UNIVERSITA DEGLI STUDI DI BOLOGNA

Dipartimento di Elettronica Informatica e Sistemistica

Dottorato di Ricerca in Ingegneria Elettronica ed Informatica
XIV Ciclo

Efficient and Effective Similarity Search in

Image Databases

(Tecniche Efficienti ed Efficaci di Ricerca per Similarita in Database di Immagini)

Tesi di: Coordinatore:
Dott. Ilaria Bartolini Chiar.mo Prof. Ing. Fabio Filicori
Relatore:

Chiar.mo Prof. Ing. Paolo Ciaccia

“The mediocre teacher tells,
The good teacher explains,
The superior teacher demonstrates,
The great teacher inspires.”

William Arthur Ward

Contents

Introduction

1.1 Motivation
1.2 Summary of Contributions oo
1.3 Thesis Outline

Background on Similarity Search in Image Databases

2.1 Feature Extraction, Similarity Models and Query Processing
2.1.1 Similarity Search Examples
2.2 Current Content-Based Image Retrieval Systems
221 WALRUS
222 Blobworld
2.3 Interactive Similarity Search o000
2.3.1 Relevance Feedback Techniques
Windsurf
3.1 Feature Extraction
3.1.1 DW'T .o
3.1.2 Clustering
3.1.3 Feature Indexing Lo
3.2 Similarity Model
3.2.1 Region Similarity oo
3.2.2 Combining Region-Based Similarities
3.2.3 Determining the Optimal Matching
3.3 Query Processing and Indexing
3.3.1 Optimizations to A}'® Algorithm
3.4 Experimental Results o
3.4.1 Efficiency
3.4.2 Effectiveness

11
13
14
15
16

11

Contents

3.4.3 Comparison with Other CBIR Techniques

4 FeedbackBypass

4.1 Basic Principleso oL
4.2 The FeedbackBypass Approach
4.2.1 Requirements 0L
4.3 Wavelets, Lifting, and Interpolation
4.4 The Simplex Tree
4.4.1 Multi-Dimensional Triangulation
4.4.2 The Data Structure
4.5 Experimental Results
4.5.1 Speed of Learning
4.5.2 Robustness
4.5.3 Efficiencyo

5 Windsurf Extensions

5.1 A Relevance Feedback Model for WINDSURF
5.1.1 Regions Re-Weighting
5.1.2 Features Re-Weighting

5.1.3 Query Point Movement and Re-Weighting

5.2 WINDSURF with Shape
5.2.1 Shape Representation
5.2.2 Similarity Measure
5.2.3 Experimental Results

6 Conclusions

6.1 Future Directions

A The Wavelet Transform

A.1 Haar Wavelet Transform
A.2 Two Dimensional Haar Wavelet

B Examples of Interactive Similarity Search

Bibliography

107

Chapter 1

Introduction

This thesis presents efficient and effective techniques for similarity search in image databases

(DBs).

1.1 Motivation

First of all, let us explain what the terms “efficient” and “effective” exactly mean in our

view.

Definition 1.1 (Efficiency)

The ability to obtain results in real time and with low cost in terms of storage overhead.

Definition 1.2 (Effectiveness)
The ability to obtain “good” results satisfying the user’s expectations.

The effectiveness concept represents one of the basic objectives of research in the area
of pattern recognition, where specific assumptions on the application domain are done in
order to obtain a more powerful description of image content. Let us give an example: A
fingerprint retrieval system for criminal investigations can base the retrieval on the specific
properties that characterize a fingerprint (e.g. ridges, minutiae, etc.). On the other hand,
efficiency is a typical goal of the DB community research, that provides similarity search
methods not relying on any assumption on the application domain. This is the case, for
example, of a general-purpose image retrieval system, which is exactly what we aim to.

Starting from above observations, the challenge of this work is to let both efficiency

and effectiveness aspects coexist within the context of DB research, that is:

Define efficient and effective techniques for image similarity search without

any assumption on the specific domain.

2 Chapter 1. Introduction

From state-of-the-art of image similarity search, it is possible to observe that image
retrieval systems characterize images by means of relevant properties (features), such as
color distribution, texture information, and shape descriptors, and then use such feature
values to determine those images which are most similar to a given query image. However,
this approach is not adequate when images have a complex, not homogeneous, structure, in
which case using global features leads to inaccurate content descriptions. A more effective
way to characterize image content is based on extraction of local features together with
the definition of correct query processing algorithms able to support efficient retrieval.

In recent years, it has been demonstrated that the interaction between the system
and the user can further increase the quality of results. Thus, several methods have been
proposed for implementing interactive similarity queries: Common to all these methods
is the idea to exploit user judgments in order to progressively refine the query parameters
and to eventually converge to an “optimal” parameter setting. The new query (with the
new parameters) is then compared to the collection images, returning an improved set of
images to the user. However, all these methods also share the feature to “forget” user
preferences across multiple query sessions, thus requiring the feedback loop to be restarted
for every new query, which is frustrating from the user’s point of view and constitutes a
significant waste of system resources. So, a solution able to overcome these limitations,
by skipping, or cutting the tedious process of feedback interaction, should be appreciated
to speed up the efficiency of the retrieval.

1.2 Summary of Contributions

The main contributions of this thesis in defining efficient and effective similarity search
techniques in image DBs are summarized as follows:

1. We present WINDSURF (Wavelet-based INDexing of imageS Using Region Frag-
mentation), a new general approach to content-based image retrieval relying on a
wavelet-based local features extraction supported by image fragmentation. So do-
ing, WINDSURF is able to characterize in an effective way the content of each image.
From the query processing point of view, WINDSURF then defines the first correct
index-based algorithm for region-based image similarity that ensures, in an efficient
way, that all objects satisfying the query appear in the result set.

2. We describe FeedbackBypass, a new and efficient approach to interactive similarity
query processing. It complements the role of relevance feedback engines by stor-
ing and maintaining the query parameters, determined with feedback loops over
time, using a wavelet-based data structure. For each query, a favorable set of query

1.3 Thesis Outline 3

parameters can be determined and used to either “bypass” the feedback loop com-
pletely for already-seen queries, or to start the search process from a near-to-optimal
configuration. It has to be noted that FeedbackBypass can be well combined with
all state-of-the-art relevance feedback techniques working in high-dimensional vec-
tor spaces. Its storage requirements scale linearly with the dimensionality of the

query space, thus making even sophisticated query spaces amenable.

3. We formalize a relevance feedback model for region-based image retrieval systems,
able to further increase the effectiveness of WINDSURF results, and more in general,
of all region-based image retrieval systems. It is important to note that, prior to
this, to the best of our knowledge no relevance feedback model has been proposed
for the region-based image retrieval.

1.3 Thesis Outline

The work of the present thesis is organized in six Chapters and two Appendices as follows:
In Chapter 2, we explore the state-of-the-art on similarity search, and interactive simi-
larity search in image DBs, pointing out major limits suffered by current image retrieval

1 Chapter 3 presents the

systems and by strategies of present user-system interactions.
solution we propose to improve the effectiveness and the efficiency of content-based im-
age retrieval: Such solution is represented by the WINDSURF system. Having shown the
wavelet-based modality used by WINDSURF to extract local properties from each image,
we detail its similarity model, together with its correct index-based query processing al-
gorithm. Experimental results, demonstrating both the effectiveness and the efficiency of
the proposed techniques, are reported. In Chapter 4, we describe the efficient approach to
complement the role of relevance feedback engines represented by FeedbackBypass. After
presenting the main principles on which FeedbackBypass relies, we detail the wavelet-based
structure representing the heart of the system. Experimental results demonstrate both
effectiveness and efficiency of our technique. In the first part of Chapter 5, we then present
the definition of the first relevance feedback model for region-based image retrieval sys-
tems, that we studied for WINDSURF, but that can be applied to every other system that
fragments images into regions. In the second part, a shape-based retrieval is explored.
Note that, even if the WINDSURF system, in its originally version, implicity extracts shape
information, it does not use it in the retrieval phase. Details and experimental results on
the proposed Fourier-based approach, that is scale-, translation- and rotation-invariant,
are shown. In Chapter 6, we conclude our work and present some open problems that we

Examples of interactive similarity search are shown in Appendix B.

4 Chapter 1. Introduction

plan to investigate in future research. Finally, Appendix A reports mathematical details
and explanative examples on the Wavelet Transform and Appendix B presents examples
of interactive similarity search by using a simple prototype application.

Chapter 2

Background on Similarity Search in
Image Databases

The advent of multimedia age poses a number of new challenges to DB researchers. In par-
ticular, digital image libraries require effective and efficient automated retrieval based on
the “semantic” content of images. The boost of graphics capabilities in modern computer
systems and the growing of Internet have further contributed to the increased availability
of digital images. In classical DBs, given a query object, where most of the attributes are
either textual or numerical, the system has to determine which DB object is the “same”
as the query. Results for this kind of searches is the set of DB objects whose attributes
match those specified in the query. Traditional approaches to characterize the content
of images rely on text surrogates, where human experts manually annotating each image
with a textual description, so that text-based information retrieval techniques can be ap-
plied [Sal89]. This approach has the advantage of the inheritance of efficient technology
developed for text retrieval, but is clearly impracticable in case of very large image DBs.
Moreover, its effectiveness is highly dependent on the subjective opinions of the experts,
who are also likely to supply different descriptions for the same image [OS95]. Even if the
matching search paradigm has been proven to be an efficient method to retrieve data of
interest in classical DB systems, it can not be successfully applied within the context of
image DBs, and more in general, in multimedia DBs due to the complexity of multimedia
objects for which matching is not expressive enough. Quoting from [SJ96]:

“We believe that future image databases should abandon the matching
paradigm, and rely instead on similarity searches. In similarity search we do
not postulate the existence of a target image in the database. Rather, we order
the images with respect to similarity with the query, given a fixed similarity

criterion.”

6 Chapter 2. Background on Similarity Search in Image Databases

This prediction was right: Today, similarity queries arise naturally in a large variety of
applications, like:

E-commerce (e.g. electronic catalogues).

Medical databases (e.g. ECG, X-ray and TAC).

Edu-tainment (e.g. video clips, art images, space photographs and geological maps).

Weather prediction.

Criminal investigations.

As estimated from above sentence, similarity search can overcome drawbacks of traditional
approaches by using numerical features computed by direct analysis of the information
content. Content-Base Image Retrieval (CBIR) has been proposed in the early 1990’s.
CBIR systems use visual features to represent the image content. This approach is favor-
able since features can be computed automatically, and the information used during the
retrieval process is always consistent, not depending on human interpretation. In detail,
the user sketches the query image, or select a prototype image, searching for something
similar. The result of this kind of queries is a list of images sorted by decreasing values
of similarity to the query image. It is immediate, hence, the need for similarity search to
define an appropriate similarity criterion, able to measure the grade of similarity between
two images using only low level image properties (i.e. no human experts should provide
additional information). Moreover, an efficient way to obtain the most similar DB images
to the query has to be defined. This goal is usually performed using index structures on
the image content descriptors. In other words, each of these image content descriptors,
represented by a feature vector, is stored and indexed in the DB so that, at query time,
the feature vector of the query image is computed and the DB is searched for the most

similar feature vectors.

In the rest of this introductory Chapter, we illustrate possible approaches to define
the image content (giving some concrete examples) and describe which similarity query
models and modalities of query processing can be used. Various academic and commercial
CBIR systems are then presented. We conclude describing which are the advantages of
interaction between the user and a CBIR system, discussing the basic feedback approaches.

2.1 Feature Extraction, Similarity Models and Query Processing 7

2.1 Feature Extraction, Similarity Models and Query
Processing

To characterize DB images, modern CBIR systems define a set of low level relevant prop-
erties (features) able to effectively characterize the content of the images and then use
such features for retrieval purposes [GR95, SWS*00]. The features should be “simple
enough” to allow the design of automatic extraction algorithms, yet “meaningful enough”
to capture the image content. To this end, recent studies have highlighted the fact that
global features, like color and texture, indeed possess a rich semantic value, and as such
they are used by several CBIR systems [FSN195, SO95, PPS96]. Under this view, each
image is typically represented by a high-dimensional feature vector, whose dimensionality
depends on the number and on the type of extracted features, and similarity between
images is assessed by defining a suitable distance function on the resulting feature space

[Fal96).

It is a fact that CBIR systems that rely on global features cannot support queries
like, say, “Find all the images containing a small red region under a big blue region”
that refer to local properties of the images. Thus, the need to extract not only global
but also local features has emerged, and a number of region-based image retrieval sys-
tems, that fragment each image into a set of “homogeneous regions”, have been presented
[SC96, MM99, CTB*99, NRS99, WLWO01]. In region-based systems, similarity assessment
between images is performed by associating regions in the query image with those con-
tained in the DB image and by taking into account similarity between associated regions.
To this end, features are extracted for each region and a distance function is used to com-
pare regions’ descriptors. Existing systems, however, either consider a scenario, which
is beyond the scope of the present work, where also spatial constraints are taken into
account [BDV99], or use naive heuristic matching algorithms which are not guaranteed to
return the correct results. As an example, suppose that a user looks for images containing
two tigers: In this case the query image will contain (at least) two regions, each repre-
senting a tiger. If a DB image contains a single “tiger” region, clearly it is not correct to
associate both query regions to the single tiger region of the DB image. However, as we

will argument in Section 2.2, this can easily happen with existing region-based systems.

In the present work we focus our attention on the processing of k£ nearest neighbors
(best-matches) queries, where the user asks for the k images in the DB which are most
similar, according to the similarity measure implemented by the CBIR system, to the
query image. Range queries, where the user has to specify a minimum similarity thresh-
old « that images have to exceed in order to be part of the result, are not well suited for

8 Chapter 2. Background on Similarity Search in Image Databases

the scenario we envision. In fact, since the user has no a priori knowledge on the distri-
bution of similarities between images, he/she has no way to guess the “right” value for a.
Indeed, a high value of a can easily lead to an empty result, whereas slightly decreasing
a could result in an overwhelming number of returned images. This situation is further
complicated in region-based retrieval, where more than one threshold could be required
(see Section 2.2.1).

In the following we describe in detail examples of similarity search for image environ-

ments.

2.1.1 Similarity Search Examples

As we saw in previous Section, CBIR systems provide access to content of images ex-
tracting features like color, shape and texture. All these systems then use feature-based
approaches to index image information [SWS*00]. Note that feature extraction is a com-
plex process, that cannot be accurately discussed in the context of the present thesis;
detailed information can be found in [Smi97].

Image Retrieval by Color Representation

The distribution of colors in an image is usually represented by an histogram. Each pixel
of an image O[z,y] consists of three color channels O = (Og, Og, Op), representing red,
green, and blue components. These channels are transformed, by way of a transformation
matrix T,., into the natural components of color perception, that is, hue, brightness, and
saturation (HSV color space). Finally, the three latter channels are quantized, through a
quantization matrix ., into a space consisting of a finite number M of colors. The m-th
component of the histogram, h.[m] is given by:

1 if Q.(T.O[x,
ZZ{ 0 otl?erwme[W= (2.1)

Each image is, therefore, represented by a point in a M-dimensional space. The simplest
case, shown in Figure 2.1, is represented by color histograms with only three reference
colors (e.g. red, green, and blue). In detail, two color histograms are computed starting
from the two images; then, similarity comparison between images is performed on the
color vectors p; and p,.

Common approaches, however, usually define a much larger number of color bins, e.g.
64, 116, or 256. In all cases, to compare histograms of different images (e.g. p and q),
a distance function on such a space is needed. Relevant examples of distance functions

2.1 Feature Extraction, Similarity Models and Query Processing 9

Figure 2.1: Color histogram extractions using 3 colors.

include L, norms
D 1/p
(Z pi — ail)) 1<p<oo (2.2)
=1

Loo(p; a) =max{|p; — ¢i[} p =00 (2.3)

(L; is the Manhattan distance, Lo is the Euclidean norm, L., is the “max-metric”) and
their weighted versions. For instance, the weighted Euclidean distance is:

D 1/2
Low(p,q; W) = <Z w; (p; — %‘)2) (2.4)

where W = (wy, ..., wp) is a vector of weights that reflect the relative importance of each
coordinate of the space.

Quadratic distances can also be used to capture correlations between different coordi-
nates of the feature vectors [FEF194]. The quadratic distance is defined as:

PP ;W) =D "wi(pi — a:)(p; — a) (2.5)

i=1 j=1

and leads to arbitrarily-oriented ellipsoidal iso-distant surfaces in feature space [SK97].
Note that this distance is indeed a “rotated” weighted Euclidean norm. The well-known
Mahalanobis distance is obtained when each w; ; is a coefficient of the covariance matrix.
In Figure 2.2 the geometrical interpretation of above distance functions is shown.

An alternate method of color representation is that of color moments [SO95, SD96]. To
overcome the quantization effects of color histograms, a 9-dimensional vector, consisting

10 Chapter 2. Background on Similarity Search in Image Databases

L Weighted L , Quadratic

Figure 2.2: Iso-surfaces for different distance functions.

of mean, variance, and skewness of the hue, saturation, and brightness components for
all the pixels, is extracted from each image. On these vectors, a weighted Euclidean
distance function or a Manhattan distance is then used to compare images. The weights
are proportional inverse to the standard deviation of the value along the dimensions.

The effectiveness of color moments ha proven to be far better than color histograms

[SO95, SDY6).

Image Retrieval by Texture Representation

Textures are homogeneous patterns or spatial arrangements of pixels that cannot be
sufficiently described by regional intensity or color features [SWST00]. The simplest
way to globally represent texture properties is based on the extraction of information on
coarseness, contrast, and direction [FSNT95].

A more powerful method to characterize the image texture follows the same color
histogram approach. Image texture is first decomposed into spatial-frequency sub-bands,
by way of a wavelet filter bank. Then, a texture channel generator is used to produce a
channel for each sub-band. Again, these texture channels can be transformed (by way
of a transformation matrix 7;) and quantized (by way of a quantization matrix @) to
produce the final histogram representing the image. The representation of texture as
an histogram allows us to use, for texture similarity, the same metrics used for color
similarity. In particular, in [Smi97] it is shown that L; and L, metrics perform extremely
well in retrieving images having texture similar to that of the query image.

An alternate method to represent texture properties is based on the use of Gabor filters
[SD96]. In detail, a Gabor filter measures the presence of patterns in different directions
and scales. So, for each scale and direction, the luminance information is transformed
with the corresponding Gabor filter and mean and variance are computed. A common
Gabor filter approach uses 5 directions and 3 scales determining a feature vector defined
in a 30-D dimensional space. On these vectors, a weighted Manhattan distance is used to

compare images.

2.2 Current Content-Based Image Retrieval Systems 11

Image Retrieval by Shape Representation

Shape representation techniques fall in two major categories: The feature vector approach,
and the shape through transformation approach [Del99]. The choice of a particular repre-
sentation is driven by application needs, like characteristics of the shapes being analyzed,
robustness again noise, and possibility of indexing.

The feature vector approach is widely employed in information retrieval and allows
effective indexing. In detail, a shape is represented as a numerical vector using a paramet-
ric internal method (where the region enclosed by the object contour is represented), or a
parametric external method [RSH96, MM99| (where the external boundary of the object
is represented). The Euclidean distance is the most used distance function to compare
two shapes. To have an idea of how this approach works, refer to Section 5.2.

On the other hand, shapes can be also compared computing the effort needed to
transform one shape into the other. In this case, similarity is computed by way of a
transformational distance. The main disadvantage of this approach, however, is that it
does not support indexing, due to the fact that the method used to assess similarity does
not satisfies metric postulates.

2.2 Current Content-Based Image Retrieval Systems

Many CBIR systems have been designed and developed over the last years [SWST00].
What can be called the first generation of CBIR systems used global features to charac-
terize the images content. For example, QBIC [FSNT95|, developed at the IBM Almaden
Research Center, extracts from each image a number of features, namely color, texture,
and shape descriptors. Color is represented by means of histograms that are compared
using a quadratic distance function that also takes into account the similarity between
different colors (cross-talk). Texture is analyzed globally by extracting information on
coarseness, contrast, and direction. The shape feature contains information about the
curvature, moment invariants, circularity, and eccentricity. The query retrieval system
supports the comparison of each of the features separately. Similarity between images is
then computed using a weighted Euclidean distance on the overall extracted vector.

Stricker and Orengo [SO95] propose a different approach to color similarity, where the
first three moments of the distribution of each color channel are considered. Thus, each
image is represented by a 9-dimensional feature vector, and a simple weighted Manhattan
distance is used to compare images.

The Photobook system developed at the MIT Media Lab [PPS96] uses a stochastic
model (Wold-decomposition) to assess the similarity between images based on texture.

12 Chapter 2. Background on Similarity Search in Image Databases

Techniques operating in the time-frequency domain, such as the Wavelet Transform
[Dau92| (see also Appendix A), have also been proposed to obtain a multi-resolution
image representation. As an example, the WBIIS system [WWFW97] uses Daubechies’
wavelets [Dau92] to derive a 768-dimensional vector of wavelet coefficients that preserve
spatial image information. Although this approach offers a better frequency location with
respect to other techniques, it leads to poor results for queries where spatial location and
scale of objects is not requested [NRS99].

All above described approaches (as well as many others not covered here) use global
features to represent image semantics, thus they are not adequate to support queries look-
ing for images where specific “objects” having particular colors and/or texture (and pos-
sibly spatially arranged in a particular way) are present, “partial-match” queries (where
only a part of the query image is specified), and shift/scale-invariant queries, where the
position and/or the dimension of the seeked objects is not deemed relevant. Region-based
image retrieval systems aim to overcome such limitations by fragmenting image into a
set of “homogeneous” regions, which can then be described by means of local features
[SC96, CTBT99, NRS99]. Note that the concept of “homogeneity” is by no means easy
to define. For instance, if one considers each pixel separately, texture information is lost
and only “color homogeneity” can be assessed. For a more complex example, consider an
image where a flag with red and blue vertical stripes appears: A human would certainly
recognize this as a homogeneous region, even if it contains pixels with rather different col-
ors, since he/she sees a repeated pattern, but this can be difficult for automatic retrieval

systems.

VisualSEEK, developed by Smith and Chang [SC96] at the Columbia University, is
an example of region-based system that considers information from both the spatial and
the frequency domains in order to decompose each image into regions. The similarity
between two images is computed by taking into account color, location, size, and relative
positioning of regions. Query processing, however, is carried out by using a simple heuris-
tic algorithm: First, for each region of the query image, a range query on color, location,
and size is issued with similarity thresholds provided by the user; then, a candidate set
of images is built, by taking into account only those images that have one region in all
the result regions sets; finally, the optimum match is computed on the set of candidate
images. It is clear that the use of similarity thresholds has no direct counterparts in a
user’s mind, and cannot guarantee that the images most similar to the the query image

are retrieved.

