents structure, where each occurrence of a path in a document
is present only once in the index. The extensional representation of the docu-
ment collection is given by the set of data leaves referenced by the index, since
the documents structure is implicitly specified by the index itself. Each index
(sub)path define a semantic context where the underneath data leaves are refer-
enced according to IR access structures local to the (sub)path, e.g. B+-tree on
leaf numbers, and inverted lists on terms. These access structures are depicted
by triangles in Fig. 2. We call each structure a value-indez.

" Given two sequences s; = (z1,..,xx), and s2 = (y1,..,ys), the mazimal prefiz of
s1 and sz is the longest sequence s such that prefiz(s,s1) A prefiz(s,s2), where
prefiz is defined as follows:

true if x = (z1,...,Tk)
: _ /\y:(yla"'aykayk+17"'1yh)
prefia(z,y) = A mi =i Vi € [1.K]

false otherwise

8 The dashed lines and the numbers between square brackets keep additional infor-
mation that will be explained in Section 3.2.
9 We always refer to (sub)paths that start from root.



3.2 The Index Structure

In order to support data retrieval, the index skeleton sketched above needs addi-
tional information regarding the document instances indexed. After a document
is added to the index, information on the new referenced data leaves is prop-
agated to the inner nodes. Each inner node n keeps a pair of integer values
[l min,lmaz], for each occurrence of the (sub)path from index root to n occurring
in the data tree. Each range denotes the set of leaves underneath the instance
data node, such that [,,;, is the lowest leaf number, and [,,,; is the highest one,
respectively. As an example, in Fig. 2 ranges are assigned to index nodes labelled
“b” and “c”, denoting books and chapters, respectively. The ranges assigned to
index node “b” say that two occurrences of book elements are present in the
collection, and that the data leaves they refer to are 1 to 7, and 8 to 13, respec-
tively. Similarly, ranges assigned to index node “c” say that three occurrences
of chapter elements are present in the collection, each one referring the sets of
data leaves 3 to 4, 5 to 7, and 11 to 13, respectively.!? Note that, each sequence
of ranges is locally ordered by increasing values of [,,;,, and that ranges are dis-
joint. This is due to the numbering scheme of the data leaves when processing
documents to generate the Collection Index paths.

Insertion of documents is an incremental process that does not require the
index to be restructured. The index begins with a dummy root node. All the
data paths are inserted starting from the root, which collects all the path entries.
This allows for indexing also heterogeneous collections of documents. There is
no need for a priori knowledge of the schema of the data, since the paths we
encode are extracted from the data itself. Actually, the complete index is an
extended tree in that it is more properly a single-rooted DAG. Each inner node,
index root included, references its descendants in the tree. We take advantage
of this information to efficiently perform approzimate retrieval on structure.!
In Fig. 2, arcs depicted by dashed lines denote ancestorship between nodes: For
clarity, parentship is expressed by solid arcs, and references to descendants of the
index root are omitted. Formally: Let N be a set of nodes, NID set of index node
ids, DID set of (sub)document ids,'? A set of node labels, ¥ set of document
paths, and VID set of value-index ids. The Collection Index is defined as follows.

Definition 4 (Collection Index). A Collection Index is a tree S = (N, 1),
with N' = N; U N, with N7 set of inner nodes, Ny, set of leaves, and r € N}
root of the tree, s.t.:

Ni = {n = (nid, 1,8, p,vid) |n € NID x A x 2NIDxA y oNxNxDID » yypy
Nz = {l = (lid, 1, p, vid) | lid € NID x A x ¥ x VID}

where V n € N7, d is a set of labelled id’s denoting descendants of n in S, and p is
a set of tuples t = (min, maz,did) each denoting a range [min, maz] originated

10 Ranges can be omitted for index leaves since their values can be obtained from the
value-indices.

11 Of course, this choice is not costless. The overhead of this additional information is
discussed in Section 3.2.

12 Each node of a document tree is supposed to be uniquely identified.



from (sub)document did in the document collection; VI € N, p € paths(S) and
p=(r,...,0).