Another example of region-based system is SIMPLIcity [WLWO01]|. SIMPLIcity com-

bines the region-based approach to the semantic classification technique; so doing, it is

2.2 Current Content-Based Image Retrieval Systems 13

able to perform an automatic partition of the DB reducing the cardinality of the data
set where result images are to be found. In detail, to segment an image into regions,
SIMPLIcity partitions the image into blocks of 4 x 4 pixels and extracts a feature vector
of six features from each block. Three features represent the average color components,
the remaining three representing texture information. The k-means algorithm is then
used to cluster the feature vectors into several classes, with each class corresponding to
one region in the segmented image. It has to be noted that SIMPLIcity performs only
global search (i.e. uses overall properties of all regions of images) and does not allow the
retrieval based on a particular region of the image.

NeTra [MM99] is a region-based system developed at the UCSB that uses color, tex-
ture, and shape information to organize and search the DB. It automatically segments
each image into regions and uses local information to index images of the DB. The frag-
mentation of images is performed using a technique based on the Edge Flow algorithm
[MM99] that is able to discover the neighborhood area between regions using the color
property, the texture feature, or both of them.

In the following we concentrate on a major description of the two most widely known
region-based image retrieval systems, i.e. WALRUS and Blobworld.

2.2.1 WALRUS

WALRUS (WAveLet-based Retrieval of User-specified Scenes) [NRS99] is a region-based
image retrieval system where the similarity measure between a pair of images is defined
to be the fraction of area covered by matching regions of the two images.

WALRUS pre-processes an image in two steps: First, it generates a set of sliding
windows with different sizes and computes a “signature” (local feature vector) for each
sliding window, consisting of all the coefficients from the lowest frequency band of the
Haar Wavelet Transform (see Appendix A) applied to the pixels in the window. The next
step is to cluster together the sliding windows by computing the similarity between their
signatures. Each cluster, thus, consists of a set of windows with similar characteristics (i.e.
color and texture), which together define a region. Wavelet signatures of the windows in
a cluster are then averaged to obtain the region feature vector. To speed-up the retrieval,
WALRUS indexes regions’ descriptors using an R*-tree [BKSS90].

In order to submit a query to WALRUS, the user has to specify a query image and two
similarity thresholds, € and £. After extracting regions from the query image, WALRUS
uses the index to find all regions in the DB that are similar enough to a query region, that
is, regions whose signatures are within e distance from the signature of a query region.
Then, similarity between images is assessed by adding up the sizes of matched regions, as

14 Chapter 2. Background on Similarity Search in Image Databases

obtained from the index search step, and the result of the query consists of all the images
for which the similarity with the query image is not lower than the £ threshold.

From the query processing point of view, the main limitation of WALRUS is that it
requires the specification of two similarity thresholds: The choice of the parameters € and
¢ is not very meaningful, since the user has no clear way to determine what a difference
between threshold values actually represents. As already argued at the beginning of the
Chapter, we believe that range queries are not suitable for effective image retrieval.

2.2.2 Blobworld

Blobworld [CTB*99] is a system that determines coherent image regions that roughly
correspond to objects. Blobworld models an image as a set of regions (blobs) which
are homogeneous with respect to color and texture. Each blob is described by its color
distribution and by its mean texture descriptors, obtaining a 220-D feature vector (a 218-
bins color histogram and 2 texture descriptors). Querying is then based on the features of
some (typically, one or two) regions of interest, rather than on a description of the whole
image.

In the image pre-processing phase, Blobword first extracts pixel features, then it groups
similar pixels into blob regions, and finally determines the feature vectors of the blobs.
In detail, the pixels distribution is modelled in a 8-D space (L*a*b* descriptors for color,
anisotropy, orientation, and contrast for texture, and spatial position of the pixel) using a
mixture of two to five Gaussians. To fit the mixture of Gaussian models to the pixel data,
the Expectation-Maximization (EM) algorithm is used, whereas the number of Gaussians
that best suits the real number of groups contained in the image is determined by means
of the Minimum Descriptor Length principle [BCGM98]. Once a model is selected, the
system performs a spatial grouping of connected pixels belonging to the same cluster.

At query time, the user composes a query by submitting to the system an image of
interest and selecting some of the blobs in the image (an “atomic query” is composed by
a single blob, whereas a “compound query” is specified by two or more blobs). When
dealing with a compound query, which is the most common case, each blob in the query
image is associated to its “best” blob in the DB image under consideration (a quadratic,
Ls-like, distance function between the feature vectors is used to this purpose). Then,
the overall score is computed by using (weighted) fuzzy-logic operators (conjunctions,
disjunction, and negation) applied to the scores of matched blobs. Finally, images are
ranked according to their overall score and the k£ best matches are returned.

In order to speed-up query processing, Blobworld can also use an R-tree-like structure
to index the color descriptors of the blob feature vectors [TCH00] (no texture information

2.3 Interactive Similarity Search 15

is taken into account when the index is used). For each blob in the query image, a
predetermined number (in the order of the hundreds) of “best matches” is retrieved by
using the index. Note that the use of an index can lead to miss the correct best images,
since there is no guarantee that such images will be included within those returned by the
index itself, as it will be shown in Section 3.3. Among all the images containing regions
obtained in the index-retrieval step, the “true”, above described, matching algorithm is
then used to obtain the result images. However, since best matches for query blobs are
computed by ignoring matches for other blobs, it could be the case that a single blob in
a DB image is associated to two distinct query blobs (remind the “two tigers” example
described at the beginning of the Chapter).

2.3 Interactive Similarity Search

Like observed in the introduction of this Chapter, similarity search is a powerful way
to retrieve interesting information from large image DBs and, more in general, from
multimedia repositories [Fal96]. However, the very nature of multimedia objects often
complicates the user’s task of choosing an appropriate query and a suitable distance
criterion to retrieve from the DB the objects which best match his/her needs [SK97].
This can be due both to limitation of the query interface and to the objective difficulty,
from the user’s point of view, to properly understand how the retrieval process works
in high-dimensional spaces, which typically are used to represent the relevant features of
the multimedia objects. For instance, the user of an image retrieval system will hardly
be able to predict the effects that the modification of a single parameter of the distance
function used to compare the individual objects can have on the result of his/her query.

To obviate this unpleasant situation, several multimedia systems now incorporate some
feedback mechanisms so as to allow users to provide an evaluation of the relevance of the
result objects. By properly analyzing such relevance judgments, the system can then
generate a new, refined, query, which will likely improve the quality of the result, as
experimental evidence confirms [RHOM98, COPMO1]. This interactive retrieval process,
which can be iterated several times until the user is satisfied with the results, gives rise
to a feedback loop during which the default parameters used by the query engine are
gradually adjusted to fit the user’s needs (see for example [ORCT98]).

Although relevance feedback has been recognized as a method of improving interactive
retrieval effectiveness (both in text retrieval and image retrieval systems) [RHOMOS], its
applicability suffers two major problems:

1. Depending on the query, numerous iterations might occur before an acceptable result

16 Chapter 2. Background on Similarity Search in Image Databases

is found, thus convergence can be slow.

2. Once the feedback loop of a query is terminated, no information about this particular
query is retained for re-use in further processing. Rather, for further queries, the
feedback process is started anew with default values. Even in the case that a query
object has already been used in an earlier feedback loop, all iterations have to be

repeated.

Note that both problems concern the efficiency of the feedback process, whereas the
effectiveness of retrieval will depend on the specific feedback mechanisms used by the
system, on the similarity model, and on the features used to represent the objects.

In the following we briefly introduce the basic concepts of relevance feedback techniques
within the context of text-based retrieval, describing, more in detail, feedback methods

in image retrieval systems.

2.3.1 Relevance Feedback Techniques

We frame our discussion on feedback methods within the context of vector space similarity
models, where an object is represented through a D-dimensional vector (i.e. a point in R
vector space), p = (p[1],...,p[D]), and the similarity of two points p and q is measured

by means of some distance function on such space (see Section 2.1.1).

Relevance Feedback Technique in Text Retrieval

Relevance feedback was initially introduced in text retrieval to increment the number of
relevant documents returned by a query [Sal89]. In relevance feedback, the search through
a document collection starts with a user query. Upon receiving result documents, the user
gives his/her judgments by choosing which documents are relevant and which are not to
the query. Both the positive and negative relevance feedback are used to move the query
point towards the relevant points and away from the not relevant objects. In detail, the
above algorithm is implemented by way of Rocchio’s formula [Sal89], defined as:

g np
b;]
Qrew = Yotd + ﬁz n_ -7 - (26)
i=1 9 i=1

where q,,.,, represents the new query point, q,,,; is the initial query vector, p, represents
positive objects, and o; represents negative objects. Finally, n, and n;, are the number
of “good” and “bad” results, respectively, and # and v are two constant factors able
to determine the grade of attraction towards relevant documents and that of repulsion
away from negative objects (experiments demonstrated that, to limit the effect of negative

2.3 Interactive Similarity Search 17

feedback, setting 5 = 0.75 and v = 0.25 is the best choice [Sal89]). Thus, the new query
point is obtained summing, to the old query vector, the positive correlation vector (i.e.
the normalized sum of positive documents p;) and by subtracting the negative correlation
vector (i.e. the sum of negative objects 0;). Note that the new vector does not necessarily
correspond to a document from the collection.

Relevance Feedback Technique in Image Retrieval

Like observed in Section 2.3, in more recent years relevance feedback techniques have
been associated with CBIR systems to overcome problems like the gap between high-
level concepts and low-level features, and the human perception subjectivity of visual
content. As a result, a remarkable improvement of the effectiveness of similarity retrieval
is obtained [RHOMOS].

The typical interaction with a CBIR system, or, more in general, with a multimedia
retrieval system that implements relevance feedback mechanisms can be summarized as
follows [Sal89]:

Query formulation. The user submits an initial query @ = (q, k), where q is called the
query point and k is a limit on the number of results to be returned by the system.

Query processing. The query point q is compared with the DB objects by using a
(default) distance function d. Then, the k objects which are closest to q according
to d, Result(Q,d) = {p1,..., Pk}, are returned to the user.

Feedback loop. The user evaluates the relevance of the objects in Result(Q,d) by as-
signing to each of them a relevance score, Score(p;). On the basis of such scores a
new query, Q' = (d/, k), and a new distance function, d’, are computed and used to

determine the second round of results.

Termination. After a certain number of iterations, the loop ends, the final result being
Result(Qopt, dopt), Where Qopt = (dopt, k) is the “optimal” query the user had in

mind, and d,,; the “optimal” distance function used to retrieve relevant objects for

Qopt .

Each interactive retrieval system provides a specific implementation for each of the above
steps. For instance, the choice of the initial query point depends on the system interface
and, also considering the very nature of multimedia objects, can include a query-by-sketch
facility, the choice from a random sample of objects, the upload of the query point from
a user’s file, etc. Many options are also available for implementing the query processing

18 Chapter 2. Background on Similarity Search in Image Databases

good matches
- bad matches

@ (b)

Figure 2.3: The “query point movement” (a) and the "re-weighting” (b) feedback strate-
gies

step, which typically exploits index structures for high-dimensional data, such as the
X-tree [BKK96] and the M-tree [CPZ97].

More relevant to the present discussion are the issues concerning the feedback loop.
The use of binary relevance scores is the simplest one, even from the user’s point of
view. In this case the user can mark a result object either as “good” or “bad”, and
implicitly assigns a neutral (“no-opinion”) score to non-marked objects. Graded, and
even continuous, score levels have also been used to allow for a finer tuning of user’s
preferences [RHOM9S].

The two basic strategies for implementing the feedback loop concern the computation
of a new query point (query point movement), the change of the distance function, which
can be accomplished by modifying the weights (importance) of the feature components
(re-weighting). A further feedback technique is represented by the expansion of the query
point (query expansion).

Query point movement. The idea of this strategy, whose implementation dates
back to Rocchio’s formula [Sal89] reported in Equation 2.6, is to try to move the query
point towards the “good” matches (as evaluated by the user), as well as to move it far away
from the “bad” result points (see Figure 2.3 (a)). More recently, query point movement
has been applied by several image retrieval systems, such as MARS [RHOMOS]|. Ishikawa
et al. [ISF98] have proved that, when using positive feedback (scores) and the Mahalanobis
distance, the “optimal” query point (based on the available set of results) is a weighted
average of the good results, i.e.:

, Zj Score(p;) X p;
Zj Score(p;)

Re-weighting. The idea of re-weighting stems from the observation that user feedback

(2.7)

can highlight that some feature components are more important than others in deter-
mining whether a result point is “good” or not, thus such components should be given

2.3 Interactive Similarity Search 19

a higher relevance. For simplicity of exposition, let us consider a retrieval model based
on weighted Euclidean (see Equation 2.4) and also refer to Figure 2.3 (b). In order to
assess the relative importance of the i-th feature vector component, the distribution of
the “good” p;,; values, i.e. the values of the good matches along the i-th coordinate, is
analyzed. In an earlier version of the MARS system [RHOMO8], it was proposed to assign
to the i-th coordinate a weight w; computed as the inverse of the standard deviation of

the p;; values, that is:

1
w; oK — (2.8)

o
Later on, it was proved in [ISF98] that the “optimal” choice of weights is to have:
1

)
a;

w; X (2.9)
Similar results have been proved for quadratic distance functions [ISF98], as well as for
the case where the number of good matches is less than the dimensionality of the feature
space [RHO0].

In a recent paper [RHO0] Rui and Huang have extended the re-weighting strategy to
a “hierarchical model” of similarity, where above strategy is first individually applied to
each feature separately, and then each feature (rather than each feature component) is
assigned a weight which takes into account the overall distance that good matches have
from the query point by considering only that feature. Note that for F' features this
amounts to define the distance between objects p and q as a weighted sum of the F
feature distances, each of which the authors assume to have a quadratic form [RH00].

In Appendix B, we describe a sample application of feedback-based CBIR system show-
ing the experimental results obtained using different combinations of the two described
techniques.

Query expansion. The idea of this strategy, first proposed for the MARS system
[PC99], is to employ the relevant objects as new reference images (called representatives)
for the next search cycle [WFSPO00]. This produces a multipoint query defined in each
feature space. If the number of positive points is too high, a better solution is to select
a small number of good representatives to define the multipoint query. This is possible
using a clustering algorithm that partitions relevant objects in each feature space and

uses the cluster centroids as representatives for such feature space.

Chapter 3

Windsurf

In Section 2.1 we point out the main limitations suffering by current CBIR systems, that

can be here summarized as follow:

1. CBIR systems that rely on image global features extraction cannot support queries
that refer to local properties of the images (e.g. “Find all the images containing a
small red region under a big blue region”).

2. Existing CBIR systems, that fragment each image into a set of “homogeneous re-
gions” extracting local image properties, however, use naive heuristic matching al-

gorithms which are not guaranteed to return the correct results.

To overcome such problems, we have presented the WINDSURF system [ABP99, BCP00b],
a new region-based image retrieval system. WINDSURF applies the Wavelet Transform
to extract color and texture features from an image, and then partitions the image into
a set of “homogeneous” regions, each described by a set of local features. Similarity
between images is then assessed by first computing similarity scores between regions
and then combining the results at the image level. From the query processing point of
view, WINDSURF provides a correct definition of image similarity under the region-based
retrieval model, and introduce a novel index-based algorithm that can make use of any
distance-based access method to retrieve the k best-matching images for a given query. It
turns out that this is the first correct algorithm for region-based image similarity queries
[BCP00a, BP0OO].

3.1 Feature Extraction

WINDSURF (Wavelet-based INDexing of imageS Using Region Fragmentation) is a region-
based system that uses the Discrete Wavelet Transform (DWT) [Dau92] and a k-means

21

22 Chapter 3. WINDSURF

clustering algorithm to segment an image into regions. Each region is represented by
means of a set of features and the similarity between regions is measured using a specific
metric function on such features. Image pre-processing consists of the three steps shown

in Figure 3.1, namely:

DWT The image is analyzed in the time-frequency domain using a 2-D DW'T.

Clustering The image is fragmented into a set of regions using a k-means clustering

algorithm that groups together similar wavelet coefficients (clustering features).

Feature Indexing Regions obtained from the clustering phase are represented by means

of a set of similarity features.

T e
[e

Figure 3.1: Steps of the WINDSURF feature extraction.

3.1.1 DWT

WINDSURF views each image as a 2-D signal to be analyzed by means of a 2-D DWT
in the time-frequency domain. More in detail, we use Haar wavelets from the WAILI
software library [UVJT97] and represent images in the HSV color space, because in this
space each color component is perceptually independent and uniform [Smi97].

The j-th wavelet coefficient of sub-band B (B € B = {LL,LH,HL, HH}, where L
stands for “low” and H for “high”) and DWT level [is a 3-D vector, i.e.:
; ;B ;B I;B
where each component refers to a color channel ¢ (¢ € {0,1,2}). The energy of wé;B on
the ¢ and d channels is then defined as:

elc;cg = whP Wl (3.2)

3.1 Feature Extraction 23

When ¢ = d, el B is called the channel energy of channel ¢, whereas, when ¢ # d, ecd is
termed the cross- correlatzon energy between channels ¢ and d. The energy vector

; ,B 1B LB ;B LB LB

€; = (600 1 €01, €02;5 €11, €12, €22;) (3.3)
captures both color and texture information through channel and cross-correlation ener-
gies, respectively. This is similar to the approach described in [Smi97] and is known to be
one of the more robust methods for the representation of texture features [CK93, VSLV99].

3.1.2 Clustering

The aim of the clustering phase is to fragment an image into a set of regions by grouping
together image pixels that are similar in color and texture features. To this end, we apply
a clustering algorithm to the wavelet coefficients (clustering features) obtained through
the DWT step. In particular, we apply a k-means algorithm with a “validity function”
which is a variant of the one proposed for the fuzzy k-means algorithm [XB91] (see below).

Given a set X = {x,...,2n} of N points (wavelet coefficients, in our case) to
be clustered, the k-means algorithm starts with a set of k& randomly-chosen centroids,
{14, ..., i}, and then assigns each point x; to its closest centroid p;. After this, the al-
gorithm iterates by recomputing centroids and reassigning the points, until either a stable
state or a limit to the number of iterations are reached. It can be proved that k-means

algorithm leads to minimize the function

k
J = Z Z 6(xjvlui)2 (3.4)
i=1 z;€C;
where §(z;, it;) is the distance between z; and its closest centroid p;. Obviously, both the
final value of J and the result of the algorithm depend on the value of k and on the choice
of the distance function §(). As for §() we use the Mahalanobis distance applied to the
3-D wavelet coefficients of the LL sub-band of the 3-rd DWT level, that is, z; = w?;LL.
This choice is due to the results of extensive experimental evaluation, which demonstrated
that best, most stable, clusters are obtained by taking into account only low frequency

descriptors. The Mahalanobis distance between points w3 LL and w3 LL s given by:
3;LL 3;LLN\2 3;LL 3;LINT 3;LL\ 1 3;LL 3;LL
O(w;™ ", wi)t = (w; ™ — w;)T X (C) X (w;™" — w;) (3.5)

where C31E = {COUBdL L} is the covariance matrix of the points, that is:

N
3LL BLLSLL SLL | 3LL
cov,y —(E wy g wy g wy,) (3.6)
j=1

24 Chapter 3. WINDSURF

By using the Mahalanobis distance, two desirable effects are obtained: First, vectors
are automatically normalized (depending on the diagonal elements of the covariance ma-
trix); second, the distance function also considers cross-correlation energies, thus texture
characteristics, due to the off-diagonal elements of C3LL.

Since different values of the k parameter can lead to different results, we iterate the
k-means algorithm with k& € [2,10], and then select the “optimal” k value as the one

minimizing the validity function V, defined as:

J’ Yoo
V= +;71+|C¢| (3.7)

where k' represents the number of “good” clusters, i.e. clusters that are not too small,
J' is as in Equation 3.4, but now it only takes into account good clusters, 0y, =
min;;{(s;, ;) } is the minimum distance between cluster centroids, and |C;| is the car-
dinality of cluster C;. The first term of Equation 3.7 represents the goal function J’
divided by 62, , i.e. clusters well separated provide better solutions, whereas the second
term represents a penalty factor for small clusters. As an example, Figure 3.2 shows the
results of the k-means algorithm applied to the image on the left, when k£ = 2, k£ = 10,
and k = 4, respectively, the latter being the optimal solution according to the V' validity

function.

wmf
I
it
(a) (b) (d)

Figure 3.2: (a) The input image. Clusters obtained for: (b) k =2; (¢) k =10; (d) k =4
(optimal solution). In the clustered images, points having the same color belong to the
same cluster.

As a final issue, consider the particular case where the optimal solution is to have k = 1,
which corresponds to images consisting of a uniform pattern, for which no segmentation
is appropriate. Since the validity function V' is not defined for £ = 1, we resort to an
analysis of the covariance matrix C¥/. This can be geometrically represented as a 3-
D ellipsoid, where each axis has a direction given by a matrix eigenvector and a length
determined by its corresponding eigenvalue. Intuitively, when all the eigenvalues are small,
then the wavelet coefficients have a small variance, and this can be used as an evidence
that the image represents a homogeneous pattern. Since the trace of a matrix equals the

3.2 Similarity Model 25

sum of its eigenvalues, by just looking at the trace Zgs.ce of C3L we can therefore deal
with images for which the clustering algorithm should not be applied at all. In practice,
if Zps:er is smaller than a given threshold value (3, then the image is considered as a
homogeneous pattern. In our tests we found that § = 1000 is an appropriate threshold
value. As an example, consider the image in Figure 3.3 (a), whose covariance matrix is
given in Figure 3.3 (b). It is clear that the image is a homogeneous pattern, and our

perception is confirmed by the analysis of the trace of the covariance matrix whose value

is Tesiee = 5.17 + 357.91 + 237.00 = 600.08 < 1000.

16.10 —3.90

CHEL = 16.10 |357.91] —152.56
—-3.90 —152.56 [237.00

(b)

Figure 3.3: A homogeneous image (a) and its covariance matrix C3/L (b).

3.1.3 Feature Indexing

Regions obtained from the clustering phase are described using a set of similarity features,
which are then used for image retrieval. In detail, when comparing regions, we consider
information on size and color-texture as provided by all the frequency sub-bands of the
3-rd DWT level. To this end, the similarity features for a region R,; of image I, are
defined as a 37-D vector, whose components are:

Size The number of pixels in the region, size(R;).

Centroid The 12-D centroid of Ry;, pr,, = (ug" ., pi, pp” , pp'), where each pg is
a 3-D point representing the average value for each of the 3 color channels in the B
sub-band.

Covariance matrices This is a 24-D vector, denoted Cf’%s ., containing the elements of
. . -B . i . .
the 4 3 x 3 covariance matrices, C}O’{’“, of the points in R,;. Since the covariance

matrices are symmetric, only 6 values for each matrix need to be stored.

3.2 Similarity Model

The image similarity model of WINDSURF defines the similarity between two images as a

function of the similarities among “matched” regions, as Figure 3.4 suggests.

26 Chapter 3. WINDSURF

image similarity

L eV .
Méw*w ||||||

region matching

Figure 3.4: Similarity between images is assessed by taking into account similarity between
matched regions.

To completely characterize the image similarity model, we have therefore to first spec-
ify how similarities among regions are determined, and then how such region-based simi-
larities are combined together to produce the overall similarity score between images.

3.2.1 Region Similarity

The similarity between two regions, R,; (represented by the feature vector [uqui,C%qi,

size(R,;)]) of a query image I, and R, ; (with feature vector [ug, ,,C}, ;> size(Ry;)]) of a

DB image [, is computed by WINDSURF as:
Tsim(Rg,is Rs ;) = h(d(Ryyi, Rs ;) (3.8)

where d() is a distance function, and h() is a so-called correspondence function [Fag96,
CPZ98] that maps distance values to similarity scores. The function h : RZ — [0, 1] has

to satisfy the two following properties:

ho) — 1
di <dy = h(dl) > h(dg) le,dg c %8—

since equal regions should have a similarity score of 1 and the function should map low
distance values into higher scores and vice versa.

—d/7a where o4 is the standard deviation of

In all our experiments we use h(d) = e
the distances computed over a sample of DB regions. The distance d(R,;, Rs ;) between
regions R,; and R, ; is a weighted sum, taken over the four frequency sub-bands, of

the distances between color-texture descriptors, plus an additional term that takes into

3.2 Similarity Model 27

account the difference between the relative size of the two regions:
d(Ryis Rog)* = Y 3 - dp(Rys Rog)*+

BeB
2 size(Ry;) size(Rs ;) 2 (3.9)
size(Rs,5) size(1,) size(ls) '

size(Rg,;)
size(Iq) + size(ls)

In our experiments we equally weigh the frequency coefficients, i.e. yg =1, VB € B. The
second term in Equation 3.9 takes into account the difference in size between the regions
by multiplying it by a coefficient that favors matches between large regions.

The distance dg(R,;, Rs ;) between two regions on the frequency sub-band B is com-
puted using the Bhattacharyya metric [Bas89]:

2

1
dB(Rq,ia Rs,j)Q = 5 In p 1 . 1
2| e

3;B 3B\ L
1 T Céqi+cés,-
v | (B, 8) > (f < (uf, —uf)| 310)

where |A] is the determinant of matrix A. Equation 3.10 is composed of two terms. The
second term is the Mahalanobis distance between regions centroids, where an average
covariance matrix is used. The first term is used to compare the covariance matrices of
the two regions. Note that if the two regions have the same centroid, the second term of
Equation 3.10 vanishes, thus the first term measures how similar the two 3-D ellipsoids
are (this is the case of regions with similar colors but different texture, see Figure 3.5).
When computing Equation 3.10, we also correctly take into account those particular
cases arising from singular covariance matrices. Such situations originate, for instance,

from uniform images (e.g. a totally black image), where the covariance matrix is null.

3.2.2 Combining Region-Based Similarities

The basic idea of any region-based image retrieval system is that the similarity between
two images depends on the similarities among component regions. What makes WIND-
SURF different from other systems, such as those described in Section 2.2, is that its
similarity model can correctly define the “best matches” for a query image by taking into
account all the information available from regions’ similarities. For this we first need to
define what a matching is.

28 Chapter 3. WINDSURF

Figure 3.5: Two ellipsoids with different shape and equal centroids.

Definition 3.1 (Matching)

Given a query image I,, divided into a set of regions R, = {Rqﬁl, ce qunq}, and a DB
image I, divided into a set of regions Rs = {Rs1, ..., Rsm, }, & matching between I, and
I, is an injective function I'y : R, — R, U {L} that assigns to each region R,; of the
query image either a region of I or the “null match” L.

Note that any matching satisfies, by definition, the two following constraints:

1. A region of I, cannot match with two different regions of I, (Figure 3.6 (a)).

2. Two different regions of I, cannot match with the same region of I, (Figure 3.6 (b)).

.qll |

(b)

Figure 3.6: A region of I, cannot match with two regions of I (a) and two regions of I,
cannot match with the same region of I; (b).

Given a matching I', the corresponding similarity between I, and I, is computed by
means of the I M, combining function:

]sim([q7 Is) = [Msim(rsim<Rq,17 Fs(Rq,1)>a e 77asim(Rq,nq7 FS(Rq,nq))) (311)

where it is assumed that 7, (R,;, L) = 0, in case a match for R,; is not defined.

3.2 Similarity Model 29

The only requirement we put on the I My, function is that it has to be a monotonic

non-decreasing function, i.e.:
$; <8 = IMgm(s1,..,Sir ey 8n) < ITMym(s1, ..., 8 ..., 8n) (3.12)

This is intuitive, since better matches between regions are expected to increase the overall
similarity score between corresponding images. Moreover, for the sake of simplicity, in
the following we will assume that I Mg, is a symmetric function of its arguments.
Clearly, any different matching leads, according to Equation 3.11, to a different value
for the similarity of I, and I,. It is natural to define the “true” image similarity by only

considering optimal matchings.

Definition 3.2 (Optimal matching)
A matching that maximizes Equation 3.11 is called an optimal matching between I, and
I, and will be denoted as ['%".

Definition 3.3 (Image similarity)
The similarity between I, and I, is defined as the value of IMj;,, computed from an
optimal matching, i.e.:

Isim([qa I,) = H}aX{IMsim(rsim(Rq,lv FS(Rq,l))a . 77’sim(Rq,nq> F8<Rq,nq)))} =
-]Msim(rsim(Rq,la ngt(Rq,l))y ceey rsim(Rq,nqa ngt(Rq,nq))) (313)

The following is a simple property of optimal matchings, which holds for any combining
function IMy;,,.

Property 3.1 (Maximal and complete matchings)

Let n, be the number of regions of I, and m, the number of regions of I,. If 4, (R, Rsj) >
0 holds for any pair of regions of /, and I, then a matching I'y can be optimal only if it
is mazimal, that is, only if I's(R, ;) is undefined for exactly max{n, —m,, 0} regions of I,.
When n, < m, a maximal matching is also said a complete matching, since for all query
regions R, ; it is T's(R,;) € Rs.

3.2.3 Determining the Optimal Matching

Determining the optimal matching for images I, and I, can be formulated as a generalized
assignment problem. For this, let s;; = rym(Ry, Rs;) be the similarity score between

30 Chapter 3. WINDSURF

region R, ; of I, and region R ; of I, and denote with H the index set of pairs of matched
regions, that is:
H = {(i,7)|Ts(Rys) = R}

Of course, it is |H| < min{n,, ms}. Then, the goal is to maximize the function

IMsim(Siljla .. ’Si\H\jUﬂ)

with (ingn), (isi1) € H, (injn) # (417;). To this end, we introduce the variables z;;, where
z;; = 1if I'y(R,;) = Rs; and z;;; = 0 otherwise. Then, the generalized assignment
problem is formulated as follows:

]Sim(]qv IS) = max {IMSim<Si1j17 ceey Si|7—¢|jm\)} (ihjh)a (Zl.]l) € Ha (Zhjh) 7é (Zl]l) (314)

H = {(i,j)|zy = 1} (3.15)
imij <1(i=1,...,n,) (3.16)
j=1
ixij <1(=1,...,m,) (3.17)
Zleije{o,l} (i=1,...,ng 5=1,...,m,) (3.18)

Equation 3.14 means that to determine the overall score I, (1,, Is) we have to consider
only the matches in ‘H (Equation 3.15). Equation 3.16 (respectively Equation 3.17) ex-
presses the constraint that at most one region Ry ; of I; (resp. R,; of I,) can be assigned
to a region R,; of I, (resp. R, ; of I).

In order to devise an algorithm to solve the generalized assignment problem, we need
to consider specific choices for the I Mg;,, combining function. At present, in WINDSURF
we consider the average similarity between pairs of matched regions:

1 Tq i 1 Nq .
im(l 1) = == 3 rain (B T (Ryi)) = = > h(d(Byun T (Ry)) (319
q ;-1 9 j=1

This leads to rewrite Equation 3.14 as follows:

1 Ng mg
Lim(Iy, 1) = — max {Z > sy :cj} (3.20)
q

i=1 j=1

The generalized assignment problem, in this case, takes the form of the well known As-
signment Problem (AP), a widely studied topic in combinatorial optimization, which can
be solved using the Hungarian Algorithm [Kuh55].

3.3 Query Processing and Indexing 31

In case of sequential evaluation, the ERASE (Exact Region Assignment SEquential)
algorithm, shown in Figure 3.7, can be used to determine the k£ nearest neighbors of the
image query I, within the C data set. Note that HUNG invokes the Hungarian Algorithm

on the {s;;} matrix of regions’ similarity scores.

ERASE(/,: query image, k: integer, C: data set)
{ V image I; in the data set C
{ V region R, ; of I
V region R,; of I, compute s;; = S(Ry;, Rs;);
invoke HUNG({s;;}) obtaining, as the result, the value [gn(Iy, Is); }
return the k images having the highest overall similarity scores Iy, (I4, Is); }

Figure 3.7: The Exact Region Assignment SEquential algorithm.

Resolution of k£ nearest neighbors queries by means of the ERASE algorithm requires the
computation of similarity scores between regions in the query image and all the regions
contained in the DB images. Algorithm complexity is, hence, linear in the DB size.

To evaluate the goodness of the ERASE solution, we also introduce a simple heuristic
method of image matching, called WINDSURF®P. WINDSURF*? first determines for each
query region R, ; the most similar region I'(R, ;) in Rs. Then, in case I''(R, ;) = I (R,.)
holds for two distinct query regions R,; and R, ,, WINDSURF*” only keeps the best of
the two assignments and discards the other one (i.e. the corresponding score is set to 0
and the query region remains unmatched). Comparison between the proposed strategies
is postponed until Section 3.4.

3.3 Query Processing and Indexing

In this Section we describe an index-based algorithm aiming to speed-up the evaluation
of k nearest neighbors queries. This is carried out by reducing the number of candidate
images, i.e. images for which the overall image similarity needs to be computed.

Since similarity between images is computed by combining distances between regions’
features, we use a distance-based access method (DBAM), like the R*-tree [BKSS90]
or the M-tree [CPZ97], to index regions extracted from the DB images.! Such index
structures are able to efficiently answer both range and k nearest neighbors queries, as
well as to perform a sorted access to the data, i.e. they can output regions one by one in
increasing order of distance with respect to a query region [HS99].

In WINDSURF we use the M-tree index [CPZ97], but other choices are possible.

32 Chapter 3. WINDSURF

In order to deal with “compound” queries, where multiple query regions are specified,
a query processing algorithm based on multiple sorted access index scans is needed. To
retrieve the best matches for the query regions, we run a sorted access to the indexed
regions for each region in the query image. Clearly, the problem is to devise a suitable
condition to stop such sorted access phase so that we are guaranteed that the k best images
can be correctly determined without looking at the whole data set. More precisely, the
stop condition has to guarantee that the £ nearest neighbor images of the query image I,
are among the so-called candidate images, i.e. those images for which at least one region
has been retrieved during the sorted access phase (Figure 3.8).

query regions

- regions result sets

stop here!

candidate images

L

Figure 3.8: Producing the candidate set of images from the sorted access phase.

A first naive approach to solve compound queries with DBAMs goes as follows. For
each region R,; of the query image I,, we execute a k nearest neighbors query, that is,
we determine the £k regions in the data set most similar to R,;. Then, we compute an
optimal matching for all the images for which at least one region has been returned by
the previous step.? This algorithm guarantees that the number of candidate images is not
higher than n, - k. Such a solution is indeed quite efficient, but it is not correct. As an
example, consider the case where n, = 2, k = 1, and assume that the regions’ similarity
scores obtained by the two sorted access scans are as in Table 3.1.

2Note that this is, indeed, the query processing approach used by Blobworld.

3.3 Query Processing and Indexing 33

Ryq Ry2
region image similarity | region image similarity
Ry I 0.90 Rs I3 0.87
R272 I 0.85 R2,1 I 0.79
R471 n 0.83 R3,3 I3 0.75
R3 3 I3 0.71 Riq I 0.72
Ry P 0.69 Rio I 0.70

Table 3.1: A sorted access example for a query image with two regions R, and R, .

It is plain to see that the image most similar to I, is the image I (the overall similarity
score, computed as the average sum of regions similarities, is (0.94-0.7)/2 = 0.80 for image
I, (0.85 4 0.79)/2 = 0.82 for Iy, and (0.71 4+ 0.87)/2 = 0.79 for I3, with other images
leading to lower scores), whereas the candidate set only contains images [; and I3.

In order to find a correct condition to stop the sorted accesses, we start from Fagin’s
Ay algorithm [Fag96]. The A, algorithm stops the sorted access phase when at least
k objects are included in all the index scans results. The only requirement for the A
algorithm is that the function applied to combine objects’ scores (in our case, the I Mg,
function) has to be monotonic which is our case (see Section 3.2.2). Applying the Ay
algorithm to the optimal image matching problem would be as in Figure 3.9.

Ag(ly: query image, k: integer, 7 : DBAM)
{ V region R,; of I,, open a sorted access index scan on 7 and insert images
containing result regions in the set X,
stop the sorted accesses when there are at least k£ images in the intersection
L= ﬂiXi;
for each image [; in the candidate set U X7, compute the optimal assignment;
(random access)
return the k images having the highest overall similarity scores I, (ls, Iy); }

Figure 3.9: The Ay algorithm for the optimal image matching problem.

Ao, however, does not guarantee yet that the k& best images are included in the can-
didate set, since its stopping condition does not take into account that assignment of
regions has to be a matching. Just consider, as an example, the case depicted in Table
3.2, where n, = 2 and k = 1. Here, as opposed to the case of Table 3.1, it is not correct
to stop the sorted access phase at the second step, since image I5 has been found for both
query regions with the same region R ; therefore, we cannot find a matching for image

34 Chapter 3. WINDSURF

I, by using only regions that have been seen during the sorted access phase.

Rq’ 1 Rq,2
region image similarity | region image similarity
Ry I 0.90 Rs I3 0.87
R271 I 0.85 Rg)l I 0.79
Ryq Iy 0.83 Rs s ES 0.75
R3 3 I3 0.71 Riq I 0.72
Ra s P 0.69 R I 0.70

Table 3.2: Another sorted access example for a query image with two regions R,; and
R,o.

To ensure that the k£ best results are included into the set of candidate images, the
stopping condition of Ay algorithm has to be modified to test correctness of regions’
assignments (see Definition 3.1). The sorted access phase can be stopped as soon as a
complete matching (Property 3.1) is found, by taking into account only regions returned
by index scans.® In the example of Table 3.2, hence, we stop the sorted access phase
after the fourth step, since image I3 has a complete matching (I's(R,1) = Rs3 and
[3(R,2) = Rs2). It should be noted, however, that this is not the best result for I,
(image I; leads to the best overall score of 0.8). In other words, the sorted accesses can
be stopped as soon as it is guaranteed that each image outside of the candidate set leads
to an overall similarity score lower than that of the k-th best image, i.e. when optimal
matchings for non-candidate images could only lead to lower scores with respect to the
k-th best matching within the candidate set.

Consider again, as an example, the case where n, = 2 and k = 1, and refer to Table
3.2. After the first step, the candidate set is {Iy, I3} with overall scores (0.9+40)/2 = 0.45
and (0 + 0.87)/2 = 0.435, respectively. Since an image outside the candidate set could
potentially lead to an overall score of (0.9 + 0.87)/2 = 0.885, we have to continue the
sorted access phase. After the second step, we add image I to the candidate set with
an overall score of (0.85 4 0)/2 = 0.425 (remember that region Rs; can match at most
one region of I,); therefore, the sorted accesses cannot be stopped yet. At the third
step, also image I is added to the candidate set, with a score of (0.83 + 0)/2 = 0.415.
Finally, at fourth step, we obtain a complete matching for image I3 (I's(R,1) = R3 3 and
I'3(Ry2) = Rs2) with a score of (0.71 + 0.87)/2 = 0.79. In this case, the sorted access
phase can be stopped, since images outside of the candidate set can only lead to lower

3By the way, this is the reason why Blobworld algorithm is not correct, since its stopping condition
cannot guarantee the existence of a complete matching.

3.3 Query Processing and Indexing 35

scores (at most (0.71 4 0.72)/2 = 0.715). The monotonicity of the combining function
I My;p, is used here to ensure algorithm correctness (see below). Note, however, that image
I5 is not the best result for I, since image I; leads to the best overall score of 0.8. In
order to solve the optimal image matching problem on the set of candidate images, we
need to compute similarity scores between query regions and all the regions of candidate
images.

From above example, it is clear that the sorted access phase can be stopped as soon as
a complete matching is found, by taking into account only regions returned by index scans.
This leads to the A} algorithm shown in Figure 3.10. At this point it is important to
note that no assumptions are done on the way the sorted access lists have to be explored
(i.e. in parallel or in a differential way). Samet at al. in [HS99] say that, for its intrinsic
properties, a DBAM is able to establish in a correct way, at each time, which is the most
promising sorted access. This allows a differential way to visit the lists that optimizes
the sorted access phase. Thus, also WINDSURF can support not only the simple parallel

access but also the more efficient differential modality.

AVS(1,: query image, k: integer, 7 : DBAM)
{ V region R,; of I,, open a sorted access index scan
on 7 and insert result regions in the set Xt
stop the sorted accesses when there are at least k images for which a complete
matching exists, considering only regions in U X
V image I, having regions in U;X°?,
V pair Rq7i7R§7j
if Rs; ¢ X' compute score s;;; (random access)
compute the optimal assignment; (combining phase)
return the k images having the highest overall similarity scores Iy, (l4, Is); }

Figure 3.10: The A}Y* algorithm.

The random access phase consists in computing those similarity scores s;; between
query regions and regions of candidate images not present in the X* regions result sets.
After that, the combining phase determines the optimal matchings for all the candidate
images.

Correctness of the AEVS algorithm follows from the monotonicity of the IMy;,, com-
bining function. Without loss of generality, consider the case £ = 1 and assume by
contradiction that the nearest neighbor image, say I,,, of I, is not in the candidate set.
Also observe that the candidate set includes (at least) one image, say I, for which a
complete matching has been obtained. We prove that I, (1, Is) > Lsim(1y, Inn). Because

36 Chapter 3. WINDSURF

of the monotonicity of I Mg, it is enough to show that, for each i € [1,n,], it is:
Tsim(Rq,ia Fs(Rq,i)) Z Tsim(Rq,ia Fzzvf(Rq,z))

where T’y is the matching obtained for I, from the sorted access phase, and T'%" is the
optimal matching for I,,,,. Assume that there exists a value of ¢ for which it is:

rsim(Rq,i’ ngf(Rq,i)) > rsim<Rq,i’ FS(Rq7i))

However, this is impossible since the region I'%'(R, ;) of I, does not belong, by hypothe-
sis, to the set X* obtained from the i-th sorted access scan. This is enough to prove that
Lsim (14, Is) > Lsim (14, Inn).

The index evaluation of compound queries, thus, has a twofold impact on query evalu-
ation: First, the use of an index can reduce the number of distance computations needed
for assessing image similarity; second, the number of images on which the Hungarian
algorithm has to be run is reduced by considering only images in the candidate set.

3.3.1 Optimizations to A}'® Algorithm

In Section 3.3 we have described an index-based algorithm aiming to speed-up the evalu-
ation of k nearest neighbors queries. We have observed that the A} algorithm, even if
more efficient as compared to the sequential one, can be further optimized, reducing the
number of distance computations needed to answer a query, using bounds provided by the
underlying index structure [GBK00, FLNO1]. In this Section we describe the optimized
version of AYS, called AYS".

Bound-Based Algorithm

To better understand how to improve the A{® algorithm, we give a geometrical inter-
pretation of the problem. Referring to the geometrical model for combining query results
introduced in [PF95], we depict our considered scenario in Figure 3.11. For simplicity, we
suppose that images contain only two regions (n, = ms = 2) and k = 1. Each image of
the DB can be viewed as a point in a 2-dimensional space and each region can be mapped
onto an axis divided into score values (from 0, representing the smallest similarity value,
to 1, the highest one). Evaluating results of a subquery (representing a region of a query
image) by ranks can be represented as moving a hyperplane orthogonal to its respective
axis from 1 to 0. The order in which objects are collected by the hyperplane can be
mapped onto the ranks on which they occur. Let X' and X2 be the two sorted access
lists defined as:

X' = [P1,1>P2,1> D) po,l] X? = [p1,2a P22, --->Po',2]

3.3 Query Processing and Indexing 37

S random access

i |
1 v
I
So’,z i
Nno access <«|— random access
O So,l Si,1 1 S

Figure 3.11: Geometrical representation of the A} algorithm.

where p; ; and p, , represent the labels of two generic regions returned in X Land X2, Let
then s;; and s;5 be the score values associated to the regions labelled as p,; and p;,,,
respectively. Finally, let I be the object satisfying the stopping condition of the sorted
access phase of the A{"® algorithm (i.e. the image of the data set for which a complete
matching exists). By means of the overall similarity score, computed as the average sum
of regions similarity, we compute the “local” similarity S(I) for the object I.