Index Size As introduced in Section 2, we compare the Index Collection with
ApproXQL [15]. In order to perform structural approximations, the Collection
Index takes advantage of the lists of labelled descendant nodes § assigned to
each index node n € Nj. The list immediately points out nodes having a given
label, located in specific parts of the index, namely in the subtree of the node
n itself (denoting the scope of the search). The size of collecting these lists can
be proved to be at most O(n!*h), with n/ number of nodes in the Collection
Index, and h! height of the Index. Depending on the grade of heterogeneity
of the document collection, the value of n! can be very small, in many cases
comparable to the number of labels of a DTD for the collection. On the other
hand, the value of h! is generally small: it represents the maximal nesting level
of tags in the documents. This means that the skeleton of the Index in most
cases has a minimal impact as to its size. However, additional space is required
for keeping information on ranges of data leaves assigned to each occurrence of
document (sub)trees. The size of the p lists can be estimated as O(ng4), with
ng number of nodes in the data tree. This evaluation is comparable with the
size of the global inverted lists used in the ApproXQL approach, where each
distinct label in the data is assigned the list of its occurrences in the document
tree.!3 In comparison with the size of the p lists, in the general case, the quantity
O(n**h!), stating the size of the Index skeleton, can be considered negligible.

4 Approximate Query Processing

We assume a query t, to be tree-structured, expressing both semantic and com-
plex structural conditions. Rather than attempting a tree embedding of ¢, for
each document, which is a time-consuming task, we rely on the Collection Index.
Basically, the Index is navigated top-down following the arcs in accordance with
the query structural conditions.

Various navigation strategies can be applied on the Collection Index, depend-
ing on the constraints the user might want to set to possible approximations on
query results. We start presenting the navigation method to obtain approximate
embeddings that relax the query conditions to possible insertion of nodes in the
data. Other kinds of approximations, namely, renaming and deletion of query
nodes are discussed in Section 4.3, together with the strategies to obtain the
corresponding sets of approximate embeddings of the query tree.

4.1 Navigating the Collection Index

Approximate embeddings of the query tree in the Collection Index are retrieved

in two steps, according to Algorithm Solve in Fig. 3 : 1) Top-down navigation

for selecting relevant contexts, and 2) Bottom-up construction of final results.

13 This computation includes also the inverted lists for the content-based retrieval of
data leaves. As discussed in Section 3.1 we use inverted lists which are local to each
structural context. However, their size is comparable to the size of the global lists
used in [15] for content retrieval.



Solve(IndexTree I, QueryTree q)  SetMatches(IndexTree I, QueryTree q)

begin begin
1. q' ¢ SetMatches(l,q) 1. for each t; in § of | s.t. label(t;)=label(q)
2. FindEmbeddings(l.q") 2. append (&I,&t;) to list of context. matches of q
end 3.  for each q; € children(q)
4. q; < SetMatches(t;,q;)
5. return g
end
Fig. 3. Algorithm Solve Fig. 4. Algorithm SetMatches

Exploration. The navigation step extends the query tree: Each query node
is assigned a list of matches with nodes of the index tree. More precisely, each
match is a contextual match, in that it is a pair m = (&context, &node) such that
&node is a pointer to the matching node in the index, and &context is a pointer
to the index node that specifies the context where &node has been retrieved.
Each context node is a match for the parent of the current query node. The
context node of the query root is the Collection Index root.

The goal is to find all the structural matches of the query tree in the Collec-
tion Index. Semantic match of query leaves containing CDATA /PCDATA con-
tent is not considered at this step: This will be the starting point of Algorithm
FindEmbeddings for the construction of results. Exploration of the Collection
Index is guided by a query tree ¢ as follows (algorithm SetMatches):

1. Given a context [ in the Collection Index, descendant index nodes in I having
the same label as the query root’s label are set as matching nodes of g (lines 1
— 2). This means that only relevant contexts of the index are explored. Each
match found is the root of a potential approximate embedding schema.!*

2. The search proceeds recursively for each query node (lines 3 — 4), according
to a pre-order visit of the query tree. Each matched index node found at the
previous step is taken as the current context in the Collection Index.

Figure 5 presents the result of the SetMatches Algorithm to answer a structured
query. For clarity, only node matchings are shown, depicted by dashed bold lines.