Definition 3.4 (Local Similarity)

Let p;;, p;2 be the two regions of image I with score values s;; and s;,. The local
similarity value for I is defined as the average of its local score values (i.e. scores returned
during the sorted access phase). In case a score is not present in an index scan its value

1s set to zero.
Si1+ Sj2

S(1) = 22

(3.21)

Because of the monotonicity of the scoring function we can say that S(I) represents a
lower bound for the similarity of the “best” image, i.e. the image having the highest score.
It has to be noted that, following the definition of the stopping condition, objects
belonging to the white rectangular area in Figure 3.11, defined by s,; and s, 2, can
be discarded. At this point, the random access phase has place and distance values for
objects in the grey areas are computed. Finally, following the A}® algorithm, the optimal
assignment for all images belonging the candidate set, which is geometrically represented
by way of the two grey rectangles shown in Figure 3.11, is obtained. The black area
contains objects for which a complete matching has been found (k in the general case).

38 Chapter 3. WINDSURF

Maintaining the stopping condition of the sorted access phase, we note that it is
possible to further cut down the cardinality of the candidate set obtaining an optimization
of the random access: This is the goal of the A}/®" algorithm.

Looking at Figure 3.12, let us observe that the evaluation of the aggregated scores by
way of the scoring function can be geometrically represented as moving a hypersurface,
collecting objects while moving over the space. Since objects collected first have higher
aggregated scores, the hypersurface should be orthogonal to the optimal direction starting
at the optimal level. Since image I provides a bound on the similarity of the result image,
we only have to consider objects located “above” the diagonal line passing in I, that is in
the two light grey triangular regions in Figure 3.12. It is now clear that the cardinality
of the candidate set images can be drastically reduced, with no relevant object missed.

no random access
Sz ‘ random access
=
S.

0.2 random access

Sj.2 ittt ettt e

No access 0

!
i no randomaccess

0 1
So,l Si,l S

Figure 3.12: Geometrical model the AYS" algorithm.

From an algorithmic point of view, we can formalize the A}S" algorithm as follows:
Let p;; be the region from image I returned from the index scan 1 at time 7 and let
si1 be its score value, and suppose that, at time ¢, we have no information for image /
from scan 2, i.e. we do not know the value of s;2. A bound on the value of S(/) can be
immediately found, by considering that s;2 < s, 2 holds. The “approximate” similarity
ST(I) for image I can be computed as follows.

Definition 3.5 (Approximate Similarity)
Given an image I with score values s;; (returned by the index scan 1) and s;2 (not
returned from the index scan 2), the approzimate similarity value for I is computed as

3.3 Query Processing and Indexing 39

AVS (I, query image, k: integer, 7: DBAM)
{ V region R,; of I,, open a sorted access index scan
on 7 and insert result regions in the set X°;
stop the sorted accesses when there are at least k images for which a complete
matching exists, considering only regions in U X
V image I, having regions in U; X'
compute the local image similarity Ss;
compute the approximate image similarity S;‘
V image I having regions in U; X'
if SF > max{S,}
V pair Ry, Rsj
if Rs; ¢ X' compute score sij; (random access)
compute the optimal assignment; (combining phase)
return the k images having the highest overall similarity scores I, (Ig, Is); }

Figure 3.13: The AY*" algorithm.

the average of s;; and sy

Si1 1 Sor 2
2

where s, 5, the score value associated to p, o, the last object retrieved by the index scan,

St(I) = (3.22)

represents an upper bound for s; .

As an immediate consequence, the following holds:

Si,1 + Sj.2 < Si,1 + So! 2
2 - 2

Thus, ST(I) is an upper bound on the similarity value of image I. Like shown in Figure

S(I) = = S7(I)

3.13, starting from the same candidate set of the A}/ algorithm, we do not need to solve
the assignment problem for all candidate images but only for images whose upper bound
ST(I) is greater than or equal to the maximum similarity value obtained so far (let us
denote such score as Spax):

ST(I) > Siax

Related to the state-of-the-art about query processing algorithms, we would like to
stress that the WINDSURF query processing strategy has the same potentialities as the
Quick-Combine approach [GBKO00]. Moreover, like pointed out in Section 3.3, WINDSURF
is also able to optimize the sorted access phase in a better way than Quick-Combine,
determining, in a correct way, which is, for each step, the most promising sorted access
list and, thus, finding the fastest way to satisfy the stopping condition.* Since WINDSURF

4The Quick-Combine approach bases this kind of optimization on the use of simple heuristics [GBKO0)].

40 Chapter 3. WINDSURF

uses an index structure for which the sorted access strategy proposed in [HS99] can be
used, we are able to establish:

e At which distance is the next entry in the sorted access list.
e A tight bound on such distance, in case the previous information is not available.

In both cases, it is clear that the bounds used from A{"®" can be further cut down,
producing further efficiency improvements.
Moreover, it has also to be pointed out that the presented query processing strategy

can be used with any monotonic combining function and not with just the average.

3.4 Experimental Results

Preliminary experimentation of the proposed techniques has been performed on a sample
medium-size data set consisting of about 2, 000 real-life images, yielding more than 10, 000
regions, extracted from a CD-ROM from IMSI-PHOTOS [IMS]. The query workload con-
sists of about 100 randomly chosen images not included in the data set. All experiments
were performed on a Pentium II 450 MHz PC equipped with 64MB of main memory and
running Windows NT 4.0.

3.4.1 Efficiency

The first set of experiments we present concerns the efficiency of the proposed approach.
In order to test the performance of the A}/ index-based algorithm, in Figure 3.14 we
compare the number of candidate images, i.e. the images on which the Hungarian algo-
rithm has to be applied, as a function of the number of query regions.® Of course, for the
ERASE algorithm the number of candidate images equals the number of images in the data
set, whereas for the index version this number depends both on values of k£ and of the
number of query regions. As the graph shows, the AY* algorithm is indeed very efficient
in reducing the number of candidate images, even if its performance deteriorates as the
number of query regions increases. This is intuitive, since the complexity of finding k
objects in the intersection of n, sets augments with n,.

Another element affecting performance is the number of computed distances between
regions. In Figure 3.15 (a) we show the number of computed distances for the ERASE and

the AV algorithms, as a function of k, with a number of query regions n, = 3. In order

5Unless otherwise specified, all the graphs presented here show numbers averaged over all the images
contained in the query workload.

3.4 Experimental Results 41

2000 T T T T T

1800 K~ Hommmmm e Kommmm Kommmmm Koo £

1600 -
1400
1200
1000

800

600

of candidate images

400
2008

5
of regions

Figure 3.14: Average number of candidate images as a function of the number of query
regions.

to reduce the number of distances to be computed for the index-based algorithm, we also
considered an approximate version of the A} algorithm, called AKV Serr In this case,
the random access phase computes the optimal matching for each candidate image by
taking into account only regions returned by the sorted access phase, i.e. no new distance
is computed. Average number of distance computations for the AXV Sapr algorithm is also
shown in Figure 3.15 (a). The graph shows that the index-based approach is not very
efficient in reducing the number of computed distances. We believe that this is due to the
low cardinality of the data set: Increasing the number of images in the data set would have
a beneficial effect on the performance of index-based algorithms (whose search costs grow
logarithmically with the number of indexed objects) with respect to that of sequential
ones.

Finally, in Figure 3.15 (b) we compare query response times as a function of k£ (with a
constant value of n, = 3). The graph shows average query evaluation times (in seconds)
for the ERASE algorithm, the WINDSURF™? heuristic matching algorithm, and the two
index-based algorithms, A} and A(V)V Serp , respectively. From the graph it can be deduced

that:

e The lower complexity of image matching for the WINDSURF? algorithm with re-
spect to the ERASE algorithm does not pay off in reducing query evaluation times.
This is due to the fact that, if n, is low (as it is in our case), finding the optimal

result is very easy.

e The index-based algorithms really succeed in cutting down query resolution times,

even if difference in performance reduces with increasing values of k.

app

e The approximate AXV 5 algorithm has performance similar to that of the exact

42 Chapter 3. WINDSURF

AWS algorithm. This demonstrates that the performance improvement with respect
to sequential query evaluation is due to the lower number of candidate images, and
that the number of computed distances has a minor impact on performance.

32 T T T 50
|- WS =
s oo g G Qo g
30 |- ERASE, Windsurf*® -a-- 4
29 | | 45 +
E 28 e
x
2 27 - B O
%) 40
o 26 B £
k5 £
é 25 - @ L R B [R AWS o
15} Ag\'gm —+-
; ar] 35 [ERASE -B--
,,,,,,, B WindsurfaPP -x
23 — e -] oz
2F g
21 1 L L 30 .
0 5 10 15 20 0 5 10 15 20
k k

Figure 3.15: Average number of computed distances (a) and average query resolution
time (b) as a function of k (n, = 3).

3.4.2 Effectiveness

In order to compare the “goodness” of results obtained by approximate algorithms (i.e. the
WINDSURF? heuristic matching algorithm and A(V)V SC‘””) with respect to those obtained
by exact ones (ERASE and A}Y®), we need a performance measure able to compare results
of k nearest neighbors queries. Such measure should compare two sorted lists of results,
that is, it should contrast ranks (positions) of images in exact and approximate results.
Given the i-th image in the approximate result, its rank, rank(i), is given by the position
of that image in the exact result. As an example, consider the case when k& = 1. The
“goodness” of an approximate result with respect to the exact one can be obtained by just
taking into account rank(1): The lower rank(1) is, the better the approximation works.
This measure can be easily extended to the case where £ > 1 by considering the ranks of
all the k& images in the approximate result, i.e. rank(1),...,rank(k).

In [WBO00], the normalized rank sum (nrs) is used to quantify the loss of result quality

when £ nearest neighbors queries are approximately evaluated. The nrs is defined as:

k(k+1)
2. 3% | rank(i)

The nrs is computed as the inverse of the sum of all the ranks of the images in the

nrs =

(3.23)

approximate result. Thus, higher values of nrs are to be preferred. This measure, however,

3.4 Experimental Results 43

is not able to capture inversions in the result (e.g. when image I is ranked higher than
image [y in the approximate result and lower in the exact result), since no difference
between ranks of images in the approximate and in the exact results is taken into account.

In [ZSARO9S], the precision of approximation measure P is introduced, which is defined
as:

1)
F= k Z rank(7) (3:24)

=1
P, therefore, measures the relative error in ranking for all the images in the approxi-
mate result. This measure, however, relies on the assumption that ¢ < rank(i), thus no
inversions on results are allowed.
To overcome above limitations in quality measures, we introduce a new measure, the
normalized rank difference sum . To compute ¥, we sum differences in rankings for
images in the approximate result and normalize by k. Normalization of the measure in

the interval [0, 1] leads to the formulation of ¢ as follows:

) = ! (3.25)

1+ 1 (ZL 1(rank(s) — i)P> v

where 1() is the ramp function (1(z) =0if x < 0, 1(z) = z if x > 0), and p is an integer
parameter (we used p = 2 in our experiments). Values of ¢ close to 1 indicate high quality
of the approximate result. The use of the ramp function 1() is needed to avoid counting
twice the effects of inversions in ranking. For instance, consider the case where k = 3 and
the exact result is Iy, I5, and I3. If the approximate result is Iy, I3, I, it is rank(1) = 1,
rank(2) = 3, and rank(3) = 2. Accordingly to Equation 3.25, and setting p = 2, the
value of 9 is computed as:
1 1

I+3(1(1-1)2+1(3-2)2+1(2-3)?) 1+3(0+1+0)

(8

Figure 3.16 shows average (a) and minimum (b) values of ¢ for exact and approximate
algorithms as a function of the fraction of query regions used to query the DB (the value
of k is kept fixed at 20, other values lead to similar results and are omitted here for
brevity). This is to show the effectiveness of different approaches when only some regions
of the query image are used for the query (this can be done in order to reduce the query
response time or just because we are interested only in some objects included in the query

image). Both graphs exhibit similar trends: The effectiveness of the AKVS‘”’”

algorithm is
almost always the lowest, and, for all curves, 1) only reaches high values when the fraction

of query regions is close to 1. Figure 3.16 (b) shows that, in order to find a “good”

44 Chapter 3. WINDSURF

result, we have to use all the regions in the query image. From Figure 3.16 (a), on the
other hand, we see that approximate algorithms lead to a low effectiveness, even if, as
we have seen before, they attain slightly better performance with respect to their exact

counterparts.
1 T T T T T T T 1p T T T T T T T
ERASE, AY/S -— ERASE, Al/S -—
Windsurfa?® —+-- WindsurfaP - —+--
AYSwr -B-- A -B--
x -
N N
AN PN | L |
0.1 F \\\ VL i \ﬁ\# o 0.1 _
g2l =8 7)
> B e R >
o (2o L B <
\ beeeem =
& A B £ /
g § 8 AN
0.01 | E L N E
0.001 1 1 1 1 1 1 1 0.001 L 1 1 1 1 1 1 1
0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
fraction of query regions fraction of query regions

(a) (b)

Figure 3.16: Average (a) and minimum (b) v as a function of the fraction of query regions
(k = 20).

Moreover, to show the effectiveness of our approach, we also compare results obtained
by the AYS algorithm when only a fraction of query regions is used to query the DB which
leads to approzrimate queries. In Figure 3.17 the tradeoff between quality of the result and
query evaluation cost is shown. Quality is measured as the sum of similarity scores for the
k best images normalized with respect to the case where all regions of the query are used.
Cost is computed as the elapsed time relative to the time needed for resolving the “all
regions” query. The graph clearly shows that quality and cost are strictly correlated in
that both decrease when the number of query regions reduces. As a further observation,
since the major part of the points falls below the “relative cost=quality” line, an effective
way to reduce query costs is to use only some of the regions in the query image.

3.4.3 Comparison with Other CBIR Techniques

In order to evaluate the effectiveness of WINDSURF, we compare the results of WINDSURF
for a number of image queries with those obtained by using the method proposed in [SO95]
(denoted SO) and the IBM QBIC system [FSNT95].

Comparison with SO

From a semantic point of view, results obtained by WINDSURF are considerably better
with respect to those obtained by the SO method. As an example, consider Figure 3.18:

3.4 Experimental Results 45

1
¥ &
0.8 |- & % 1
?% X
x % g
x XX %
@ 0.6 | X XX 1
g X X% x
H % %f %
© X
e o4l PR T
><>< X X x
X X
X E X
02 X X
. « ¥ x
0 Il Il Il Il
0 0.2 0.4 0.6 0.8 1
quality

Figure 3.17: Tradeoff between quality and cost for approximate queries (k = 15).

Results for SO (SO1 - SO5) contain images semantically uncorrelated to the query image
(e.g. image (SO3), a house, and image (SO5), a harbour). As for the results of WINDSURF
(WS1 - WS5), all of them present a “sky” region and a darker area.

The superior effectiveness of our approach is confirmed when considering “difficult”
queries, i.e. queries having a low number of similar images in the DB. In Figure 3.19 we
show the results for a query having only two similar images: For SO, none of the two
images is included in the result. WINDSURF, on the other hand, retrieves both images.

Finally, we compared the two approaches when dealing with “partial-match” queries,
i.e. queries specifying only a part of the image. As an example, consider Figure 3.20,
where the query image is obtained by “cropping” a DB image, namely, the dome of St.
Peter in Rome. With WINDSURF all the retrieved images refer to St. Peter, with the
only exception of image (WS3), representing the dome of St. Marcus in Venice. Indeed,
the query image was extracted from image (WS1). When we analyze the result obtained
by using SO, we see that only one image related to the query image is retrieved in third
position, whereas other images, with the exception of image (SO2) (again the dome of St.
Marcus), are totally uncorrelated to the query image.

Comparison with QBIC

Results obtained by WINDSURF are considerably better also with respect to those obtained
by the IBM QBIC system that uses color histograms to represent images. As an example,
consider Figure 3.21: The query image depicts the USA flag (note that in the data set
there are only nine images containing USA flags and other six images representing flags
of different countries); results for QBIC (QBICI - QBIC5) contain images semantically
uncorrelated to the query image (e.g. images (QBICI1) and (QBIC4), representing an
aircraft, and image (QBIC5), people). As for the results of WINDSURF (WS1 - WS5), all

46 Chapter 3. WINDSURF

(WS3) (WS4) (WS5)

Figure 3.18: Results for the “mountains” query.

images contain the USA flag.

A second experiment shows the superior effectiveness of WINDSURF not only for “diffi-
cult” queries but also for gray-scale images. Figure 3.22 shows the results for a gray-scale
image representing an airship of WWI having only eight similar images in the data set:
For QBIC, only two of the eight images are included in the result, also considering k£ = 10.
WINDSURF, on the other hand, retrieves four images, considering the first five results, and
all eight images considering ten results. Moreover, QBIC’s results present also two color
images; that confirms its limit to deal with gray-scale images and the better effectiveness
of WINDSURF.

3.4 Experimental Results A7

(qury) (WS1) (WS2)

Figure 3.19: Results for the “bridge” query.

48 Chapter 3. WINDSURF

(WS3) T W) (WS5)

Figure 3.20: Results for the “dome” query.

3.4 Experimental Results 49

(WS3) (WS4) (WS5)

Figure 3.21: Results for the “flag” query.

50 Chapter 3. WINDSURF

(WS3) (WS4) (WS5)
Figure 3.22: Results for the “airship” query.

Chapter 4

FeedbackBypass

In Section 2.3 we observe that, although relevance feedback has been recognized as a
method for improving interactive retrieval effectiveness, its applicability suffers two major

annoyances:

1. Depending on the query, numerous iterations might occur before an acceptable result
is found, thus convergence might be slow.

2. Once the feedback loop of a query is terminated, no information about the particular
query is retained for re-use in further processing. Rather, for successive queries, the

feedback process is started anew.

To overcome such limitations, we have presented FeedbackBypass [BCW00, BCWO01a,
BCWO01b], a new approach to interactive similarity query processing, which complements
the role of current relevance feedback engines. Note that, for the moment, we have taken
into account only image retrieval systems that rely on global features extraction, but we
plan to apply the FeedbackBypass approach also to WINDSURF and more in general, to

any region-based image retrieval system.

4.1 Basic Principles

FeedbackBypass is based on the idea that, by properly storing and maintaining the infor-
mation on query parameters gathered from past feedback loops, it is possible to either
“bypass” the feedback loop completely for already-seen queries, or to “predict” near-
optimal parameters for new queries. In both cases, as an overall effect, the number of
feedback and DB search iterations is greatly reduced, thus resulting in a significant speed-

up of the interactive search process.

51

52 Chapter 4. FeedbackBypass

Query

FeedbackBypass results

Figure 4.1: FeedbackBypass in action. The upper line shows the 5 best matches computed
using default parameters for the query image on the left. The bottom line shows the
results obtained for the same query when the parameters suggested by FeedbackBypass
are used.

Figure 4.1 shows a query image together with the 5 best results obtained from searching
with default parameters a data set of about 10,000 color images. No result image belongs
to the same semantic category of the query image, which is “Mammal” (see Section 4.5
for a description of image categories). The bottom line of the figure shows the 5 best
matches obtained for the same query when FeedbackBypass has been switched-on, and
the system uses the predicted query parameters. This leads to have 4 relevant images
(i.e. 4 mammals) in the 5 top positions of the result.

The implementation of FeedbackBypass is based on a novel wavelet-based data struc-
ture, called Simplex Tree, whose storage overhead is linear in the dimensionality of the
query space, thus making even sophisticated query spaces amenable. Its resource re-
quirements are independent of the number of processed queries but only depend on the
complexity of the query parameter function, which guarantees proper scalability and
performance levels. Furthermore, storage requirements can be easily traded-off for the
accuracy of the prediction. FeedbackBypass can be well combined with all state-of-the-art

relevance feedback techniques working in high-dimensional vector spaces.

4.2 The FeedbackBypass Approach

This Section explains in detail how FeedbackBypass can be smoothly integrated with query
and relevance feedback models commonly used for similarity search.
The basic idea of our approach is to “bypass”, or at least to reduce, the loop iterations

to be performed by an interactive similarity retrieval system by trying to “guess” what

4.2 The FeedbackBypass Approach 53

Figure 4.2: The optimal query mapping for 3 sample query points, assuming a quadratic
distance.

the user is actually looking for, based only on the initial query he/she submits to the
system.
If we abstract from the specific differences arising between existing feedback systems

and concentrate on what all such systems share, two important observations can be done:

1. All systems assume that the user has in mind an “optimal” query point as well as
an “optimal” distance function for that query.

2. Each time a new distance function is computed, this is taken from a parameterized
class of functions (e.g. the class of weighted Euclidean distances), by appropriately
setting the values of the class parameters.

This general state of things can be synthetically represented as a mapping:

q = (QOpta dopt) = (Aopta Wopt) (41)

which assigns to the initial query point q an optimal query point, qep¢, and an optimal
distance function, d,,. The equivalence just highlights that d,, is the distance function
obtained when the parameters are set to Wopt, and that qept can be obtained from the
initial query point by adding to it the “optimal offset” Agpt = qopt — q. In the following
we refer to the pair (Agpt, Wopt) as the optimal query parameters, OQPs, of query q.
Figure 4.2 provides an intuitive graphical representation of the above mapping for three
2-dimensional query points.

FeedbackBypass is based on the observation that, as more and more query points are
added, an “optimal” query mapping, My, from query points to query points and distance
functions, will take shape, and that “learning” such mapping can indeed lead to “bypass”
the feedback loop.

54 Chapter 4. FeedbackBypass

Let @ C R be the domain of query points and let W C RF be the set of possible
parameter choices, where each W € W corresponds to a distance function in the consid-
ered class and P is the number of independent parameters that characterize a distance
function. Then, the problem faced by FeedbackBypass can be precisely formulated as
follows:

Problem 4.1

Given the Q@ query domain and a class of distance functions with set of parameters W,
“learn” the query mapping M,,; : @ — R x W which associates to each query point
q € Q the optimal query parameters (Aqpt, Wopt) = Mopt(q).

In other terms, the problem to be faced is that of learning the optimal way to map
(query) points of R into points of RPTF. It should be remarked that when query points
are normalized, the dimensionality of both the input (feature) and the output space of
My can be reduced by 1.

Of course, statistical techniques for dimensionality reduction could be applied to lower
the dimensionality of both the input and the output space. We do not consider dimen-
sionality reduction in this thesis, and leave it as an interesting follow-up of our research.

Example 4.1

Assume that objects are color images, which are represented by using a 32-bins color
histogram, and that similarity is measured by the weighted Euclidean distance. Since the
sum of the color bins is constant (it equals the number of pixels in the image) and one of
the weights of the distance function can be set to a constant value, say 1, without altering

at all the retrieval process, it turns out that M,,; is a function from R3!' to 3131,

Figure 4.3 shows the basic architecture of a generic interactive retrieval system en-
riched with FeedbackBypass, with the flow of interactions being summarized in Figure
4.4 using a C++ like notation. Upon receiving the initial user query q, the system for-
wards q to FeedbackBypass by invoking its Mopt method, which returns the predicted
OQPs (Aopt, Wopt) for q. Then, the usual query processing-user evaluation-feedback
computation loop can take place. When the loop ends, the new OQPs are passed to
FeedbackBypass by invoking its Insert method, to be stored as new optimal parameters
for q. Clearly, this insertion step can be skipped at all if no feedback information has
been provided by the user.

4.2.1 Requirements

The method we seek for learning M,,; from sample queries has to satisfy a set of somewhat

contrasting requirements, which are summarized as follows:

4.3 Wavelets, Lifting, and Interpolation 55

User

Query/
Relevance Scores
Result

User Query

»
L

Feedback | predicted Query and Distance Function | F€€dback

Module - Bypass
Optimal Query and Distance Function _ |
New Query
and Result

Distance Function

Figure 4.3: An interactive retrieval system enriched with the FeedbackBypass module.

Limited Storage Overhead. Since the number of possible queries to be posed to the
system is huge and will grow over time, it is not conceivable to just do some “query
book-keeping”, i.e. storing the values of M,,, for all already-seen queries. The
method we seek should have a complexity independent of the number of queries and
only a low (e.g. linear) complexity in the dimensionalities of the feature and the

output spaces.

Prediction. The method should also be able to provide reasonable “guesses” for new
queries. It is also requested that the quality of this approximation has to increase

over time, as more and more queries and user-feedback information are processed.

Dynamicity. Since we consider an interactive retrieval scenario, it is absolutely necessary
that the method is able to efficiently handle updates, i.e. incorporate additional data
without rebuilding the approximation of M,,, from scratch.

We have been able to achieve a satisfactory trade-off, thus meeting all above require-
ments, by implementing FeedbackBypass using a wavelet-based data structure, which we
call the Simplex Tree.

4.3 Wavelets, Lifting, and Interpolation

The process of learning a function can be understood as approzrimating the function.
From the rich mathematical toolkit of approximation theory, we chose to go with wavelets

56 Chapter 4. FeedbackBypass

//data structure for optimal query parameters (0QPs)
class Oqgp {
Vector Delta(D);
Vector W(P);
}
// get the user query
Vector &q = getUserQuery();
// obtain 0QPs from FeedbackBypass
Ogp &v = FeedbackBypass: :Mopt(q);
Ogp &vPred = v.copy();
// main feedback loop
while (feedbackLoop) {
// compute results for q using 0QPs
Vector results[] = queryEvaluate(q, v);
// get relevance scores for results
Score scores[] = getUserFeedback(results)
// compute new 0QPs given the scores
newValues(q, v, scores);
}
// in case feedback information has been provided
if (vPred != v)
// insert new 0QPs for query q
FeedbackBypass: :Insert(q, v);

Figure 4.4: Basic interactions between an interactive retrieval system and FeedbackBypass.

constructed by a technique called Lifting. In this Section, we briefly outline the principles
but refer the interested reader, for example, to [Swe96, SS96].

The lifting schema, introduced by Sweldens [Swe96], is a highly effective yet simple
technique to derive a wavelet decomposition for a given data set.

Lifting consists of three steps: Split, predict, and update, which are repeatedly applied
to the data set. Before we go into detail, it may be helpful to give the reader an intuition
of the process. Essentially, the idea behind lifting is to gradually remove data from the
original signal and to replace it with information that allows to reconstruct the original
data. This removal process is recursively repeated: At the end of each such iteration we
obtain a coarser approximation of the original data and information necessary to revert
the last approximation step. Finally, after the recursive application of this schema ter-
minated we arrived at the coarsest approximation possible (e.g. one data point) but have
also the information how to reconstruct the original data step by step. This proceeding,

formally speaking, implements the Wavelet Transform.

4.3 Wavelets, Lifting, and Interpolation a7

For simplicity, let us assume the original data, usually referred to as signal, is given
as pairs (z;,y;). Moreover, let z; be equidistant (see Figure 4.5 (a)). The three steps in
detail are as follows:

1. In the split step, the original data set Y = {y1,99,...,yn} is divided into two
subsets Y] and Y. Although there are no further requirements as to how to choose
the subsets, let’s assume Y7 = {y1,...,y2k+1} and Yo = {ya,...,y2k12}, see also
Figure 4.5 (b). We then remove Y5 from the data set.

2. In the next step, we predict each of the removed points in Y5 by interpolating on [of
the remaining neighbors in Y] (in the case of linear interpolation, we simply use the
line segment (., Ym), (Tima2, Ymaz) to approximate (1, Yma1))- Let (Zmat, Ymr1)
be the result of the interpolation. In the case where the interpolation coincides
with the original data point, we obviously did not loose any information. However,
in general, the points do not coincide. To make up for the loss of information, we
determine the difference 0 between the predicted and the actual value and store it in
place of the original data. At the end of this step we can encode the signal using only
Yiand A = {6y, ..., 0k11} (cf. Figure 4.5 (c¢)). The number [of neighbors considered
during the interpolation determines the degree of the polynomial function: [= 2
corresponds to linear, [= 4 to cubic interpolation etc. Special care has to be taken
to the fringes of the data set though [Swe96]. In case of [= 2, we obtain the
well-known Haar-Wavelet (see e.g. [Kai94]).

3. In the update step, the remaining original data is adjusted to preserve the total
energy of the signal. To see what we mean by this, consider the following example
where 19,11 = 0 and ;.0 = 1. The average value of the signal is 0.5. However after
removing all values 9,12, the signal’s average drops to 0, no matter the difference
data we stored. Like the predict step, the update step can be performed locally by

taking only a data point and its removed neighbor into account.

Conversely, lifting can be used to interpolate signals where data points are added
successively. To do so, we simply need to reverse step 1 and 2. There is no need to apply
step 3, the update step, as we do not know the total energy of the signal in advance; as
a result, the approximation may change fundamentally as the data set changes, in other
words, shape and quality of the approximation are evolving with the data set [SS96]. Like
with the original lifting technique, we may use polynoms of any degree.

When detailing the three steps above, we assumed the data to be equidistant; this
assumption is valid in classical areas of application like signal or image processing. How-

58 Chapter 4. FeedbackBypass

—— . . . T —— . .
remaining ® approximation —e—
removed O

(a) (b) (c)

Figure 4.5: Lifting: (a) original data set, (b) split and removing of data set, and (c)
predicted data by interpolation.

ever, in the case of interpolation of a growing data set, the z; cannot be equidistant due
to the fact that we introduce more and more points as we go. Thus, the interpolation
has to take into account that intervals between data points may vary. In case of linear
interpolation, we obtain of the unbalanced Haar-Wavelet.

4.4 The Simplex Tree

The Simplex Tree forms the core of our approach. It organizes the query domain Q as a
set of non-overlapping multi-dimensional intervals on which the approximation for M,,,
can be defined.

Recall that we want to approximate the optimal query mapping M,,; : @ — RP x W),
where @ C RP and RP x W C RV with N = D + P (see Problem 4.1), given a small
but evolving sample of data points, namely queries for which feedback data is available.

Of the various techniques that mathematical approximation theory provides, we have
chosen wavelets to approximate the query mapping. Unlike other transforms, such as the
Fourier Transform, wavelets model a target function as composition of functions with a
limited support. Therefore, modifying the wavelet at a later point in time entails only
local recomputations but no re-organization of the representation as a whole.! In the
following, we make use of this locality and develop the approximation of the optimal
query mapping step by step by local recomputation around newly added feedback points.
We will use the well-known Haar-Wavelet in the following.

IFor a comprehensive overview of wavelets and multi-resolution analysis in particular, see, for example,
[Kai94, Swe96]

4.4 The Simplex Tree 59

In order to define wavelets in @ C %P, we first need to organize this high-dimensional
vector space as a collection of intervals S = {S,} such that their union covers the whole
query domain, that is, @ C |, S. The delimiters of the intervals managed by the Simplex
Tree are taken from the sets of points for which user feedback has been provided. Let us
denote with s one of such delimiters, i.e. a query point stored in the Simplex Tree. For
each s we maintain in the Simplex Tree also its N-dimensional vector of OQPs, M,,(s).
Given § and a new query point q, the wavelet-based prediction of the OQPs for q is then
obtained, as explained in more detail below, from the OQPs of the stored points that
delimit the (unique) interval that contains q.

4.4.1 Multi-Dimensional Triangulation

Given an initial set of query points for which feedback data is available, we define suitable
intervals on which we can base our wavelet by triangulating the set. In general, a trian-
gulation is a decomposition into simplices, i.e. intervals spanned by D + 1 points (that
is, triangles in N2, tetrahedrons in N3, and so forth). Figure 4.6 shows an example for
D =2.

KN
_%a‘@\

Q/
Z)\ 1‘%‘ TS
v ‘§ﬂy‘1\ N
NS

Figure 4.6: Example of triangulation for D = 2.

Triangulations are one of the fundamental problems in computational geometry and
very efficient techniques to find “good” triangulations are known for low dimensional
spaces [Meh94, PS85]. Computing triangulations like the Delaunay triangulation, which
minimizes the lengths of edges of the simplices, is computational expensive and too time
consuming for dimensions higher than 10.

Instead, to keep the computational effort low, we use an incremental triangulation
technique as we go forward and split for every new point its enclosing simplex. More

60 Chapter 4. FeedbackBypass

formally, let S = {s1,...,8p11} be the set of points spanning the simplex that encloses
the new to-be-stored query point q. Then,

Sp=Asjli#htu{a}, 1<h<D+1

is a decomposition of S into D 4+ 1 simplices.? Figure 4.7 shows examples for splits in two

and three dimensions, respectively.

D=3
Figure 4.7: Splitting of 2- and 3-dimensional simplices.

Note that splitting a simplex can be done in O(1) time for a fixed dimension, and
that the the number of simplices scales linearly with the number of stored query points.
Obviously, we can only split a simplex if the new point is inside the simplex itself. To
this end we need to define an initial simplex, denoted Sy, such that @ C Sy, i.e. Sy covers
the entire query domain.

The specific details on how Sy can be defined depend on the data set at hand. For
instance, if @ = [0,1]?, setting Sy = {(0,0,...,0),(D,0,...,0),...,(0,0,...,D)} guar-
antees that Q C Sy, as it can be easily verified. On the other hand, when the data set
consist of normalized histograms (i.e. the sum over the bins equals 1), by dropping the
value of one bin (e.g. the last one) leads to a query domain Q which already is a simplex,
namely So = {(0,0,...,0),(1,0,...,0),...,(0,0,...,1)}.

4.4.2 The Data Structure
The Simplex Tree is an index structure that can be characterized as follows:

e cach node is a simplex S defined by D + 1 points;

e cvery inner node S has pointers to D + 1 children S;,, which partition S and are
pairwise disjoint, i.e. S =J, S, and Sy, N Sp, =0 Vhy, ho;

e cvery leaf node stores for each of its D 4 1 points s; the corresponding OQPs,
Mop(s;);

2For simplicity, we use the same notation to denote both a simplex, i.e. an interval of R, and the set
of its D + 1 vertices.

4.4 The Simplex Tree 61
A ” A

E = vector of optimal query parameters (OQPS)

Figure 4.8: The structure of the Simplex Tree (D = 2).

e Sy, the root, covers the entire query domain Q.

Figure 4.8 shows the Simplex Tree corresponding to a 2-dimensional triangulation.

The operations necessary to maintain the index are sketched in Figure 4.9. Below, the
individual parts are discussed in more detail.

Lookups. Given a new query point, we need to determine in which simplex the new
query point is contained. Starting with the root node we traverse the tree descending at
each inner node into the child node which contains the new point. The case where the
query point is not properly contained in one of the child simplices but it is an element of the
delimiting hyperplanes of several simplices can be solved by considering such hyperplanes
as simplices of dimension D’ < D.

We do not re-organize the tree in case it gets unbalanced due to the distribution of the
data. Hence, the depth of the tree is O(n) in the worst case, n being the number of stored
query points, and O(logp,; n) in the best case. We will assess the average behaviour
experimentally in Section 4.5.

Interpolation. To interpolate off the Simplex Tree, i.e. define a wavelet representa-
tion of the mapping, first observe that for each point s in the Simplex Tree the value of
M opi(s) = (ma(s), ma(s),...,my(s)) is stored. Thus, given a query point q for which an
approximation of M,,(q) is sought, we can solve the problems of approximating each of
the N m;(q) values independently of each other.

62 Chapter 4. FeedbackBypass

// initially called with the root simplex
Simplex &SimplexTree::Lookup(Simplex &S, Vector &q) {
// when in leaf node, we know we found it
if (S.IsLeaf()) return S;
// otherwise check each child
for (int h = 0; h < D + 1; h++)
if (S.child[h]->Contains(q))
// descend into h-th child
return Lookup(S.Child[h],q);
}
Ogp &SimplexTree::Predict(Point &q) {
// get the enclosing simplex
Simplex &S = Lookup(q);
// interpolate in point q using the points of S
return Wavelet::Interpolate(S,q);
}
void SimplexTree::Insert(Point &q, Oqp &v) {
// get enclosing simplex
Simplex &S = Lookup(q);
// get predicted values in this point
Ogp &vPredict = Predict(q);
// if predicted and actual 0QPs differ
// by more than ’epsilon’ insert the point
if (v.Difference(vPredict) > epsilon)
for (int h = 0; h <D + 1; h++){
// get the h-th corner of the simplex
Vector &pCorner = GetCorner(h);
// create a simplex using the points of this
// simplex but exclude pCorner and add q instead
Simplex &SSon = S.CreateSimplex(pCorner, q);
// add the new simplex as child
S.AddChild(SSon) ;}

Figure 4.9: Basic functionality of the Simplex Tree.

Using an unbalanced Haar-Wavelet for approximating v; = m;(q) means to perform
a linear interpolation in q given the values v;% = m;(s;) of the D 4 1 points defining
the simplex S = {sy,...,sp.1} enclosing q. Since S is a D-dimensional linear subspace,
solving for the unknown v; Equation 4.2 will yield the desired approximation of v; = m;(q).
Note that for a given data set, the complexity of interpolation is O(1), since neither D

nor P change.

~ s
41— S11 .- 4D — S1,D Vi — Ut
S92 S1
S21 —S1,1 .- S2,D — S1,D Uit =
A ’ 7 =0 (4.2)

S S
Sp4+1,1 — S1,1 --- Sp41,p — S1,p U PTL— !

4.4 The Simplex Tree 63

Figure 4.10 shows the resulting approximation (by linear approximation) for a syn-
thetic example. The approximation was done using the triangulation of Figure 4.6.

A
v
il

i

Zdn

>>
~N= 7
S
4N A
=/

Figure 4.10: Example of approximation for D = 2.

Inserts. As opposed to typical spatial index structures, the Simplex Tree is not an
index whose aim is to store points to be searched. Instead, it stores points to organize the
feature space into simplices. As a consequence, not every point needs to be inserted, since
it is sufficient to insert only those points that can improve the quality of the approximation

in a significant way. These are the points for which
max [m;(q) — vi| > €
(2

holds, for a given threshold e. In other words, if all the predictions v;’s are already
almost equal to the corresponding m;(q)’s there is no need to store q in the Simplex Tree.
The particular choice of the threshold e determines the quality of the approximation:
For low thresholds the approximation is more accurate whereas high thresholds cause
more slack. More important, however, is the character of the optimal query mapping. If
M,y is composed of low frequencies, only very few query points are stored, whereas for
a query mapping composed of high frequencies, more query points are needed to reach
approximations of suitable quality. As a limit case, when the OQPs always coincide
with the default ones, no point at all is inserted in the Simplex Tree. Consequently, the
resource requirements of the Simplex Tree do not depend on the number of queries for
which feedback is provided but on the intrinsic complexity of the optimal query mapping
and on the insert threshold.

Example 4.2

Figure 4.11 demonstrates the evolution of the approximation of a 2-dimensional parameter
function. The individual plots show the approximation after 50, 250, 500, and 1000
incremental updates. The figures underline the two major advantages of our method:

64 Chapter 4. FeedbackBypass

Figure 4.11: Approximation of a parameter function after incorporating 50, 250, 500, and
1000 feedback points.

Firstly, the approximation converges very quickly towards the actual parameter function.
Secondly, the approximation is self-maintaining in the sense that only data points whose
contribution is significant are included into the function,i.e. in areas where the parameter
function has low frequency (foreground) only few points are added. Oversampling in
the form of storing data points which do not contribute significantly to the shape of the
function is automatically prevented.

4.5 Experimental Results

We have implemented FeedbackBypass in C++ under Linux, and tested its performance
in order to answer the following basic questions:

e Which are the actual prediction capabilities of FeedbackBypass? How much feedback
information does FeedbackBypass need to perform reasonably well? How long does
it take to learn the optimal query mapping?

e How much do the predictions of FeedbackBypass depend on the specific data set?
Alternatively, is FeedbackBypass robust to changes in the type of queries to be
learned?

e How much do we gain, in terms of efficiency, by “skipping”, or shortening, the
feedback loop?

4.5 Experimental Results 65

Figure 4.12: Sample images from the “Fish” category.

For evaluation purposes we used the IMSI data set consisting of about 10,000 color images
[IMS]. Each image is already annotated with a category (such as “birds”, “monuments”,
etc.). From each image, represented in the HSV color space, we extracted a 32-bins color
histogram, by dividing the hue channel H into 8 ranges and the saturation channel S into
4 ranges.® To compare histograms we use the class of weighted Euclidean distances, with
the (unweighted) Euclidean distance being the default function. We implemented both
query point movement and re-weighting feedback strategies, as described in Section 2.3.1,
which means that M,,; is a function from ! to R (see also Example 4.1).

The setup for the experiments was as follows. From the whole data set we selected
2,491 images belonging to 7 categories: Bird (318 images), Fish (129), Mammal (834),
Blossom (189), TreeLeaf (575), Bridge (148), and Monument (298). This subset of images
was then used to randomly sample queries, whereas images in other classes were just used
to add further noise to the retrieval process. For each query image, any image in the
same category was considered a “good” match whereas all other images were considered
“bad” matches, regardless of their color similarity. This leads to hard conceptual queries,
which however well represent what users might want to ask to an image retrieval system.
Since, within each category, images largely differ as to color content, any query based on
a color distance cannot be expected to find more than a fraction of relevant images to be
close in color space. For instance, all the 4 images shown in Figure 4.12 belong to the
“Fish” category: Only the 2nd image (“shark”) has a dominant blue color, whereas others
have strong components of yellow, gray, and orange, respectively. A similar evaluation
procedure was also adopted in [RHO0O].

To measure the effectiveness of FeedbackBypass we consider classical precision and
recall metrics [Sal89], averaged over the set of processed queries. For a given number k
of retrieved objects, precision (Pr) is the number of retrieved relevant objects over k, and
recall (Re) is the number of retrieved relevant objects over the total number of relevant
objects (in our case, the number of images in the category of the query). The formal

3See also http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html.

66 Chapter 4. FeedbackBypass

definition is:

l t trieved
Pr— |relevant () retrieved|

(4.3)

|retrieved|

R |relevant () retrieved| (4.4)
e= :
|relevant]|

where| E| represents, in this context, the cardinality of the set E. A typical example of
precision-recall graph is shown in Figure 4.14 (c).

In our experiments we used a typical value of & = 50 and, in any case, k never
exceeded 80. This is because we consider that a real user will hardly provide feedback
information for larger result sets. As a consequence, since the number of retrieved good
matches is limited above by &k (and in practice stays well below the k limit), the use of
distance functions more complex than weighted Euclidean, such as Mahalanobis, was not
considered. Indeed, as observed in [RHOO0], improvement due to feedback information is
possible only when the number of good matches is not much less than the number of
parameters of the distance function to be learned, which is 31 in our case but would be
31 x 32/2 = 496 for the Mahalanobis distance.

The results we show refer to three different scenarios:

e Default: This is the strategy currently used by all interactive retrieval systems, which
starts the search by using the user query point and the default distance function
(i.e. the Euclidean one in our case);

e FeedbackBypass, for which precision and recallalways refer to “new” (i.e. never seen
before) queries for which the optimal query point and the optimal distance function,
as predicted by the FeedbackBypass module, are used in place of the user query and
the default Euclidean distance;

e AlreadySeen: This is mainly used for reference purpose, and corresponds to the case
where the FeedbackBypass module delivers predictions for already seen queries, for
which the predicted parameters indeed coincide with the optimal ones. It can be
argued that the more the results from FeedbackBypass and AlreadySeen are similar,
the more FeedbackBypass is approaching the intrinsic limit established by the use of
a given class of distance functions and of specific relevance feedback strategies.

For each query, after measuring precision and recall for the first round of £ results, we
automatically run (using the category information associated to each image) the feedback
loop until it converges to a stable situation, i.e. when no changes are observed anymore
in the result list. The corresponding query parameters are then sent to FeedbackBypass

for insertion.

4.5 Experimental Results 67

4.5.1 Speed of Learning

Figure 4.13 (a) shows average precision as a function of the number of processed queries.
For this graph the number of retrieved objects was set to k& = 50. It is evident that the per-
formance of FeedbackBypass monotonically increases with the number of queries, whereas
that of Default and AlreadySeen do not depend on the number of executed queries, and
that the difference between FeedbackBypass and the Default strategy is already significant
after the first few hundred queries. This is also emphasized in Figure 4.13 (b), where we
show values of the precision gain, PrGain, defined as:

Pr(F kB
PrGain(FeedbackBypass) = (il liec(igae]cca Ii/)pass) - 1) x 100
r u

and similarly for the AlreadySeen case. The number of good matches doubles for already
seen queries, and increase by 60% for queries never seen before.

0.6 T T T T 160 T T T T
AlreadySeen _ 140 AlreadySeen -
0.5 FeedbackBypass ------- T S 120 k FeedbackBypass ------- |
- Default -------- c
S 04— T ‘s 100 - -
R o 80 + _
o 5
g 031 mmmmmm T 7 @ 60 - PRS-
e ® 40| T i
0.2 = . o — 6—_ —/1_/
!l ’ 20 - 7 .
0.1 : ' ' ' o L ! L ! !
0 200 400 600 800 1000 0 200 400 600 800 1000
no. of queries no. of queries

(a) (b)

Figure 4.13: Precision results: (a) absolute values; (b) gains with respect to the DEFAULT
strategy.