Construction of results Recall from Section 2 that the evaluation of a query
g on a document d with the Collection Index returns a set of subtrees of d, each
one denoting an approximate result for query q. Each returned subtree collects
the set of approximate embeddings of ¢ rooted at the same (sub)document did
in d. These id’s indicate the roots of the instances of the query tree in document
d. Note that each (sub)document did that is the root of a returned subtree is in
the list p of an index node that matched the query root. In order to determine
which are the did’s in the p lists that actually represent the root of relevant
results, semantic conditions of g are to be satisfied in the data leaves of the
(sub)document instance. At this purpose, only relevant data leaves are consid-
ered, in that we take advantage of the value-indices of index nodes that matched

14 Recall that the Collection Index provides an intensional representation of the struc-
tural organization of the data, basically it collects all structural schemas that may
occur in the data.
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the leaves of the query tree!® to retrieve the data that satisfies the corresponding
query semantic conditions, i.e. data that contains the keyword(s) specified in the
query. We call each list of relevant data leaves returned by a value-index a data
stream. For instance, in Fig. 6 three data streams are shown: One for each match
of the query (tree) leaves in the index. As an example, the data stream ds2 is
a list made of a single element, the data leaf numbered 10: In fact, as shown in
Fig. 2, only leaf 10 is relevant to the query path /b/t/“X M L". This retrieval
is performed by the value-index assigned to the index path /b/t. Each stream
denotes a different data source according to different structural approximations.
For instance, in Fig. 5, the data streams assigned to index paths /b/t and /b/c/t
represent data sources assigned to exact match and approximate match of query
path /b/t/“X ML", respectively.

However, the assignment of data streams does not suffice. Although each
data stream returns relevant data leaves, we have to verify that they belong to
the same (sub)document instance. As an example, according to the document
collection shown in Fig. 2, only document dt1 is relevant to the query shown in
Fig. 6, since “Spencer” appears as author only in dt1. This implies that only
data leaves numbered 1, 3, and 5 compose a relevant result. On the other hand,
data leaves numbered 10 and 11 belong to an incomplete result that does not
satisfy condition on author.!® In order to assert which data of n data streams
belongs to the same relevant result, we take advantage of the list p of ranges
assigned to index inner nodes.

Construction of results proceeds according to a post-order visit of the ex-
tended query tree obtained at step 1), exploiting additional information which
is recursively attached to each query node. In fact, at the end of the con-
struction process, each node of the query tree is assigned a list of contextual
ranges, i.e. a list of pairs (context,Ranges), such that Ranges is a list of ranges
of relevant data leaves, and context is the context in the index where these
have been retrieved. For instance, in Fig. 5 query node b is assigned the pair
(index_root,([1,7])), since relevant data leaves 1, 3, and 5 that compose the
first result shown in Fig. 6 belong to range [1,7]. This implies that, the did as-

!5 Recall that we refer to data leaves as CDATA /PCDATA content, and to (tree) leaves
as tree nodes that refer to data leaves.

16 The last incomplete result will be taken into account in Section 4.3 when dealing
with approximate embeddings allowing renaming and deletion of query nodes.



FindEmbeddings(IndexTree |, QueryTree q)

begin

1. if leaf(q)

for each m=(context,match) € list of contextual matches of q

Ranges < getDataStream(l,match) s.t. semantic condition of q is satisfied
append r=(context,Ranges) to list of contextual ranges of q

for each q; € children(q)

FindEmbeddings(l.q;)

. ChildrenLists < get lists of contextual ranges from children of q
9. ChildrenList <— merge ChildrenLists per context

10.  IndexList < 0

11.  for each m=(context,match) € list of contextual matches of q
12. append (m,getRangeList(l,match)) to IndexList

13. RangelList < InclusionCheck(ChildrenList,IndexList)

14.  assign Rangelist as list of contextual ranges of q

2
3
4
5. else
6
7
8

Fig. 7. Algorithm FindEmbeddings

signed to range [1,7] in the p list of index node b is the id of the document that
satisfies the query. For a query (tree) leaf [, the list Ranges correspond to a list
of data streams, one for each match of [ in the index. The list of contextual
ranges for a query node n, each denoting a (sub)query embedding is constructed
recursively, according to Algorithm FindEmbeddings:

1. For each contextual match of a query leaf [, the data stream of the match
is assigned to [ as list of ranges of relevant data leaves in the context of the
match. This is the basic case of single-element ranges, one per relevant data
leaf (lines 2 — 4).

2. As to each inner query node n, the algorithm proceeds recursively to gener-
ate a list of contextual ranges for each child node of n (lines 6 — 7). Then,
all lists of contextual ranges are collected from children nodes of n (line
8). Contextual ranges that share the same context ¢ are merged in order
to collect all relevant data leaves in a single occurrence of context ¢ (line
9). Thus, ChildrenlList contains the list of contextual ranges referring rel-
evant data leaves that satisfy conditions specified by children nodes of n.
Recall that these ranges have to be aggregated according to their member-
ship to each (sub)document instance. This is accomplished by taking advan-
tage of the p lists of the contextual matches of n, which are collected in the
list IndexList (lines 10 — 12). Recall that each range in IndexList refer-
ences a (sub)document instance, and that ranges of relevant data leaves in
ChildrenList belong to the same (sub)document instance d; if they are in-
cluded in the range r in IndexList that refers d;. This implies to check inclu-
sion of ranges of ChildrenList into ranges of IndexList (line 13). Ranges
in IndexList that satisfy inclusion are assigned as contextual ranges of node
n. For each of these ranges, each context is given by the context assigned to
the corresponding match of n in the index.