Figures 4.14 (a), (b), and (c) show, respectively, the values of average precision, recall,
and precision vs. recall after 1000 queries, when k varies between 10 and 80. The graphs
confirm that our method is able to provide accurate predictions even when the number
of retrieved objects per query, k, is low. This can also be appreciated in Figures 4.15 (a)
and (b), where precision and recall curves for k = 20,50, and 80 are plotted versus the
number of queries.

In the previous experiments we have considered the same value of k£ both to train
the system and to evaluate it. However, it is also important to understand if training
FeedbackBypass with larger values of k can be better than training FeedbackBypass with

68 Chapter 4. FeedbackBypass

07 T T T T T T 02 T T T T T T
AlreadySeen
0.6 AlreadySeen 7 FeedbackBypass -------

. FeedbackBypass ------- 0.15 Default -------- E
< 0.5 |\ Default -------- _]
2 04k 8 o1l]
o 03 — \\\ e I //,/’// —“__/_/-”’"

0.05 b~ -
01 1 1 1 1 1 1 O 1 1 1 1 1 1
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
k k
(a) (b)
0.7 T T T T
AlreadySeen
0.6 | FeedbackBypass -------]
05 L Default -------- |
5 .
B 04r y
(&) \ N
o 03 e .
o
0.2 | .
0.1 | .
0 1 1 1 1

0 0.05 01 015 0.2 0.25
Recall

()

Figure 4.14: Precision (a), recall (b), and precision vs. recall curves (c) after 1000 queries.

less information. Clearly, precision results shown in Figure 4.15 (a) are of little use to
this purpose, since they are obtained with a different number of retrieved objects for each
curve. Thus, we have compared several versions of FeedbackBypass, each trained with
a specific k£ value, when they are used to answer queries requesting the same number of
objects from each version. The basic conclusion that can be drawn from the results shown
in Figure 4.16 is that, even if larger values of k (e.g. k = 80) allow to increase the retrieval
effectiveness (see values of recall in Figure 4.15 (b)), using smaller & values in the training
phase can be beneficial. From Figure 4.16 (b) we see that the graph for £ = 20 starts
from a smaller recall value but, when considering more objects, grows faster than the
other lines, thus reaching higher results. Probably this depend on the fact that similar
images are in first positions; thus, in this case, FeedbackBypass learns without noise. We
have to remember that, like stressed in Figure 4.12; it can happen that in the same image

category there are images that are completely different from a color point of view with

4.5 Experimental Results

69

0.5 T T T 0.14 T T ' ' i
012 | ' -
S _ 01F P
N T i i
§ g 0.8

£ X 0.06 ;Vﬂ/fﬁ—
0.04 k=20 ——
B k=50 --—---—- i

0.02 K= 80 s

0 | | | O | | |
0O 200 400 600 800 1000 0 200 400 600 800 1000

no. of queries no. of queries

(a) (b)
Figure 4.15: Precision (a) and recall (b) of FeedbackBypass for different values of k.

respect to the query.

0.28 0.035 " 20| T T T
0.26 003 | K=50Q -——v- .
0.24 0.025 K=80 --------
c 022 i B
§ o 3 oof
g 0.18 & o015} i
S -
0.16 001" -
0.14 L
0.12 0.005 b~ .
Ol O | | | | |

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
no. of retrieved objects no. of retrieved objects

(a) (b)

Figure 4.16: Precision (a) and recall (b) of FeedbackBypass for different values of k as a
function of the number of retrieved objects.

4.5.2 Robustness

We now turn to consider how much the performance of FeedbackBypass depends on the
specific queries for which predictions are required. For this experiment we separately
measured precision for the 7 query categories. Looking at precision results (see Figure
4.17 (a)) it can be observed that FeedbackBypass is able to provide useful predictions in
all cases where there is a significant difference between the Default and the AlreadySeen

70 Chapter 4. FeedbackBypass

cases. Indeed, such a difference is a clear indication that feedback information actually
leads to improve the results. This is particularly evident for the largest query category
(“Mammal”). On the other hand, when feedback only slightly improves the quality of the
results (see the “TreeLeaf” category, denoted simply as “Leaf” in the figure), predictions
for new queries do not provide benefits, as it could have been expected. This general
behavior is only violated for the “Fish” category, where it seems that no improvement
can be obtained from FeedbackBypass on new queries, even if performance of AlreadySeen
is particularly good. However, since “Fish” is the smallest category (129 images), it can
be argued that the number of sampled queries is still not enough to well approximate the
optimal query mapping for that category. Similar results are observed in Figure 4.17 (b)
for the recall metric.

06 T T T T T T T 02 T T T T T T T
AlreadySeen
05 | FeedbackBypass ---- . _ AlreadySeen —
- Default ----- 0.15 F FeedbackBypass ----- i
O ’ Default -----
0.4 B
c
S =
0
8 03T } ST) E 01T o }
o i i i ¥
0.2 SEEi b 7 i i
i H H s } 0.05 - 31 1 7]
oxptl ||l 1 I H it H
I ST | | 1 0 1750 | R I Y A
Bird Fish Mammal Blossom Leaf Bridge Monument Bird Fish Mammal Blossom Leaf Bridge Monument

(a) (b)

Figure 4.17: Precision (a) and recall (b) for the 7 query categories.

4.5.3 Efficiency

An important aspect that we analyze here is how much we can gain by using Feedback-
Bypass in terms of efficiency. Clearly, the overall performance of an interactive retrieval
system will also depend on the specific access methods that are used to retrieve the
stored objects, as well as by the indexed features. In order to provide unbiased results,

we consider the following performance metrics:

e The average number of feedback iterations that FeedbackBypass saves with respect
to the Default strategy, in order to obtain the same level of precision. Thus, for each
query we start the feedback loop either from default or from predicted query param-
eters, and measure how many iterations are needed before no further improvements
are possible. This “Saved-Cycles” measure tells us how many query requests to the
underlying system we save, on the average, for each user query.

4.5 Experimental Results 71

e The average number of objects that we do not have to retrieve for achieving the
same level of precision than Default. Note that this “Saved-Objects” metric is simply

computed as: Saved-Objects = Saved-Cycles x k

Figure 4.18 presents results for k£ = 20,50,80. In both cases it can be seen that the
savings improve over time, and that after 1000 queries they amount to about 2 cycles for
k = 50, which translates in a net reduction of 100 objects retrieved from the underlying

system.
5 T T T T T T T] 400 T T T T T T T]
4-2 B [350 [
% 35k T - i § 300 |-~ 7
g 3k 4 2. 250 - .
9 251 . Q 200 I
3 > k=20 —— N 3 T
> k=50 ------- > 150 - 7
15 -80 -------- — © —
n k=80 » 100 - k=20 —— .
1r b k=50 -------
05 k- . S0 k=80 -]
0 | | | | | | | 0 | | | |
300 400 500 600 700 800 9001000 300 400 500 600 700 800 9001000
no. of queries no. of queries

(a) (b)

Figure 4.18: Average number of feedback cycles (a) and retrieved objects (b) saved by
FeedbackBypass.

Finally, in the last experiment we assess the Simplex Tree as such. Figure 4.19 shows
the average number of simplices traversed to reach a leaf node, together with the depth
of the tree, i.e. the maximum number of simplices that could be traversed. Both are loga-
rithmically increasing, however, the average number of traversed simplices is significantly
lower than the depth of the Simplex Tree, which leads to fast predictions of the optimal
query parameters and underlines the efficiency of FeedbackBypass.

72

Chapter 4. FeedbackBypass

12

10

no. of simplices traversed
Depth of Simplex Tree

o N M~ O @
T

0

100 200 300 400 500 600 700
no. of queries

Figure 4.19: Average number of simplices traversed per query and depth of the Simplex

Tree.

Chapter 5

Windsurf Extensions

In this Chapter we describe two extensions for the WINDSURF system that allow to further
improve the effectiveness of its results.

The first one is a relevance feedback model for region-based image retrieval systems,
that we studied for WINDSURF, but that can be applied to every other system that
fragments images into regions. It is important to note that, at present time, no relevance
feedback model has been proposed for region-based image retrieval systems. Let us observe
that, starting from what we assumed in Section 3.2, supporting feedback facilities for
a CBIR system that fragment images into regions means to apply the A" algorithm
N times (N being the number of feedback iterations). Even if AYS" was proved to
be optimal, if repeatedly applied it can lead to very time-consuming feedback loops.
Therefore, in this light, FeedbackBypass represents an efficient solution because it is able to
cut down the number of iterations, complementing the role of relevance feedback engines.

The second one consists in a new feature that, even if in the original version of the
WINDSURF system is implicity extracted, it is not used in the retrieval phase: The shape
of the regions. In detail, we describe an approach based on the use of the Discrete Fourier
Transform that is scale-, translation-, and rotation-invariant and that, using both the
magnitude and the phase information of Fourier coefficients, is able to improve results’
effectiveness as compared to those obtained from similar approaches. At this point, it is
important to say that the so-extended WINDSURF system is able to perform the search
using either color/texture or shape. The user is given the opportunity to decide which
feature is more appropriate to his/her needs. Anyway, integration of all features into
a single similarity model can be easily obtained, e.g. by using a weighted distance with
weights reflecting the relative importance of each feature, much as is currently done in
other systems [SC96, MM99, CTB*99].

73

74 Chapter 5. WINDSURF Extensions

5.1 A Relevance Feedback Model for Windsurf

From the brief survey of relevance feedback presented in Section 2.3, it is clear that, at
present time, no relevance feedback model exists for region-based image retrieval systems.
Starting from the state-of-the-art and moving in direction of current research in the area
of content-based image retrieval, we present the formalization of the relevance feedback
model supported by WINDSURF (see Chapter 3).!

Before starting the formalization of the relevance feedback model, we need to point
out the main difficulties that we have to deal with in defining the following three separate
problems:

Problem 5.1 (Regions Re-weighting Problem)

Given an initial image query @ = (I,, k) and its result list Result(Q, d) = {Is,, Is,, ..., L5, }
(obtained using the distance function d) and given the set of relevance scores Score(Q, d) =
{Score(ly,), Score(1s,), ..., Score(I,) } assigned by the user to each object of Result(Q, d),
“learn” the best way to partition each score Score(l,) among regions belonging to image
L,.

Problem 5.2 (Features Re-weighting Problem)
Given a solution for Problem 5.1, “learn” the best way to partition the region score among
the features extracted from each region R, ;.

Problem 5.3 (Query Point Movement and Re-weighting Problem)
Given a solution for Problem 5.2, “learn” the best query mapping which associates to

each query point I, the optimal query parameters for d using the user judgments.

At this point, it is important to remind some concepts, given in Section 3.2.1, concern-
ing the computation of the similarity score between two images I, and I; and between
each couple of respective regions R,; and R, ;. To this end, in Figure 5.1 we report the
different levels at which the WINDSURF system works. In detail, starting from the bottom,
the matching among query regions and regions of each data set image establishes which
is the similarity score for each pair for matched regions. By way of a scoring function, the
optimal match is computed; then, the image score is obtained using the similarity values
for pairs of the best matched regions.

Here, we report Equation 3.9 representing the distance used by WINDSURF to compare

IResults of the proposed model are not presented in this thesis because we are still completing the
implementation phase.

5.1 A Relevance Feedback Model for WINDSURF 75

Image score

Scoring function

Region scores

Matching

Figure 5.1: Levels of similarity score in WINDSURF.

two regions:

§ : 2 size(Ry;) size(Ry;)\’

d(R,:, R j)2 — vpdp(Ryi, R j)Q‘f‘ A ‘ (: 9i) _ 2% J

iy Lls, Jiy tls, size(Rq,;) size(Rs ;)

BeB wimel] T sizell) size(l,) size(ly)
(5.1)

where the distance dg(R,;, Rs ;) between two regions on the frequency sub-band B is
computed by using the Bhattacharyya metric (Equation 3.10). The image similarity is
then defined as the average similarity between pairs of matched regions (Equation 3.19)

1 &
Isim(Iqa) = n Z h(d(Rq,i7 ngt(Rq,i») (5.2)
7 =1

where h is the correspondence function mapping distance values into similarity scores,
and T'??"(R, ;) represents the optimal region matching for R, ;.

It is intuitive that, while Problem 5.1 is related to the image similarity concept and
how this is computed, Problems 5.2 and 5.3 refer to the the region similarity computation.
Since the image similarity distance is computed as a simple average, it is clear that the
only needed modification is a transformation of Equation 5.2 into a weighted average,
with weights given by the solution to Problem 5.1.

5.1.1 Regions Re-Weighting

To solve Problem 5.1 we need to rewrite Equation 5.2 as:
g

1 [0
Lim(Ig, Is) = — > ar, ;h(d(By, TP (Ry))) (5.3)
7 ;=1

1=

76 Chapter 5. WINDSURF Extensions

where each ag_; represents the weight associated to each region R, ; of the image I, and
its default value is 1. The computation of ag,; at each cycle of the relevance feedback loop
comes from the following observation: Let us suppose, for simplicity, that the number of
regions for each image is two, n, = 2. The basic idea of the proposed solution, shown in
Figure 5.2, is to compare the result list of the query image, Result(l,, k), with the two
lists Result(R,1, k') and Result(R,2, k") obtained using each single region of the query
image as query.? Note that in the specific example of Figure 5.2, we use k = 5 and that
K > k.

O @))
Result(Rq1, k) Result(ly, k) Result(Ryz, k')
+ ¢O /oo =1+
S

+ o
+ @< ° °
° \. O +

£ \+

+

Figure 5.2: Comparison between an image result list and its regions result lists.

In detail, starting from the images of the list Result(I,,k) (in the center of Figure
5.2), we classify them as “good” (indicated with a cross) and “bad” (without cross) by
way of the user judgments (we consider the simple case of binary relevance feedback).
We then indicate the cardinality of the set of images with positive feedback (i.e. with
the cross) with the variable g. Using only the g good images, we are able to find a good
weight for each of the two region R,; and R, looking for the same images in the lists
Result(R, 1, k") (the left one in Figure 5.2) and Result(R,2, k") (the right one in Figure
5.2) and computing the sum of the relative similarity values I;,:

g9
AR, = Z Isim(ls,l) Vi = 1, 2 (54)
=1

2For simplicity of readability, in Figure 5.2 the dependance of Result(I,, k,d) on the distance function
d is understood in the notation.

5.1 A Relevance Feedback Model for WINDSURF 77

Since, intuitively, the image similarity score is obtained as the sum of similarity scores
obtained for its regions, that of computing the weights as a sum seems to be a reasonable,
and simple, choice. Note that weights are then normalized to obtain Zle ag,, = 1.

The above approach can be immediately generalized to the case of n, > 2 regions.

5.1.2 Features Re-Weighting

To solve Problem 5.2 we need to rewrite Equation 3.9 as:

d(Ry; Rsj)* = acr Z vdp(Ry; Rsj)*+
BeB

+ ag

2 size(Ry;) size(Rs 2
Rs’j) ((q, o (])) (55)

size(Rg.i) | size(size(l, size(l,
size(]qq) + size(ls) (q) ()

where acr represents the weight for the color and texture features and ag the weight for
the size (the default value for both weights is 1).

We start using the same logic introduced in the previous Section, but now we apply
the idea to a single region, instead of an image, and to its correspondent features (Figure
5.3).> We note that, at the first search cycle, the distance values of the g images from
the region list Result(R,1,d) (in center of Figure 5.3), corresponding to those ¢g images
to which the user has given positive feedback on the image result list, are obtained using
Equation 5.5 with default weight values for acr and ag.

A good way to have the new weights for the next search cycle is to compute the
distance variance U%T and O’% on the distance dop, representing the measure on color and
texture (derived from Equation 5.5 by setting ag = 0), and on dg, the measure of region
size (obtained by setting acr = 0), respectively. Each final weight value is then set equal

to the inverse of the correspondent variance:

1 1 (5.6)
(0 = —5 g = —& .
cT O_%T S O_%

The rationale for this choice is that a feature is more important than the other one if the
variance of its distances, computed on the specific feature domain, is smaller, since if a
feature has a high distance variance, this means that we are not interested in that feature.
Again, the approach can be easily extended to the case where more than two features are

present.

3Again, for simplicity of readability, in Figure 5.3 the dependance of Result(R,1,k,d),
Result(Ry 1,k ,dor), and Result(Rq1,k',ds), on the values of k and of ¥’ > k is understood in the
notation.

78 Chapter 5. WINDSURF Extensions

O O
Result(Rqy, dey) Result(Rgq, d) Result(Ry1, dg

+

+ @

f b8

+ @!\-'-\'B ®O
° .|_\o|L \(;o-l-
o ° O-I-

Figure 5.3: Comparison between a region result list and its features result lists.

5.1.3 Query Point Movement and Re-Weighting

The last problem to solve (Problem 5.3) is related (1) to the idea to try to move the query
point towards the “good” matches, as evaluated by the user, as well as to move it far from
the “bad” results points (Query point movement), and (2) to the observation that user
feedback can help identify feature components that are more important than others in
determining whether a result is good or bad for the user. Consequently, such components
should be given a higher relevance (Re-weighting).

In both cases, the distance function which we have to deal with is the Bhattacharyya
metric of Equation 3.10, here reported by putting the attention on its second term only,
for simplicity. The term corresponds to the Mahalanobis distance on regions centroid ugw

and ugs ; and uses, as covariance matrix, the average of the regions covariance matrix:

3:B 3B\ 1
ot = (o, <,) (T) (o, -)
Note that the above distance works on regions centroid and not on the complete region
feature vectors. So, starting from the assumption that the user has an “ideal” query
region in mind (that we represent by way of its centroid, x') and that distance between
regions centroid and this ideal point is a generalized ellipsoid distance, following [ISF98],
we formalize the problem as finding p/ and W that minimize the penalty function

min » Score(Ry,)(pr,, — 1) W (pur, — 1) (5.7)

5.2 WINDSURF with Shape 79

subject to the constraint det(WW) = 1, to discard the zero matrix from the result.

The new query centroid i’ should be computed such that “positive” regions, i.e. regions
having higher similarity scores, are closer to it than other regions. The minimization
problem can be solved by way of the Lagrange multiplier. In detail, we found that, since
the used distance is a quadratic one, we can use positive feedback scores to determine the

“optimal” region centroid i/ by way of a weighted average of good results, i.e.:

[y Score(Ry,) X pir,,
1, Score(Ry,)

,_

(5.8)

where R, is a region belonging to an image to which a positive feedback has been given,
and fig,, is its correspondent centroid. The score of each region, Score(Rs,), is defined as
the contribution percentage of the region to the overall image similarity.

On the other hand, remembering again that our distance works on regions centroid,
we note that the optimal solution presented in [ISF98] is too lossy for our case, because
the computation of the W matrix should depend on the regions centroid features only.
We found better solution in taking, as the new W the average of the covariance matrices
of all regions with positive feedback, i.e.:

15

W = . > Cil = F(CED) (5.9)
=1

Rewriting Equation 3.10 we finally obtained:

. . —1
T F,(CEP) +C3P
dB(Rs,j,Rq,i)Q _ <M§S7j . l/) X (9 q,2) X <,u

n,-i) (510

5.2 Windsurf with Shape

The WINDSURF system, as described in Chapter 3, only works on color and texture
features. Actually, depending on the fragmentation of the images into regions, WINDSURF
extracts implicitly also a region shape information that is however not used in the retrieval
phase. Starting from this observation and from the fact that combining more features
can improve the effectiveness of results, we have decided to enrich our system with a
new region feature: The shape. In detail, the shape property can be used together with
the color and the texture information, in a way transparent to the user, to increase the
goodness of results, or in an interactive way, to allow the formulation of shape-based
queries selecting the object of interest directly from the image.

Note that, when designing a shape retrieval technique we have to pay attention to two

primary issues:

80 Chapter 5. WINDSURF Extensions

Shape representation. How can an object shape be represented in terms of its shape
properties? What invariance properties should the representation satisfy?

Similarity measure. Given a representation of the shape, how two shapes should be
compared (i.e. which is the distance to be used)?

As for the invariance properties, we believe that good shape descriptors should allow
translation- and size-invariance, since these are information not directly related to the
shape of an object, and that the user should be given the opportunity to decide whether

rotation-invariance has to be taken into account or not.

5.2.1 Shape Representation

Among the state-of-the-art of shape representation techniques (see Section 2.1.1), we
chose the feature-vector modality and the relative parametric external method, working
in the frequency domain. The choice is driven by WINDSURF needs, as the necessity of
indexing, the robustness again the noise, and the possibility of satisfy scale-, translation-,
and rotation-invariance properties [Del99].

In particular, each WINDSURF region (R;) groups together the image pixels that are
similar for color and texture properties. The global properties that characterize the set

of regions belonging each image I are:
1. |U; Ri =1, i.e. the union corresponds to the global image.
2. N, R; =0, i.e. the intersection is empty (regions share no areas).
3. Regions are not connected.

Because of the last point, we apply an algorithm to connect the regions extracted by
WINDSURF and put together regions that, taken alone, are too small to be meaningful.
The goal is to find regions approximately representing objects present in the image. Then,
using the EdgeOperator algorithm [GW92], we extract the boundary from each object.
Finally, following the Tremauxz algorithm [Ore62], we find boundary points (also called
interest points) from which we extract the M points with higher curvature representing
the vertices of a polygon that approximates the shape of the objects.

Figure 5.4 shows a complete example of the steps needed from WINDSURF to extract
the shape information: Starting from the original image on the left, WINDSURF first
segments the image by using the the k-means algorithm; then, it connects the regions
extracting from each of them the corresponding boundary. Finally, interest points are
found. For simplicity, only the interest points related to the region “bird” are reported.

5.2 WINDSURF with Shape 81

Points representing the vertices of the polygon that approximate the bird are the M most
important points, i.e. the M points having the highest curvature.

v |
Segmentation
Interest Points

Connection

Edge Extraction

!

Figure 5.4: Example of shape extraction.

We re-sample the interest points to M samples to ensure that the resulting shape
features of all images have the same length. In our experiments, we choose M = 32. The
set of the M vertices of the polygon can be seen as a discrete signal in the 2-dimensional
space. We represent such signal in the complex space and map it to the frequency domain
by way of the Discrete Fourier Transform. In detail, we use the Fast Fourier Transform
(FFT) algorithm [PTVF92] that, if the condition M = 2" is satisfied, is able to carry the
transformation in a very efficient way (i.e. with a complexity of M log, M, instead of M?
[1186]).

Let z() = =(l) + jy(l), l = 0,..., M — 1, be the complex boundary sequence in the
space domain. The boundary can be expressed in the frequency domain applying the
Discrete Fourier Transform:

M-1
Z(m) =Y 2(1)e 35" = r(m)el™ (5.11)

=0

Note that r(m) represents the magnitude and #(m) the phase of the coefficients.
Each shape descriptor can thus be viewed as a vector of 32 complex coefficients related

to the frequencies
fmn==—— (5.12)

82 Chapter 5. WINDSURF Extensions

with m in the range [0, ..., M — 1], and A being the sampling interval. To represent such
shape information, we use a vector of 64 elements (32 elements for the real parts of the
coefficients, and 32 elements for the imaginary part).

At this point, it is important to note that, working in the frequency domain, with
sample modifications to the extracted Fourier coefficients, it is possible to ensure the

invariance properties.

Scale Invariance

The scale invariance allows to retrieve images from the dataset having similar shape but
different size. To ensure this, let z(I) = r(1)e?’” be the points of a boundary object
(denoting with (1) the module and with 6(1) the argument of each complex number), and
let 2/(1) be the points for the same object, but scaled of a factor of 3. Being 8 a scalar
value, the previous transformation regards only the modules of the coefficients and not

their arguments. Therefore, we can write:
Z'(1) = Br(1)e’®V = B2(1) (5.13)

Passing to the frequency domain, the relation between Fourier transforms is:
M-1
-2mlm

Z'(m) =Y 2()e 5" = i Bz(1)e™5" = BZ(m) (5.14)

=0

Thus, to obtain scale invariance (i.e. to obtain the same coefficients for the two objects)
we just need to divide the module of all coefficients for the first module # 0, maintaining

the same argument values.

Translation Invariance

The translation invariance allows to retrieve images having similar shape but different
space location. To this end, we need to make an opportune update to the coefficients ob-
tained from the previous step. Again, consider the object boundary z(l) and the boundary
2'(1) of the same object spatially translated by Z. Thus, it is:

) =z2(0)+z (5.15)

Switching to the frequency domain, we have:

Z'(m) = 3 2(De 5 = 37 (2(1) + 2)e T = D (1)e I+
=0 =0 =0
M-1 l M-1 l
+Y Ze M =Z(m)+Z Y e M = Z(m)+Zxo(m) (5.16)

5.2 WINDSURF with Shape 83

where xo(m) =0, Ym, m # 0, and x0(0) = 1.

We can conclude that the translation introduces variation only on the coefficient with
zero frequency (DC). This means that, to obtain translation invariance, we need to discard
the module and the argument related to the DC coefficient.

Rotation Invariance

Suppose that we want to compare an object to another one with the same shape but
different orientation. Again, we need to update the coefficients obtained from both the
two previous steps. In detail, consider the object boundary z(I) = r(1)e?’” and the
boundary z'() of the same object rotated by @', it is:

Z(1) = r(1)e?OOH) = p (el = 2(1)e?? (5.17)

Switching to the frequency domain, we obtain:

M-1 z M-1 .
Z'(m) =Y 2 (0e? " =" 2 eV = Z(m)e!” (5.18)
=0 =0

It is clear that object rotation changes only the argument of the coefficients (the modules
remaining untouched). Thus, to obtain rotation invariance, we can just subtract to all
the arguments the first argument # 0.

In conclusion, we have demonstrated that it is possible to represent the shape of an
object using both the amplitude and the phase information, by opportunely modifying

Fourier coefficients to preserve scale-, translation-, and rotation-invariance.*

5.2.2 Similarity Measure

Like said in Section 3.2.2, to determine the grade of similarity between two images I,
and I;, WINDSURF has first to compute the similarity score between each possible pair
of regions (R, ;, Rs ;). Then, by way of the overall scoring function, the optimal matching
between all regions is determined, producing an image-level similarity value. Working
with shape, WINDSURF follows the same main steps, but modifies the distance measures.
In particular, to compute the similarity between a pair of shape objects (each of them
represented by a feature vector of M complex modified Fourier coefficients), WINDSURF
uses a simple Euclidean distance.

Let Z(m) the Fourier coefficients of a boundary z(l), and Z’(m) be the Fourier coef-

ficients of another boundary z'(l). Moreover, let Z;(m) be the difference vector between

4We solve also the starting point invariance problem by fixing, from the beginning, the point from
which start all the Tremauz-based interest points extraction.

84 Chapter 5. WINDSURF Extensions

Z(m) and Z'(m), Zg(m) = Z(m) — Z'(m), m = 0,...,M — 1. The Euclidean distance
between Z(m) and Z’(m) is defined as:

1Z(m) = Z'(m)|2 = (5.19)

where |Z,(m)| represents the module of the complex number Z;(m).

To prove that the Euclidean distance preserves the invariance properties described
in the previous Section, we need to demonstrate that, if z/(l) is obtained from z(l) by
scaling it, translating it and/or rotating it, the value || Z(m) — Z'(m)||2 is null, i.e. that
|Za(m)| =0,Ym =0,...,M — 1.

Let us indicate the module of Z(m) as R(m) = mod(Z(m)) and its argument as
O(m) = arg(Z(m)), Z(m) = R(m)e’®™. From Section 5.2.1, we can write the modules
and the arguments of Z'(m) as follows:

o R(0) = B(mod(Z(0) + %))
o [(m) = pR(m) m 70
e O(0) =arg(Z(0)+2)+ 0

o O'(m)=0(m)+0 m # 0

From Section 5.2.1 we know that, in order to preserve the translation invariance, we
have to discard the module and the argument of the DC coefficient (i.e. R(0) and ©(0));
to obtain the rotation invariance we have to subtract the first argument ©(1) to all
arguments; finally, to guarantee the scale invariance, we have to divide all modules by
the first not null module, that, for simplicity, we suppose to be R(1). In this way, the

modified coefficients for Z(m) and Z’(m) become:

°

=

g
|

R(m) — [0 R(1) R(M)]
PR R(L)

Il _ R'(1) R'(M)
e R'(m)= [O,) R]

[]
@
—~
~—
|
o
]
—~
@
—
N}
~—
|
@
—~
[a—y
~—
~—
—~
@
—~
s
|
@
—~
—_
~—
=

5.2 WINDSURF with Shape 85

We have now to prove that |Z4(m)| = 0, for all values of m. The cases for m = 0 and

m = 1 are immediately satisfied, whereas for the case for m > 1 we obtain:

. _ R’(m) =Y _e!
Zm) — jem-em) _ KM jerm-ew) _
SN TON RO
_ B jem-eq) _ BRIM) jem)-ewyro-o _
R(1) BR(1)
R(m) jem-ow) _ Bm) jem-ew)
_ m)-6(1) _ m=em) —((5.20
R(1) © R(1) " (5.20)

5.2.3 Experimental Results

To prove the effectiveness of our approach, among the many shape retrieval systems cited
in Section 2.2, we chose to compare WINDSURF with the NeTra system [MM99]. Ne-
Tra represents, in fact, a good competitor because it follows the WINDSURF approach
to represent the shape information but uses this information in a different way during
the comparison phase. In detail, from the feature vector represented by the M complex
coefficients, NeTra only uses the magnitude information of the coefficients, discarding the
phase component. This, in fact, allows the rotation invariance since, as seen in Section
5.2.1, rotation involves modification of coefficients’ arguments only. Scale invariance is
achieved by dividing the amplitude of the coefficients by the first not null coefficient. Fi-
nally, translation invariance is obtained by discarding the amplitude with zero frequency,
i.e. the DC coefficient. An Euclidean distance is used to compare two shape feature vec-
tors. The basic difference to WINDSURF, thus, lies in how rotation invariance is obtained:
We keep all the coefficients but one, whereas in NeTra all the arguments of the Fourier
Transform are discarded.

Experimental results of the proposed techniques has been performed on a sample of
about 3,000 real-images extracted from the IMSI data set [IMS].

Let us note that it is too simplistic to discard the phase information to obtain an
invariance property. This means, in fact, to drop exactly half of the entire shape informa-
tion. From our point of view, phase is important as much as magnitude and, as yet proved
in previous Section, also following experimental results confirm that it is possible to use
both the magnitude and the phase information preserving all the invariance properties,
whereas discarding all coefficients” arguments too much information is lost. In Figure 5.5
we report results obtained from WINDSURF (on the left side) compared to those of the
NeTra system (on the right side). Close to each image the segmented image is shown.
The query image is represented by the central rectangular region of the top left image, i.e.
the blue object (for clarity, a red frame is drawn around the query). Relevant images are

86 Chapter 5. WINDSURF Extensions

indicated with an arrow. From results, it is clear that the WINDSURF approach is more
effective than NeTra. Computing the precision values (using & = 10) for both methods
we obtain a value of 0.6 for WINDSURF against a 0.2 of NeTra. The superiority of the
WINDSURF shape descriptors is also confirmed by other experiments, not shown here for

the sake of brevity.

WINDSURF NeTra

stMatch=0

BestMatch=0 Simil=0.9711 BestMatch=0

(]

Figure 5.5: Comparison between WINDSURF and the NeTra system.

Finally, in Figure 5.6 we report WINDSURF results using the implemented image sim-
ilarity modalities. In this case, the user is given the possibility to choose between three

different modalities:
e The average function among all the object level score (named “average”).

e The maximum function, that establishes which is the object of the image with higher

similarity value, setting the image similarity to that value (named “max”).

e The possibility for the user to choose a particular object from the image, using the

object as image query (indicated as “selected object”).

In detail, we can say that the choice of which modality to follow depends both on the
query image and on what the user is looking for. If the image is represented by a well-
defined object on a background, and the user is interested in finding images that contain
the main object, the selected object is the correct modality (see, as an example, the dark
square on the white background query image on the left side of Figure 5.6). Considering

the same condition but with a query image with noise at edges, we have to observe that

5.2 WINDSURF with Shape 87

the extraction of the correct boundary of the object becomes more difficult. To deal
with this kind of queries, the use of the average function is recommended (an example of
this case is represented by the world query image on the dark background of Figure 5.6,
reported on the right side). Of course, it can happen that completely different images,
from a semantic point of view, are returned (see the two images with a red frame around).
Finally, in case the user is not looking for a particular object but only for an image similar
to that given in input, the maximum function gives the best results because it considers
only the best matched object to compute the overall similarity score (the flag image on
the blue background query image, reported in the center of Figure 5.6, represents a typical
example of this case). Again, it can happen that no similar images are contained in the
results list (see the images with a red frame around).

Selected Object Max Average

DlelE] e 3]

Simil=1.0000 BestMatch=0 Simil=0.9365 BestMatch=0

||||||||||||

aaaaaa

(b

Figure 5.6: WINDSURF results for a selected object (a), for the maximum (b) and the
average (c) image similarity measures.

Chapter 6

Conclusions

In this thesis we presented several techniques, concretized in the WINDSURF system and
in the FeedbackBypass approach, to improve both the efficiency and the effectiveness of
similarity search in image DBs.

The main conclusions we can draw from our work are the following;:

e The region-based image retrieval approach is more effective than the usual content-
based approach. WINDSURF, by using a wavelet-based clustering approach to seg-
ment images into homogeneous regions, is able to better characterize the content
of images. Experimental results demonstrate the superior retrieval effectiveness of
WINDSURF with respect to both the Stricker and Orengo [SO95] and the IBM QBIC
[FSNT95] systems.

e Query processing techniques based on correct image matching algorithms are very
effective with respect to those based on simplificative heuristics [CTB99], and their
index-based implementations are more efficient as compared to the sequential access
modality. We further point out that the WINDSURF index-based algorithm (A} “*)
is the first correct algorithm for region-based image similarity queries.

e We are conscious that WINDSURF needs a more thorough validation in term of
effectiveness, e.g. by comparing it with other region-based image retrieval systems.
To this end, we are completing the implementation of a comparing platform between
WINDSURF and the Blobworld system [CTB199).

e Interactive similarity search techniques for image DBs share the common idea to
exploit user feedback in order to progressively adjust the query parameters and to
eventually converge to an “optimal” parameter setting. However, all such methods
also share the unpleasant feature to “forget” user preferences across multiple query

39

90

Chapter 6. Conclusions

sessions. To overcome such problem, an efficient solution has been presented: Feed-
backBypass. FeedbackBypass complements the role of relevance feedback engines by
storing and maintaining the query parameters using a wavelet-based data structure
(the Simplex Tree).

Experimental results show that FeedbackBypass works well on real high-dimensional
data, and that its predictions consistently outperform basic retrieval strategies which
start with default query parameters.

A key feature of FeedbackBypass is its orthogonality to existing feedback models,
i.e. FeedbackBypass can be easily incorporated into current retrieval systems re-
gardless of the particular mathematical model underlying the feedback loop. Fur-
ther, FeedbackBypass is distinguished by its low resource requirements which grow
polynomially with the dimensionality of the data set, thus making it applicable to
high-dimensional feature spaces.

As far as we know, no interactive similarity search model for region-based image re-
trieval systems have been presented. To overcome this limitation, the region-based
relevance feedback model of Section 5.1 has been presented, allowing further effec-
tiveness improvement. Note that this formal model has been studied for WINDSURF,
but can be applied to every other system that fragments images into regions. Of
course, FeedbackBypass can also be applied to the region-based relevance feedback
model.

6.1 Future Directions

Throughout this thesis, we pointed out several interesting issues for future research. These

include:

e We plan to employ approximate techniques for index access [CP00] for our optimal

index-based algorithms (A} °*), in order to further reduce the number of distance
computations needed to answer a query, and thus to further improve the efficiency.

e Another issue we intend to investigate, still related to the A}/°* algorithm, regards

the possible parallelization of multiple index scans, along the lines described in

[BEKS00].

e Still related to WINDSURF, at present time able to work only on color, texture, and

shape properties, we plan to integrate also techniques able to recognize the spatial

location of regions.

6.1 Future Directions 91

e Related to FeedbackBypass, we intend to extend the application to other types of
multimedia and include a thorough investigation of the relationships existing be-
tween the resource requirements and the accuracy of the delivered predictions.

e We then plan to integrate in FeedbackBypass the possibility to manage several Sim-

plex Trees to support multiple user interactive applications (user profiles problem).

e For comparison purposes, we are implementing an alternative version of Feedback-
Bypass based on the use of support vector machines [Vap98]. We also plan to

implement a third version based on neural networks.
e We intend to extend FeedbackBypass to general metric (non-vector) spaces.

e Finally, we plan to integrate FeedbackBypass into WINDSURF.

Appendix A

The Wavelet Transform

Wavelet Transform (WT) [Dau92] surged to tremendous popularity during the past decade,
to the point of almost replacing the Fourier Transform, at least in terms of the interest

shown by researchers if not in a more and more growing number of applications.

The basic idea of the WT is similar to that of Fourier Transform: Approximate a signal
through a set of basic mathematical functions [Gra95]. However, wavelet functions are able
to give a multi-resolution representation of the signal, since each frequency component can
be analyzed with a different resolution and scale, whereas the Fourier Transform divides
the time-frequency domain in a homogeneous way (Figure A.1 (a)). This allows the WT
to represent discontinuities in the signal by using “short” base functions and, at the same
time, to emphasize low frequency components using “wide” base functions (Figure A.1
(b)). To this end, WT doesn’t have a fixed set of base functions like the Fourier Transform
(that uses only the sine and the cosine functions) but can use an infinite set of possible

base functions.

A
&

WW VW AN

L] B

tempo

(a) (b)
Figure A.1: Time-frequency space for Fourier (a) and Wavelet (b) Transform.

93

94 Appendix A. The Wavelet Transform

The Continuous WT decomposes a 1-D signal f(x) into a set of scaling functions by

using a set of wavelet basis functions {,;}:

(Wof)(b) = / F (@) () de (A1)

where each wavelet basis function is obtained from a mother wavelet 1 (x) by scaling and

shifting:

boale) = =0 (220 (A2)

The mother wavelet should only satisfy the zero-average condition, i.e. [(x)dz = 0.
The Discrete WT is obtained by taking a = 2" and b € Z in Equation A.1.

A.1 Haar Wavelet Transform

The oldest, and simplest, example of a mother wavelet is the Haar function, which was
first introduced in 1910, and is composed by a pair of rectangular pulses (Figure A.2):

1 0<z<1/2

)= -1 1/2<zx<1 (A.3)
0 otherwise

Consider a discrete signal z = (xg,21,...,Zsr_1) having length 2X. The DWT is
computed through the following steps:

1. For each pair of consecutive samples (wq;, T2i11), (0 < i < 2L71)) compute a! =

%(l’% + Z9;41) and dj = %(@z — Toit1).

()

Figure A.2: Haar wavelet.

A.1 Haar Wavelet Transform 95

2. Consider the new signal (ag,... a5, ,_,) and proceed as in step 1., obtaining a?
and d? (0 <i < 2872).

3. Continue until a single value of af is obtained.

The Haar Transform of x is given by the set of “difference” values d. (0 < | < L,

0 < i< 271) and the “average” value for the last level af. In the frequency domain, the

l

values a; correspond to the output of a low pass filter, thus representing low-frequency

information, whereas the d' values correspond to the output of a high pass filter, thus
representing high-frequency information.

To clarify the process of how a signal is decomposed by means of the Haar Transform,
a numeric example follows.

Example A.1

Consider one-dimensional pixel image with the following eight values:
I=15,3,6,2,3,3,8,4]

The Haar WT for the above image can be calculated as follows:

., 5+3 8 ., 6+2 8 . 343 6 . 844 12
adn — — = —— a == —]— = —— Ao == — — —— Aoy == — —= ——
" f V2 VR V2 V2 V2 ’ 2 V2
5 — 6—2 3—3 8§ —4
__|__ 6 4 12 8 _ 8 6 _ 12
agz‘/_ V2 _ g a? V2 V2 _g dg \/_ \/_ =0 d%:u:—?)
V2 V2 V2 V2

3 849 17 s 8—9 1
ag = —— = — B="""=_—
V2 V2 2 V2
The 8 coefficients WT are defined as the single coefficient representing the overall nor-
malized average of the pixel values (a3) followed by the detail coefficients in order of
increasing resolution (d3, d2, d?, d}, di, di and d}). Thus, the one-dimensional Haar WT
for the original image is given by:
A 17
v
Each entry in W is called wavelet coefficient. Using the WT of an image, rather than
the image itself has several advantages: For example a large number of detail coefficients
tend to be very small value. Thus, truncating these small coefficients from the transform

0,-3,v2,2v/2,0,2V2]

introduces only small errors in the reconstructed image, giving a form of “lossy” image
compression.

96 Appendix A. The Wavelet Transform

A.2 Two Dimensional Haar Wavelet

In our case, the signal is a 2-D color image, where the “time” domain is the spatial location
of pixels and the frequency domain is the color variation between adjacent pixels. In order
to build an orthonormal wavelet basis for the 2-dimensional space, one can start from the
1-dimensional domain and compute the product of two 1-dimensional basis functions, that
is:

Wi v ez (Ilv 1‘2) = Vj1 (1‘1) “Vja ko (1‘2)

If the image to be processed has dimension N x M (with both N and M power of 2),
the first transformation step decomposes the signal into four sub-images of dimension
N/2 x M/2, representing the sub-bands in the frequency domain. The obtained sub-
images are labelled as LL, LH, HL, HH , where L and H represent low- and high-frequency
information, respectively, and the first position refers to the horizontal direction, whereas
the second position refers to the vertical direction:

LL: Low-frequency information in both the horizontal and vertical directions.

LH: Low-frequency information in the horizontal direction, high-frequency information
in the vertical direction.

HL: High-frequency information in the horizontal direction, low-frequency information

in the vertical direction.

HH: High-frequency information in both the horizontal and vertical directions.

Agaf D%rsf

Di2f
Dgraf Dgraf
D%—1f
D22f D32f
D3 D3t \

(a) (b)

Figure A.3: The sub-images D} ; f, A% , f in the “wavelet” image representation (a) and
its horizontal, vertical and diagonal information (b).

A.2 Two Dimensional Haar Wavelet 97

The second transformation level decomposes the LL sub-image, obtaining four images
of dimension N/4 x M/4, and so on. Figure A.3 (a) shows the decomposition of the
frequency domain at different scale levels: Ag_ . [contains low-frequency information,
whereas Dy, f, D3, f, and D3_, f contain horizontal, vertical and diagonal information,
respectively (Figure A.3 (b)).

Example A.2

Let us consider the 4 x 4 image I shown in Figure A.4 and let us use the standard average,
instead of the normalized one, for simplicity. The matrix I’ in Figure A.4 is the result of
first horizontal and vertical pairwise averaging and differencing on the 2 x 2 boxes of the
original image I. The average value in in each box (2.5) is assigned to the 2 x 2 matrix
A, while the detail coefficients are stored in the tree 2 x 2 boxes of the W matrix. The
process is then recursively performed a second time on the averages contained in the A
matrix resulting in detail coefficients of 0 and an average value of 2.5, which is stored in
the upper-left corner pixel of W.

1 2 1 2 25 05! 25 05 25 25 > 05 05
3 4 3 2 1 ol 1 o 25 25 05 05
. | A N N
1 2 25 05! 25 05 1 1i0 o
§ 1 0!{ 1 o0 !

Figure A.4: Computing the Wavelet Transform on a 2-D signal.

Appendix B

Examples of Interactive Similarity
Search

In this Chapter we describe some examples of interactive similarity search introducing
MoRFEo (Multi-modal Relevance Feedback Environment), a prototype application that
we have implemented to study the behavior of the relevance feedback techniques in the
content-based image retrieval context. Experiment results on a real image data set demon-
strate the large impact that relevance feedback has on the effectiveness of similarity results.

Similarity Environment

To test the MoRFEo application we use the IMSI data set [IMS] consisting of about 10,000
real-color images. Like for the FeedbackBypass experiments, from each image, represented
in the HSV color space, we extract a 32-bins color histogram, by dividing the hue channel
H into 8 ranges and the saturation channel S into 4 ranges. To compare histograms we use
the class of weighted Euclidean distances, taking the Euclidean distance as the default
function. MoRFEo implements both query point movement and re-weighting feedback
strategies and the user can decide which technique to use during the interactive research

(i.e. only query point movement, only re-weighting or both).

System Architecture

The architecture of MoRFEo is sketched in Figure B.1. In detail, the DB component
represents the real-image dataset. The Feature Extractor, given an image from the user
(by way of the User Interface), extracts the corresponding 32-bin color histogram and
stores the feature vector into the DB. Upon receiving a query image, the Retrieval Engine
queries the DB. Then, the usual user evaluation and feedback computation loop takes
place by way of the Feedback Module. The process continues until the user is satisfied

99

100 Appendix B. Examples of Interactive Similarity Search

with results presented by the User Interface.