In order to guarantee that all query conditions are satisfied, the check inclusion
step requires that at least one data leaf per query path belongs to the same
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contextual range (completeness check).'” At the end of the construction process,
the contextual ranges assigned to the root of the query denote the (sub)document
instances that satisfy the query conditions. In our example of Fig. 6, only the first
result is returned. Approximation is due to the presence of the chapter element
between the book and title in the query path /book/title/ “XML”. This result
complies with the definition of tree embedding. Element book is the root of
two query embeddings: The former matching book’s author and the title of first
chapter; The latter matching book’s author and the title of second chapter. This
implies that the algorithm FindEmbeddings finds out several occurrences of the
same pattern in a document.

4.2 Complexity of Query Processing

The basic feature of the index is the list of labelled descendants () for each
inner node n € Nj. Efficiency and effectiveness of of top-down navigation of the
Collection Index are improved: Query execution is lightened, since intermediate
nodes leading to each descendant node are not visited; On the other hand, the
navigation strategy leads to exploring only relevant contexts, a priori excluding
parts of the index tree denoting different scopes. As an example, consider Fig. 8
and query /book/title/ “night”, looking for books having the keyword “night”
in the title. The navigation step looking for element book reduces the scope of
the search to the left part of the Collection Index, whereas approaches “a la
ApproXQL” check for relevant data leaves also for titles of CD’s.

Recalling Section 2, the complexity of performing approximate complex queries
with the Collection Index is O(n,*I*sI*p!). More precisely, this is given by the
sum of two quantities: O(n,*1*sl) + O(n,*I*s!*p!). Quantity O(n,*1*sl) is due
to Index navigation to set matches for query nodes (Algorithm SetMatches):
In fact, for each query node at most s/ matches exist in all the contexts of the
parent node, and all of these can be found at most as descendants of | contexts.
Quantity O(n,*I*sl*p!) is due to construction of results (Algorithm FindEm-
beddings): For each query leaf, the number of contextual ranges is at most [*sf,
one for each contextual match. For each inner query node, the merge step (line 9)
requires O(I*s!) operations, since lists are ordered per context,'® and I*s! is the
maximal length of a list of contextual ranges. For each pair of contextual ranges

17 We will relax this step in Section 4.3 to capture also partial embeddings.

18 Recall that the § list of each index node contains pointers to descendants obtained
by a pre-order visit of the Index. This implies that the list of contextual matches
(obtained from the § list, in Algorithm SetMatches) is ordered according to this



merged at this step, the corresponding lists of ranges are to be collected as a sin-
gle list per context. This additional merging step requires O(p!) operations since
lists of ranges are ordered'?, and each list contains at most p’ elements. Thus,
operation at line 9 costs O(I*s!*p!). After this merging step, ChildrenList con-
tains at most s! contextual ranges, each one having a range list of length at most
fOmaz*p’, where fo,,q, is the maximal fan-out of nodes in the Collection Index.
IndexList contains at most [*s! ordered elements, each referring O(p) ordered
ranges (lines 10 — 12). Thus, the inclusion check step for ranges (line 13) costs
O(I*st*p!), since lists are ordered. In conclusion, Algorithm FindEmbeddings,
which dominates the overall complexity, can be executed in time O(n,*I*st*p!).

4.3 Retrieving all Approximate Embeddings

For the sake of simplicity, in Section 4 we dealt with approximate embeddings
that relax query conditions only to insertion of nodes in the data. Now we con-
sider two additional kinds of approximations: Renaming and deletion of query
nodes. Consider the query shown in Fig. 5, where label writer is set in place
of author. Results would be empty since no index node exists having label
writer. Renaming of query nodes can be easily supported by the Collection In-
dex: Traversal of arcs can be relaxed to descendants having similar labels. This
allows for semantic approximation. Similarity can be measured as a semantic
relationship between node labels.?? Consider again query in Fig. 5, with name
of the author changed to “Brown”. No document in our sample data collec-
tion satisfies all query conditions. Following a more flexible approach, relaxation
on completeness of results would produce both (approximate) results shown in
Fig. 6. However, this is not the only relaxation that can be made as to query
partial matching, since the removal of the completeness check step corresponds
to deletion of query data leaves. Consider Fig. 9: results are empty because label
authors does not appear in the Index. To overcome this drawback, the naviga-
tion strategy (Algorithm SetMatches) can be modified: a query node that does
not find any match in the index should be marked as unsatisfied, and navigation
should proceed with next query node.?!