User Interface

I

Retrieval
Engine

Feedback
Module

Feature

Extractor

Figure B.1: The MoRFEo system architecture.

Query Specification

The user can issue queries to the system through the User Interface using two different
modalities:

1. By choosing a starting image (selecting File, then Open, and specifying the path
of an existing image, see Figure B.2).

2. By choosing a random image of the DB (selecting Query, then Random Query
Point, see Figure B.3).

Having specified the query, the system asks the user for the number of requested result
images by way of the results number dialog (Figure B.4).

The Retrieval Engine, then, processes the query, retrieving the result images from the
DB and presenting them to the user, sorted in increasing order of distance with respect
to the query. Figure B.5 show an example of similarity search using the default distance
(i.e. the Euclidean distance).

101

Open [2]x]
Lonk in IaEHRD j ﬁl
PUROZEDD. PG [508400 JPG [508200 JPG P 510000.0PG M5

P B07700.JPG [508500.JPG [509300 JPG P E10100.0PG [5
P B07800.JPG [508600.JPG [E03400 JPG P 510200.0PG e 5
P 507900.JPG [508700.JPG ¥ 509500 JPG P 510300.0PG [5
P 508000.JPG [508800.0PG [509600 JPG P 510400.0PG [5
P EDBT00.JPG [508500 JPG [509700 JPG M 510500.UPG 5
P 508200.JPG [509000.JPG [* 509800 JPG P E10600.JPG [5
P 508300.JPG [509100.0PG [503900 JPG P 510700.0PG e 5

N R i
File name I \&I
Files of type: IAII Files (** j Cancel |

Figure B.2: Choice of an existing query image.

ETEE o

File | Query Method Settings ‘Window Help

Execute

Figure B.3: Choice of a random query image.

Relevance Feedback Technique Specification

Starting from a similarity search default result, the user can give judgments on each
returned image. First of all, he/she has to decide which relevance feedback technique to
use during the interactive search. In detail, at each cycle of similarity search, through the

User Interface, the user can choose three possible options (Figure B.6)):
1. Query Point Movement (selecting Method, then Query Point Movement).
2. Re-weighting (selecting Method, then Re-weighting).
3. Query Point Movement plus Re-weighting (selecting Method, then Both).

After choosing the feedback technique, the user specifies which are the positive ex-
amples, i.e. which images are relevant, in our approach, for query image (e.g. in case of
query 508200.jpg of Figure B.5, representing a bird, positive examples could be images
that contain birds). Positive examples are selected by clicking on the image. The system

shows a green frame around each relevant image (shown in Figure B.7).

102 Appendix B. Examples of Interactive Similarity Search

ofresuts Y

Mumber of results; Izd :|I

Figure B.4: The results number dialog.

5~MoRFEo - [PaintMov]
& File Query Method Settings Window Help

J

508200.jpg d=0.000000 BA5352.jpg d=0.086255 d=0.118455 B36110.jpg d=0.214455

B46963.jpg d=0.313867 B36111.jpg d=0.329212

509400.jpg d=0.370601 BA3277.jpg d=0.385629

687600.jpg d=0.431168 687500.pg d-0.434259

=
oy

B7430.jpg d=0.476106

B43284.jpg d=0.461114

B6106.jpg d=0.448457

687800.jpg d=0.463521

(KN}

Figure B.5: The default results for the query 508200.jpg.

Figure B.8 show the results obtained, still for the query 508200.jpg, after the first cycle
of relevance feedback using the query point movement strategy and selecting, as relevant
results, all bird images of Figure B.5.

Like relevant images demonstrate, query point movement allows to move the query
point towards the good images. This is confirmed also by Figure B.9, representing the
second cycle of search still using only query point movement. In this case we add a new
bird image in the set of relevant images.

When no more improvement is obtained using the query point movement technique
(i.e. when we are close enough to the optimal query point), it is possible, by using the
re-weighting strategy, to re-weigh the default distance, modifying the original Euclidean
sphere into an ellipsoid, to further improve the effectiveness of results. Figure B.10 shows
images obtained at third cycle of search by applying the re-weighting modality to results
of Figure B.9. We can see that all images contain at least a bird.

103

=10l x|
&File Query | Method Settings ‘Window Help _||5||1|

W Query Point Mavement

Re-weighting y

508200.jpg d=0.000000 B45352.jpg d=0.086255

|

Figure B.6: Choice of the relevance feedback technique.
i
& File Query Method Settings Window Help =18 x|

B36110.jpg d=0.214455

B7432.jpg d=0.302304 B46963.jpg d=0.313867 B36111.jpg d=0.329212

B43277.jpg d=0.385629 6B7600.jpg d=0.431168

B7430.jpg d=0.476106 =l

B6106.jpg d=0.448457 B43284.pg d=0.461114 687800.jpg d=0.463521

Figure B.7: Positive examples for the query 508200.jpg.

Finally, Figure B.11 shows results obtained from the same query 508200.jpg, starting
from the same positive examples of Figure B.8 but using both the query point movement

and the re-weighting strategies. In this case, the result list does not contains only images

with birds, but also two fish images reported in position 13 and 15.

This example shows that, using the two feedback strategies in an alternate way, it is
possible to obtain better results with respect to those obtained when the two techniques
are used together, contrary to what commonly assumed in CBIR systems supporting

feedback facilities [RHOM98, ISF98, COPMO1].

104 Appendix B. Examples of Interactive Similarity Search

508200.jpg d=0.127675 i . B46963.jpg d=0.241051

B36111.jpg d= 509400.jpg d=0.279992

BA43277.jpg d=0.331471 B&7500.jpg d=0.34322 687600.jpg d=0.356995

B6106.jpg d=0.372430 508400.,jpg d=0.377579 BB7B00.jpg d-0.386024 B7430.jpg d=0.395869

(2]

Figure B.8: The first-cycle results for the query 508200.jpg using query point movement.

508200.jpg d=0.185758

~ '509400.jpg d-0.258138

\ 3 {

687500.jpg d=0.310086 508400.jpg d=0.314649 ipg d=0. BA3277.jpg d=0.327900

B7430.jpg d=0.367852

687600.jpy d=0.332847 B6106.jpg d=0.351308 687800.jpy d=0.359544

Ll

Figure B.9: The second-cycle results for the query 508200.jpg using query point movement.

105

j

509400.jpg d=0.000121 508200.jpg d-=0.000159 B45352jpg d=0.000184 509500.jpg d=0.000186

\ ¥ i /
BA6963.jpg d=0.000211 508400.jpg d=0.000300 707800.jpg d=0.000352 508100.jpg d=0.000360

BA1459.,jpy d=0.000368 707700.jpg d=0.000369 BA6IG5jpg d=0.000377 GI6T00.jpg d=0.000408

509600.jpg d=0.000411 696500.jpg d=0.000413 696600 jpg d=0.000417 508500.jpg d=0.000420

(2]

Figure B.10: The third-cycle results for the query 508200.jpg using re-weighting.

& Fle Query Method Ssttings Window Help

B45352,jpg d=0.000105 B46963.jpg d=0.000125

B46965.jpg d=0.000213 509600.jpg d=0.000240 508500.jpg d=0.000246

.000251 707800.jpg d=0.000271 510700.jpg d=0.000281

696700.jpg d=0.000329

508100.jpg d=0.000276

.- -

B37179.jpy d=0.000284 707700.jpy d=0.000296

B36952.jpg d=0.000318

Figure B.11: The results for the query 508200.jpg using the Both strategy.

Bibliography

[ABPYY]

[Bas89]

[BCGMOS]

[BCP00a]

[BCPOOD]

[BCWOO]

Stefania Ardizzoni, Ilaria Bartolini, and Marco Patella. Windsurf: Region-
based image retrieval using wavelets. In Proceedings of the 1st International
Workshop on Similarity Search (IW0SS°99), pages 167-173, Florence, Italy,
September 1999.

Michele Basseville. Distance measure for signal processing and pattern recog-
nition. FEuropean Journal of Signal Processing, 18(4):349-369, December
1989.

Serge Belongie, Chad Carson, Hayit Greenspan, and Jitendra Malik. Color-
and texture-based image segmentation using EM and its application to
content-based image retrieval. In Proceedings of the 6th International Con-
ference on Computer Vision (ICCV’98), Mumbai, India, January 1998.

[laria Bartolini, Paolo Ciaccia, and Marco Patella. A sound algorithm for
region-based image retrieval using an index. In Proceedings of the 4th Inter-
national Workshop on Query Processing and Multimedia Issue in Distributed
Systems (QPMIDS’00), pages 930-934, Greenwich, London, UK, September
2000.

[laria Bartolini, Paolo Ciaccia, and Marco Patella. WIND-
SURF: A region-based image retrieval system. Technical Re-
port CSITE-011-00, CSITE-CNR, 2000. Available at URL

http://www-db.deis.unibo.it/MMDBGroup/TRs.html.

[laria Bartolini, Paolo Ciaccia, and Florian Waas. Using the wavelet trans-
form to learn from user feedback. In Proceedings of the First DELOS Network
of Fxcellence Workshop on Information Seeking, Searching and Querying in
Digital Libraries, Zurich, Switzerland, December 2000. Online publication
http://www.ercim.org/publication/ws-proceedings/DelNoe01/.

107

108

Bibliography

[BCWO01a]

[BCWOLD]

[BDV99]

[BEKSO00]

[BKKI6]

[BKSS90]

[BPOO]

[CK93]

[laria Bartolini, Paolo Ciaccia, and Florian Waas. FeedbackBypass:
A new approach to interactive similarity query processing. Tech-
nical Report CSITE-09-01, CSITE-CNR, 2001. Available at URL
http://www-db.deis.unibo.it/MMDBGroup/TRs.html.

[laria Bartolini, Paolo Ciaccia, and Florian Waas. FeedbackBypass: A new
approach to interactive similarity query processing. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB’01), pages
201-210, Rome, Italy, September 2001.

Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. Managing the
complexity of match in retrieval by spatial arrangement. In International
Conference on Image Analysis and Processing (ICIAP’99), Venezia, Italy,
September 1999.

Bernhard Braunmiiller, Martin Ester, Hans-Peter Kriegel, and Jorg Sander.
Efficiently supporting multiple similarity queries for mining in metric
databases. In Proceedings of the 16th International Conference on Data
Engineering (ICDE 2000), pages 256-267, San Diego, CA, March 2000.

Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-tree:
An index structure for high-dimensional data. In Proceedings of the 22nd
International Conference on Very Large Data Bases (VLDB’96), pages 28—
39, Mumbai (Bombay), India, September 1996.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: An efficient and robust access method for points and
rectangles. In Proceedings of the 1990 ACM SIGMOD International Con-
ference on Management of Data, pages 322-331, Atlantic City, NJ, May
1990.

[laria Bartolini and Marco Patella. Correct and efficient evaluation of region-
based image search. In Atti dellOttavo Convegno Nazionale SEBD, pages
289-302, L’Aquila, Italy, June 2000.

Tianhorng Chang and C.-C. Jay Kuo. Texture analysis and classification
with tree-structured wavelet transform. IEEE Transactions on Image Pro-
cessing, 2(4):429-441, October 1993.

Bibliography 109

[COPMO01] Kaushik Chakrabarti, Michael Ortega, Kriengkrai Porkaew, and Sharad
Mehrotra. Query refinement in similarity retrieval systems. [EEE Data
Engineering Bulletin, 24(3):3-13, September 2001.

[CPO00] Paolo Ciaccia and Marco Patella. PAC nearest neighbor queries: Ap-
proximate and controlled search in high-dimensional and metric spaces.

In Proceedings of the 16th International Conference on Data Engineering

(ICDE’00), pages 244-255, San Diego, CA, March 2000.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB’97), pages 426—
435, Athens, Greece, August 1997.

[CPZ98| Paolo Ciaccia, Marco Patella, and Pavel Zezula. Processing complex simi-
larity queries with distance-based access methods. In Proceedings of the 6th
International Conference on FExtending Database Technology (EDBT’98),
pages 923, Valencia, Spain, March 1998.

[CTBT99] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and
Jitendra Malik. Blobworld: A system for region-based image indexing and
retrieval. In Proceedings of the 3rd International Conference on Visual In-
formation Systems (VISUAL’99), pages 509-516, Amsterdam, The Nether-
lands, June 1999.

[Dau92] Ingrid Daubechies. Ten Lectures on Wauvelets. Society for Industrial and
Applied Mathematics (STAM), Philadelphia, PA, 1992.

[Del99] Alberto Del Bimbo. Visual Information Retrieval. Morgan Kaufmann, Inc.,
San Francisco, California, 1999.

[Fag96] Ronald Fagin. Combining fuzzy information from multiple systems. In Pro-
ceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (PODS’96), pages 216-226, Montreal, Canada,
June 1996.

[Falo6] Christos Faloutsos. Searching Multimedia Database by Content. Kluwer
Academic Publishers, 1996.

110

Bibliography

[FEF+94]

[FLNO1]

[FSN+95]

[GBKO00]

[GR95]

[Gra95]

[GW92]

[HS99]

[1136]

[IMS]

[ISF98]

Christos Faloutsos, Will Equitz, Myron Flickner, Wayne Niblack, Dragutin
Petkovic, and Ron Barber. Efficient and effective querying by image content.
Journal of Intelligent Information Systems, 3(3/4):231-262, July 1994.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algo-
rithms for middleware. In Proceedings of the 20th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’01), Santa
Barbara, California, USA, May 2001.

Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian
Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin
Petkovic, David Steele, and Peter Yanker. Query by image and video con-

tent: The QBIC system. [EEE Computer, 28(9):23-32, September 1995.
http://wwwgbic.almaden.ibm.com/.

Ulrich Giintzer, Wolf-Tilo Balke, and Werner Kieflling. Optimizing multi-
feature queries for image databases. In Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB’00), pages 419428, Cairo,
Egypt, September 2000.

Venkat N. Gudivada and Vijay V. Raghavan. Content-based image retrieval
systems. [EEE Computer, 28(9):18-22, September 1995. Guest Editors’
Introduction.

Amara Graps. An introduction to wavelet. IEEE Computational Science
Engineering, 2(2):50-61, June 1995.

Rafael C. Gonzales and Richard E. Woods. Digital Image Processing.
Addison-Wesley, Reading, Ma, 1992.

Gisli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases.
ACM Transactions on Database Systems, 24(2):265-318, June 1999.

Hiroshi Imai and Masao Iri. Computational-geometric methods for polyg-
onal approximations of a curve. Computer Vision, Graphics and Image
Processing, 36:31-41, 1986.

IMSI MasterPhotos 50,000. IMSI USA. http://www.imsisoft.com.

Yoshiharu Ishikawa, Ravishankar Subramanya, and Christos Faloutsos. Min-
dReader: Querying databases through multiple examples. In Proceedings of

Bibliography 111

the 24th International Conference on Very Large Data Bases (VLDB’98),
pages 218-227, New York City, NY, August 1998.

[Kaid4] Gerald Kaiser. A Friendly Guide to Wavelets. Birkhéuser, Boston, 1994.

[Kuhb5] Harold W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistic Quarterly, 2:83-97, 1955.

[Meh94| Kurt Mehlhorn. Data Structures and Algorithms, volume 3: Multi-
dimensional Searching and Computational Geometry. Springer-Verlag,
Berlin, 1994.

[MM99] Wei-Ying Ma and B. S. Manjunath. NeTra: A toolbox for navigating large
image databases. Multimedia Systems, 7(3):184-198, May 1999.

[NRS99] Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. WALRUS: A sim-
ilarity retrieval algorithm for image databases. In Proceedings 1999 ACM
SIGMOD International Conference on Management of Data, pages 396-405,
Philadelphia, PA, June 1999.

[ORCT98] Michael Ortega, Yong Rui, Kaushik Chakrabarti, Kriengkrai Porkaew,
Sharad Mehrotra, and Thomas S. Huang. Supporting ranked boolean simi-
larity queries in MARS. IEEFE Transactions on Knowledge and Data Engi-
neering, 10(6):905-925, January 1998.

[Ore62] Dystein Ore. Theory of graphs. American Mathematical Society, Providence,
RI, 1962.
[0S95] Virginia E. Ogle and Michael Stonebraker. Chabot: Retrieval from a rela-

tional database of images. IEEE Computer, 28(9):40-48, September 1995.

[PC99] Kriengkrai Porkaew and Kaushik Chakrabarti. Query refinement for mul-
timedia similarity retrieval in MARS. In Proceedings of 7th ACM Interna-

tional Conference on Multimedia, pages 235-238, Orlando, Florida, Septem-
ber 1999.

[PF95] Ulrich Pfeifer and Norbert Fuhr. Efficient processing of vague queries using a
data stream approach. In Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’95), pages 189-197, Seattle, WA, July 1995.

112

Bibliography

[PPS6]

[PS85]

[PTVF92]

[RHO0]

[RHOMO9S]

[RSHI6]

[Sal89]

[SC96]

[SDOG]

Alex Pentland, Rosalind W. Picard, and Stan Sclaroff. Photobook: Content-
based manipulation of image databases. In Borko Furht, editor, Multimedia
Tools and Applications, chapter 2, pages 43-80. Kluwer Academic Publish-
ers, 1996.

Franco P. Preparata and Michael Tan Shamos. Computational Geometry:
An Introduction. Springer-Verlag, New York, NY, 1985.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, NY, 1992.

Yong Rui and Thomas S. Huang. Optimizing learning in image retrieval.
In Proceedings of IEEE International Conference on Computer Vision and
Pattern Recognition, 2000, pages 236—243, Hilton Head, SC, June 2000.

Yong Rui, Thomas S. Huang, Michael Ortega, and Sharad Mehrotra. Rele-
vance feedback: A power tool for interactive content-based image retrieval.
IEEFE Transaction on Circuits and Systems for Video Technology, 8(5):644—
655, September 1998.

Yong Rui, Alfred C. She, and Thomas S. Huang. Modified Fourier descrip-
tors for shape representation — a practical approach. In Proceedings of the
1st International Workshop on Image Databases and Multi Media Search,
Amsterdam, The Netherlands, August 1996.

Gerard Salton. Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley, Reading, MA|
1989.

John R. Smith and Shih-Fu Chang. VisualSEEk: A fully automated content-
based image query system. In Proceedings of the jth ACM International
Conference on Multimedia, pages 87-98, Boston, MA, November 1996.

http://www.ctr.columbia.edu/visualseek/.

Markus A. Stricker and Alezander Dimai. Color indexing with weak spatial
constraints. In Proceedings of International Conference on Storage and Re-
trieval for Image and Video Databases (SPIE’96), pages 29-40, San Diego,
CA, February 1996.

Bibliography 113

[SJ96] Simone Santini and Ramesh Jain. Similarity queries in image databases.
In Proceedings of IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR °96), pages 646-651, San Francisco, CA, June
1996.

[SK97] Thomas Seidl and Hans-Peter Kriegel. Efficient user-adaptable similarity
search in large multimedia databases. In Proceedings of the 23rd Interna-
tional Conference on Very Large Data Bases (VLDB’97), pages 506-515,
Athens, Greece, August 1997.

[Smi9T7] John R. Smith. Integrated Spatial and Feature Image Systems: Retrieval,
Analysis and Compression. PhD thesis, Columbia University, 1997.

[SO95] Markus A. Stricker and Markus Orengo. Similarity of color images. In
Storage and Retrieval for Image and Video Databases SPIE, volume 2420,
pages 381-392, San Jose, CA, February 1995.

[SS96] Wim Sweldens and Paul Schréder. Building your own wavelets at home.
In Wavelets in Computer Graphics, pages 15-87. ACM SIGGRAPH Course
notes, 1996.

[Swe96] Wim Sweldens. The lifting scheme: A custom-design construction of

biorthogonal wavelets. Applied Comput. Harmon. Anal., 3(2):186-200, 1996.

[SWST00] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath
Gupta, and Ramesh Jain. Content-based image retrieval at the end of the
early years. IEFEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(12):1349-1380, December 2000.

[TCHOO0] Megan Thomas, Chad Carson, and Joseph M. Hellerstein. Creating a cus-
tomized access method for Blobworld. In Proceedings of the 16th Interna-
tional Conference on Data Engineering (ICDE’00), page 82, San Diego, CA,
March 2000.

[UVJT97] Geert Uytterhoeven, Filip Van Wulpen, Maarten Jansen, Dirk Roose, and
Adhemar Bultheel. WAILI: Wavelets with integer lifting. Technical Re-
port 262, Department of Computer Science, Katholieke Universiteit Leuven,
Heverlee, Belgium, July 1997.

[Vap9s| Vladimir Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.

114

Bibliography

[VSLV99]

[WBO00]

[WFSP0O]

[WLWO1]

[WWEFW97]

[XB91]

[ZSAROS]

Gert Van de Wouver, Paul Scheunders, Stefan Livens, and Dirk Van Dyck.
Wavelet correlation signatures for color texture characterisation. Pattern
Recognition, 32(3):443-451, March 1999.

Roger Weber and Klemens Bohm. Trading quality for time with nearest-
neighbor search. In Proceedings of the 7th International Conference on Ezx-
tending Database Technology (EDBT’00), pages 21-35, Konstanz, Germany,
March 2000.

Leejay Wu, Christos Faloutsos, Katia P. Sycara, and Terry R. Payne. FAL-
CON: Feedback adaptive loop for content-based retrieval. In Proceedings of
the 26th International Conference on Very Large Data Bases (VLDB’00),
pages 297-306, Cairo, Egypt, September 2000.

James Ze Wang, Jia Li, and Gio Wiederhold. SIMPLIcity: Semantics-
sensitive Integrated Matching for Picture Llbraries. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(9):947-963, September 2001.

James Ze Wang, Gio Wiederhold, Oscar Firschein, and Sha Xin Wei.
Wavelet-based image indexing techniques with partial sketch retrieval ca-
pability. In Proceedings of the 4th IEEE Forum on Research and Technology
Advances in Digital Libraries (ADL’97), pages 13-24, Washington, DC, May
1997.

Xuanli Lisa Xie and Gerardo Beni. A validity measure for fuzzy cluster-
ing. [IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(8):841-847, August 1991.

Pavel Zezula, Pasquale Savino, Giuseppe Amato, and Fausto Rabitti. Ap-
proximate similarity retrieval with M-trees. The VLDB Journal, 7(4):275—
293, 1998.

“Live as if you were to die tomorrow,
Learn as if you were to live forever.”

Gandhi