Note that the last navigation strategy leads to controlled structural approx-
imations. In fact, a query node is allowed to be deleted only if it does not find a
match in the index. This implies that only the structurally best-matching results
are returned. As an example, consider the query /book/chapter [title/“DigLib".
In Fig. 2 the query pattern occurs in document dt2, which is relevant to the
query. This is the only result captured by the navigation strategy proposed,
that does not allow query node chapter to be deleted, since at least one struc-
tural occurrence /book /chapter is present in the collection. On the other hand,
ApproXQL retrieves a larger set of approximate embeddings, namely those ob-
tainable by the deletion of any query node, except the root. According to this

visit. As a consequence, elements in each list of contextual ranges (obtained at line
2 of Algorithm FindEmbeddings) respect the same order.
19 As discussed in Section 3.2.
20 To this end, in our implementation we relied on the WordNet semantic network [3].
21 ApproXQL only allows for deletion of nodes having at most one child.



approach, also document dtl is relevant to the above query, since it is a book
having in the title the searched keyword. Of course, also document dt1 might
be of interest for the user. This approximation can be obtained by means of an
additional relaxation of the navigation strategy: At each navigation step all arcs
leading to descendants having a label among the labels of the query pattern are
traversed. Thus, depending on the query constraints the user may want to set
to possible approximations on query results, a different navigation strategy can
be applied on the Collection Index. It is worth to note that, the retrieval of all
approximate embeddings according to the deletion of any query node, on one
hand guarantees to obtain all relevant data, on the other hand, it may generate
a huge amount of results that satisfy the query pattern only minimally, thus
lowering the precision of the result set.

Ranking Results The relevance of results takes into account several aspects.
According to the SATES proposal [6, 7], we compute the score of results as a
combination of semantic and structural similarities, providing a ranking accord-
ing to correctness, completeness, and cohesion of the data retrieved.

5 Experiments

We used the XMach collection [16] for testing our index. The collection presents
some interesting characteristics that emphasize the importance of providing ap-
proximate query capabilities: The documents have irreqular structure and a high
nesting level (up to 13), with label repetition along a path which is at most 11.
In such a structural scenario, the recall of an exact match approach would not
be satisfactory. XML files in the collection respect a DTD?? that models doc-
uments having an author, a title and 1 or more chapters, each one with usual
information, like author, sections, etc. We experienced the Collection Index on
XMach subcollections ranging from 1,000 to 150,000 documents, with total size
ranging from 16Mb to 2.3Gb, respectively. The index scales linearly in space,
and for large collections exceeds the original size of the dataset by 1,5-2%. As
to time scalability, the Collection Index proved to perform linearly with the size
of the dataset.

6 Conclusion and Future Work

We have presented the Collection Index, an indexing method that efficiently sup-
ports the retrieval of approximate results for complex structured queries on large
collections of XML documents. To authors’ knowledge it is the first index that
supports complex branching queries with both content and structural approxi-
mations, also capturing the presence of multiple occurrences of query conditions.
A similar approach having the same goals has been presented in [15]. The Ap-
proXQL system copes with the intrinsic complexity of finding unordered tree
embeddings [10], and proposes a method that solves a reformulation of the clas-
sical problem in polinomial time. We proved the Collection Index to support a
more efficient query processing, through the selection of relevant data contexts.

22 We remind that the Collection Index does not require the presence of a DTD.



Results are ranked according to an effective measure that takes into account
semantic and structural correctness, completeness, and cohesion of results [6, 7].

The Collection Index seems to be an effective and flexible indexing structure,

where different strategies can be applied to personalize the user needs. Studying
which strategies may prune less relevant results, with the aim of scaling down
further the complexity of finding approximate embeddings for a query tree is
future work. Then, we plan to exploit the numbering scheme applied to the
data leaves, to support queries with ordering requirements. Query processing
optimization is a further direction we intend to follow, by studying the evaluation
ordering of structural predicates to improve index performance.
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